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Abstract Acoustic laboratory measurements have been conducted for forty-two sandstone samples

at fully air and water saturation. This study is an attempt to learn more about the behavior of both

P-wave and S-wave velocity in porous sandstone rock samples for both dry and wet conditions.

The statistical analysis indicates that higher values of the P-wave velocity are obtained for

saturated samples and lower values are obtained for dry samples. The average P-wave velocity of

dry rock samples is 2766 m/s and the average P-wave velocity of wet rock samples is 2950 m/s. The

S-wave velocity is higher in the dry state with an average value of 1585 m/s. The average S-wave

velocity of wet rock samples is 1357 m/s.

The derived equations can be used for the prediction of P-wave velocity of wet rock samples from

the P-wave velocity of dry rock samples, and the S-wave velocity of wet rock samples can be predicted

from the S-wave velocity of dry rock samples. A strong linear correlation between P-wave velocity

and S-wave velocity of dry rock samples and between P-wave velocity and S-wave velocity of wet rock

samples was found. The resulting linear equations can be used for the estimation of S-wave velocity

from the P-wave velocity in the case of both dry and wet rock samples.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Egyptian Petroleum Research

Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Forty-two Nubian sandstone samples originate from Tushka
region in the South Western Desert. The samples were
collected from outcropping formations of Cretaceous age.
According to Thabit [25] the studied Nubian sandstones can

be distinguished from base to top into four formations as fol-
lows: Adindan Formation (Jurassic–Valanginian), Abu Simbil
Formation (Valanginian–Barremian), Abu Ballas Formation
(Aptian–Albian) and Kesieba Formation (Campanian–

Maastrichtian). Kesieba Formation is separated from the
underlying Abu Ballas Formation by a disconformity of regio-
nal extent caused by the removal of the Sabayia Formation dur-

ing a tectonic exhumation. The study area is located between
latitudes N 22� 150 and N 22� 350 and longitudes E 31� 000 and
E 31� 400. The Nubian sandstones are of special interest due

to their economic oil and gas potentiality, groundwater
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resources and mineral deposits such as kaolinite, coal, glass
sand, uranium, copper, iron, and manganese ores [2,6 and 7].

The ultrasonic wave velocity in rock sample is related to its

elastic coefficients, internal structure and density. Hicks and
Berry [14] list the parameters influencing velocities in rocks
which may be summarized as follows; (1) Rock framework

as elastic constant of grains, density of grains, type of cement-
ing material, pressure on skeleton lithology and porosity, (2)
Fluid contained in pore spaces as density of fluid, pressure

on fluid, and compressibility of fluid and (3) Temperature of
medium, where the change in temperature over the range from
25–150 �C causes velocity change in dry rock either shale or
sandstone causing 5–7% reduction in velocity for saturated

cores under equal hydrostatic and skeleton pressure [15]. (4)
Depth and elevated overburden pressure, where the velocity
increases logarithmically with increasing in depth and rock

pressure as well [5]. The overburden pressure increases seismic
velocity, while its associated high temperature decreases it.

Han et al. [13] studied the effect of clay content on wave

velocities and concluded that clay content is the next most
important parameter to porosity in reducing velocities.
Minear [19] showed that clay suspended in the pores of sand-

stone has only a small effect on velocities, whereas both struc-
ture and laminated clay result in a dramatic velocity reduction.

Clay content is the next most important parameter in
reducing velocities, whereas both structure and laminated clay

result in a dramatic velocity reduction. The presence of pore
space reduces the bulk density of the rock. This would appear
to increase P-wave and S-wave velocity due to the reduction in

density. The effect of a general decrease in P-wave and S-wave
velocity with increasing porosity is due to the increase in
porosity reducing the rigidity of the rock that decreases both

P-wave and S-wave. Pore structure has an effect on both bulk
and shear modulus [12].

The shear wave velocity values in a liquid–wet porous mate-

rial will always be less than that in the dry material based on
an assumption that micro-cracks are negligible. The compres-
sional wave velocity in the liquid–wet porous material will gen-
erally be higher than that in the dry case, except for material

having low bulk compressibility [3]. High values of the P-wave
velocity are obtained for saturated samples and low values are
obtained for dry samples (P-wave velocity (dry) < P-wave

velocity (saturated)) [4]. The shear wave velocity decreases as
the water saturation increasing until it reaches 70–75% and
then starts to increase again [9]. Poisson’s ratio, which has

been calculated from acoustics laboratory measurements when
the samples are gas, gas–water, and crude oil–water saturated,
can be used for step wise tracing of the oil–water transitional
zone and detecting its exact thickness in high porosity oil bear-

ing sandstone and/or carbonate reservoir [8]. P-wave velocity
of wet rock can be predicted from the P-wave velocity of dry
rock [16].

The present work aims to learn more about the behavior of
both P-wave and S-wave velocity in sandstone samples for
both dry and wet conditions and to investigate the effect of

porosity, permeability, both dry and wet densities and sat-
uration on the acoustic velocities.

2. Methods of investigation

Thin sections and scanning electron microscopy (SEM) of core
samples are used to identify the mineralogical composition and
diagenetic processes. The petrographical study of forty-two
thin sections is based mainly on the microscopic examination
of the studied samples. Thin section preparation involved

vacuum impregnation with blue epoxy to facilitate the recogni-
tion of porosity types. SEM analysis was performed by the
scanning electron microscopy at the Institute of Geology and

Paleontology at Clausthal University of Technology,
Germany. The clastic rocks in the present study were classified
according to Pettijohn et al. [21] and Folk [10].

All samples were analyzed at the Institute of Geophysics at
Clausthal University of Technology, Germany and the
Egyptian Petroleum Research Institute, Egypt. Compressional
wave velocity (P-wave velocity) and shear wave velocity (S-wave

velocity) were measured at room temperature and ambient
pressure on cylindrical samples with a diameter of about
2.5 cm and a length of up to 3.5 cm cut from the blocks, by using

an equipment of Inspection Technologies (USLT 2000) at ultra-
sonic frequencies of 500 kHz. The velocity of an ultrasonic wave
in rock samples is related to its elastic coefficients, internal

structure and density. P-wave velocity (Vp) and S-wave velocity
(Vs) measurements were made with the samples in both dry and
fully water saturated state, both of them can be computed from

the elastic moduli by the following formulas;

Vp ¼ ½ðjþ 4l=3Þ=d�1=2 and ð1Þ

Vs ¼ ½l=d�1=2 ð2Þ

with j being the bulk modulus, l the shear modulus, and d the
density.

Porosity (A) was measured by use of helium porosimeter.
The porosity of a rock is defined as the ratio of the rock void
spaces to its bulk volume, multiplied by one hundred to

express it in percent [1]. This can be expressed in mathematical
form as;

U ¼ Vb � Vg=Vb ð3Þ

with A being the porosity fraction, Vb the bulk volume, cm3,
and Vg the grain volume, cm3.

The permeability (K) in mD was measured by use of core
lab permeameter. Darcy’s equation relating permeability to
compressible fluids is;

K ¼ ½2000lqLPa�=½AðP1
2 � P2

2Þ� ð4Þ

with K being the permeability (mD), l the viscosity of air, cen-

tipoises, q the gas volume flow rate cm3/sec, P1 the upstream
pressure (atmosphere), P2 the downstream pressure (atmo-
sphere) and Pa the atmospheric pressure (atmosphere).

The dry bulk density is defined as the mass per unit volume
of a rock in its natural state.

db ¼ md=V ð5Þ

with db being the bulk density in g/cm3, md the dry mass of the

sample in g and V the volume of the sample in cm3.
The grain density was determined as a byproduct of poros-

ity measurements, by using the following equation:

dg ¼ md=Vg ð6Þ

with dg being the grain density in g/cm3 and Vg the volume of
grains in cm3.

The density can be related to porosity by the following
equation, according to Schlumberger [24].



Table 1 Porosity, permeability, grain density, dry bulk density, wet bulk density, P-wave velocity and S-wave velocity of dry and wet

rock samples.

Sample no. A in fraction K in mD dg in g/cm3 db in g/cm3 dw in g/cm3 Vp-dry in m/s Vp-wet in m/s Vs-dry in m/s Vs-wet in m/s

1 0.311 2285.70 2.65 1.83 2.14 2718.5 2775

2 0.276 388.83 2.74 1.98 2.26 2819.5 3157

3 0.253 217.28 2.77 2.07 2.32 3390.5 3427

4 0.261 263.77 2.79 2.06 2.32 3312 3572 2400.5 2256

5 0.340 4406.44 2.63 1.74 2.08 2402.5 2593

6 0.335 4728.11 2.63 1.75 2.09 2391.5 2611 1337 1232

7 0.330 5334.62 2.63 1.76 2.09 2288.5

8 0.285 4265.79 2.62 1.88 2.16 2404 2881

9 0.272 1432.72 2.64 1.92 2.19 2649 3086

10 0.276 2890.77 2.64 1.91 2.19 2581.5 2889 1171 1175.5

11 0.346 2736.92 2.65 1.73 2.08 2445 2606 1337

12 0.330 2476.64 2.65 1.77 2.10 2422.5

13 0.266 589.61 2.64 1.94 2.20 2639.5

14 0.314 432.44 2.75 1.89 2.20 2645 2859 1377 1170

15 0.320 615.25 2.74 1.87 2.18 2962.5 3035 1517.5 1293.5

16 0.322 673.99 2.75 1.86 2.19 2619.5 2889 1245 1084.5

17 0.299 33.90 2.67 1.87 2.17 2952.5 2912 1559.5 1310

18 0.262 16.01 2.67 1.97 2.23 2992 2881 1592 1296

19 0.289 139.85 2.67 1.90 2.19 2979 3060

20 0.343 31.07 2.64 1.73 2.08 2607.5 2668 1746 1117

21 0.322 1090.18 2.65 1.80 2.12 2743.5 2794

22 0.326 2019.40 2.64 1.78 2.11 2998 2873 2324.5 1820.5

23 0.304 4410.44 2.64 1.84 2.14 2480 2840

24 0.302 3736.31 2.64 1.84 2.15 2600.5 2646

25 0.303 4484.17 2.64 1.84 2.14 2712 2772 1708 1521

26 0.251 2153.97 2.65 1.98 2.23 2952

27 0.261 5012.59 2.65 1.96 2.22 2887.5

28 0.247 3628.37 2.65 1.99 2.24 3286 3142 1596.5 1393.5

29 0.283 7570.73 2.63 1.89 2.17 2786.5 3061 1353 1212.5

30 0.269 6830.21 2.63 1.92 2.19 2525.5 2993 1311 1217

31 0.284 6689.88 2.64 1.89 2.17 2326 2855 1033.5 1051

32 0.292 1632.53 2.65 1.88 2.17 3192 3201 1709 1473.5

33 0.287 1258.81 2.65 1.89 2.18 3118.5 3095 1513 1374

34 0.269 1135.63 2.65 1.94 2.21 3277 3273

35 0.292 323.99 2.64 1.87 2.16 2405 2528

36 0.311 1160.99 2.65 1.83 2.14 2298.5

37 0.272 0.90 2.80 2.03 2.31 2923 3164 1542.5 1378.5

38 0.347 203.62 2.70 1.77 2.11 2850 2866 2081 1345

39 0.273 7750.01 2.63 1.91 2.18 2950

40 0.257 4969.19 2.63 1.96 2.21 3365.5 3334 1835 1418

41 0.272 530.89 2.69 1.95 2.23 2525.5

42 0.201 14.70 2.65 2.12 2.32 2756 2984
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db ¼ ð1� UÞdm þ Udf ð7Þ

with dm being the density of matrix and df the pore fluid

density.
Dry bulk density in g/cm3 was calculated according to Eq.

(5) and can be calculated according to the following equation;

db ¼ ð1� UÞdm þ Uda ð8Þ

with db being the dry bulk density and da the density of air.

Wet bulk density dw in g/cm3 is calculated according to the
following equation;

dw ¼ ð1� UÞdm þ Udf ð9Þ

with dw being the wet bulk density and df the pore fluid (water)

density.
Porosity, permeability, grain density, dry bulk density, wet

bulk density, P-wave velocity and S-wave velocity of dry and

wet rock samples are listed in Table 1 while minimum,
maximum, average and standard deviation of porosity,
permeability, grain density, dry bulk density, wet bulk density,

P-wave velocity and S-wave velocity of dry and wet rock
samples are listed in Table 2. Some previously published
compressional wave velocity and porosity data for the same

Nubian sandstone samples collected from South Western
Desert (Tushka region), have been used in a study for estimation
of porosity from compressional wave velocity [17]. A similar

study has been performed at carbonate samples originating
from the Tushka area [18].

3. Results and discussion

3.1. Mineralogical investigations of the studied sandstones

The studied sandstones are composed of quartz grains cemen-
ted together by silica, iron oxides and/or clay content. Because



Table 2 Minimum, maximum, average and standard deviation of porosity, permeability, grain density, dry bulk density, wet bulk

density, P-wave velocity and S-wave velocity of dry and wet rock samples.

A in

fraction

K in

mD

dg in

g/cm3
db in

g/cm3
dw in

g/cm3
Vp-dry

in m/s

Vp-wet

in m/s

Vs-dry

in m/s

Vs-wet

in m/s

Minimum 0.201 0.90 2.624 1.731 2.076 2289 2528 1034 1051

Maximum 0.347 7750.01 2.795 2.118 2.321 3391 3572 2401 2256

Average 0.292 2394.46 2.666 1.888 2.179 2766 2950 1585 1357

Standard deviation 3.18 2294.14 0.046 0.093 0.064 308 242 343 267

Iron oxide 

Iron oxide 

Detrital clay 

Authigenic kaolinite 

Silica
Detrital clay 

Plate 1 Photomicrographs of Nubian sandstones from type sections in south Egypt, the injected resin filling pores is dyed blue; (A)

Quartz arenite, intensive dissolution of quartz grains increasing the fracture and intragranular porosity, X-40, PPL, (B) Quartz wacke,

detrital clay partially filling pore spaces and cementing the quartz grains, X-40, PPL, (C) Ferruginous quartz arenite, iron oxide patches

masking micro/matrix and intergranular porosity, X-40, PPL, (D) Some detrital clay partially filling pore spaces and cementing the quartz

grains, (E) Some authigenic kaolinite booklets partially filling the pore spaces and (F) Some iron oxide filaments rose-like structure.
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of the varying clay contents this sandstone can be regarded as
shaly sandstone. Detailed petrographical analysis of the sand-
stone samples originating from Tushka region in the South

Western Desert was performed by Nabawy et al. [20].
Petrographically, these sandstones are composed of ill sorted,
fine to coarse and rounded to angular quartz grains cemented
together by silica cement, iron oxides and/or clay content.
These sandstones are mainly quartz arenite (Plate 1A), quartz
wacke (Plate 1B) and ferruginous quartz arenite (Plate 1C).
Some iron oxides, mostly as pigments, much iron oxide

patches masking micro/matrix and intergranular porosity
and clay content are disseminated within the cement, partially
filling and lining the pore spaces and sometimes cementing the
quartz grains together. The quartz grains are mostly in point
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Figure 1 Relationship between porosity and permeability.
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Figure 2 Relationship between porosity and dry bulk density.
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dry rock samples.
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Figure 4 Relationship between permeability and P-wave velocity

of dry rock samples.
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contact, and sometimes in suture or concave–convex contact.
Some detrital clay (Plate 1D and B), partially filling pore

spaces and cementing the quartz grains. Some authigenic
kaolinite booklets partially filling the pore spaces (Plate 1E)
and some iron oxide filaments rose-like structure (Plate 1F).

Diagenetic signatures observed in the studied sandstones
include compaction, cementation and dissolution.

There are several features indicating that the investigated

sandstones have been subjected to considerable compaction,
fractured quartz grains, sometimes internally deformed, and
the suture or concave–convex contact between quartz grains

(Plate 1A).
Major diagenetic minerals and cements recognized in these

sandstones are silica, iron oxides, and/or clay content.
Cementations with iron oxides and silica are the common
diagenetic feature in most of the investigated sandstones.
Detrital clay partially filling pore spaces and cementing the
quartz grains and some authigenic kaolinite booklets partially

filling the pore spaces are present in some of the studied
sandstone samples.

Cementation by silica (Plate 1A) attached the grains

together, sometimes slightly reducing porosity values. Some
iron oxides, mostly as pigments (Plate 1C) and clay content
are disseminated within the cement, partially filling and lining

the pore spaces and sometimes cementing the quartz grains
together (Plate 1B, D and E).

On the other side, dissolution and leaching out of quartz,
clay contents and feldspar are the main porosity-enhancing
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Figure 6 Relationship between porosity and P-wave velocity of

wet rock samples.
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diagenetic factors giving rise to excellent porosity (Plate 1A)

and permeable paths for pore fluid movement.
The pore spaces of the Nubian sandstone samples could be

separated into: (1) intergranular porosity (Plate 1A and D),

fracture and intragranular porosity (Plate 1A and C) and
matrix porosity, masked by the iron oxides (Plate 1B and C).

3.2. Density, porosity and permeability

The obtained grain density varies from 2.62 to 2.80 g/cm3 with
mean values 2.67 g/cm3 and standard deviation 0.046 g/cm3.
The obtained dry bulk density values vary from 1.73 to
2.12 g/cm3 with mean values 1.89 g/cm3 and standard
deviation 0.093 g/cm3. The wet bulk density values vary from

2.08 to 2.32 g/cm3 with mean values 2.18 g/cm3 and standard
deviation 0.064 g/cm3. The measured porosity values vary
from 0.201 to 0.347 with mean values 0.292 and standard

deviation 3.18%, while the permeability value distribution var-
ies from 0.900 mD to 7750 mD, with mean values 2394 mD
and standard deviation 2294 mD. Sandstone samples of the

Tushka region were integrated in a study comparing different
models of permeability prediction using the transverse relax-
ation time of nuclear magnetic resonance data and parameters
determined from spectral induced polarization [26].
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3.2.1. Density–porosity relationship

The dry bulk density and porosity relationship for dry samples

was studied as an attempt to perform a reliable relationship to
be utilized for porosity prediction in sandstone reservoirs. This
relationship, which is shown in Fig. 2, indicates a decrease of

porosity with increasing the dry bulk density as predicted by
Eq. (8) with vanishing density of the air. This relationship is
characterized by a very good coefficient of correlation

(r = 0.93) and indicates that porosity can be predicted from
bulk density, with a high precision.
3.2.2. Porosity–permeability relationship

The relationship between permeability and porosity Fig. 1 for
the studied rock samples is indicated by a positive trend, which
means that the porosity is not the main contributor for the
rock permeability. The fine contents and/or differences in pore

throat sizes seem to be the main controls of permeability. The
relationship between porosity and permeability for the rock
samples is affected by cementation with silica, iron oxides

and clay content, (Plate 1A, B, D and E). Based on the
obtained results, the pore filling silica, iron oxides and clay
contents have an effect on the pore size. Pore lining iron oxides

and clay content have an effect on the pore throat radius. Both
the pore size and the distribution of pore throat radius have a
strong effect on the porosity–permeability relationship.

3.3. P-wave velocity of dry rock samples

The measured P-wave values of dry rock samples (Vp-dry)
vary from 2289 to 3391 m/s with a mean value of 2766 m/s

and a standard deviation 308 m/s.
The relationship between P-wave velocity of dry rock sam-

ples and porosity is displayed in Fig. 3. It shows a weak to fair

inverse relationship with correlation coefficient r = 0.46,

Vp-dry ¼ 4043� 4380U m=s ð10Þ
The relationship of P-wave of dry rock samples and

permeability, which is shown in Fig. 4, illustrates that the data

points result in a cloud of points with no clear trend.
The direct proportional relationship between P-wave veloc-

ity of dry rock samples and dry bulk density, which is dis-

played in Fig. 5, shows a fair direct proportional relationship
with correlation coefficient of r= 0.56.

Vp-dry ¼ 1853db � 734 m=s ð11Þ
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The relationships of P-wave velocity of dry rock samples
with porosity, permeability and dry bulk density indicate that
porosity and dry bulk density control P-wave velocity of dry

rock samples to some extent, while permeability seems not
related to P-wave velocity.

3.4. P-wave velocity of wet rock samples

The measured P-wave values of wet samples (Vp-wet) vary
from 2528 to 3572 m/s, with mean values 2950 m/s and

standard deviation 242 m/s.
The relationship between P-wave velocity of wet rock

samples and porosity was plotted in Fig. 6. The relationship

was improved to be better than that in the dry case, where
the correlation coefficient became r = 0.62,

Vp-wet ¼ 4306� 4636Um=s ð12Þ

The porosity can be estimated based on the generalized
velocity–porosity relation (modified Raymer equation) if

porosity should be estimated from P-wave velocities for both
dry and saturated conditions.

v ¼ ð1� UÞavs þ Ubvf ð13Þ

with v being the velocity of the rock, versus the velocity of the
solid material, vf the velocity of the pore fluid, while a and b
representing varying exponents in a common family tree of

velocity–porosity relations, [23]. A special member of this fam-
ily of equations with a = 2 and b= 1 was investigated by
Raymer et al. [22]. The exponent of the solid fraction, which

is 2 in the Raymer equation, has to be increased at 3 for
saturated and at 3.4 for dry conditions. The exponent of the
pore fraction (porosity) remains close to one [17].

The relationship of P-wave of wet rock samples and

permeability, which is displayed in Fig. 7 illustrates that the
data points result in a cloud of points with no clear relationship.

The relationship between P-wave of wet rock samples and

wet bulk density, which is displayed in Fig. 8, shows a good
relationship, which is better than that in the dry case, where
correlation coefficient increases to r= 0.77.

Vp-wet ¼ 2797dw � 3151 m=s ð14Þ

The relationships of P-wave velocity of wet rock samples
with porosity, permeability and wet bulk density show a simi-
lar behavior compared to the P-wave velocity of dry samples.

The relationships of P-wave velocity of wet rock samples with
porosity and wet bulk density have been improved after
saturation, compared to the P-wave velocity of dry samples,
where the correlation coefficients increase.

3.5. S-wave velocity of dry rock samples

The measured S-wave velocity values of dry rock samples

(Vs-dry) vary from 1034 to 2401 m/s with a mean value of
1585 m/s and standard deviation 343 m/s.

The relationship between S-wave velocity of dry rock

samples and porosity is displayed in Fig. 9. The resulting data
points are flocked together in a cloud of points without any
clear trend.

The relationship of S-wave of dry rock samples and
permeability, which is displayed in Fig. 10, does not show
any trend.
The relationship between S-wave velocity of dry rock sam-
ples and dry bulk density, which is plotted in Fig. 11, shows a
very weak direct proportional relationship. The plot indicates

a slight increase in S-wave velocity of dry rock samples with
increasing dry density.

3.6. S-wave velocity of wet rock samples

The S-wave velocity values of wet rock samples (Vs-wet) vary
from 1051 to 2256 m/s with a mean value of 1357 m/s and a
standard deviation 267 m/s.

The relationship between S-wave velocity of wet rock sam-
ples and porosity, which is displayed in Fig. 12, shows a very
weak inverse relationship.
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density of wet rock samples.
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samples and S-wave velocity of wet rock samples.
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The comparison of S-wave of wet rock samples and
permeability, which is shown in Fig. 13, does not show any

clear trend.
The cross plot of S-wave velocity of wet rock samples andwet

density in Fig. 14 exhibits a scatter of data points that is similar

to the cross plot of S-wave velocity against the dry density in
Fig. 11. The two plots indicate only a very weak positive trend.

3.7. P-wave velocity of dry rock samples and P-wave velocity of
wet rock samples relationship

The comparison between P-wave velocity of dry rock samples
and P-wave velocity of wet rock samples, which is displayed in
Fig. 15, shows a very good direct proportional relationship
with a correlation coefficient of r = 0.82, which means that
the P-wave velocity of wet rock samples can be predicted from

the P-wave velocity of dry rock samples with a high precision.

Vp-wet ¼ 0:64Vp-dryþ 1148 m=s ð15Þ
3.8. S-wave velocity of dry rock samples and S-wave velocity of
wet rock samples relationship

The comparison between S-wave velocity of dry rock samples
and S-wave velocity of wet rock samples, which is plotted in

Fig. 16, indicates a very good direct proportional relationship
with a correlation coefficient of r = 0.84. The S-wave velocity
of wet rock samples can be well predicted from the S-wave of

dry rock samples with a reliable accuracy.

Vs-wet ¼ 0:65Vs-dryþ 321 m=s ð16Þ
3.9. P-wave velocity of dry rock samples and S-wave velocity of
dry rock samples relationship

Fig. 17 compares P-wave velocity and S-wave velocity of dry
rock samples. The graph exhibits a good direct proportional
relationship with a correlation coefficient of r = 0.65. This

relationship indicates that S-wave velocity of dry rock samples
can be calculated from P-wave velocity of dry rock samples.

Vs-dry ¼ 0:73Vp-dryþ 494 m=s ð17Þ
3.10. P-wave velocity of wet rock samples and S-wave velocity of
wet rock samples relationship

The comparison between P-wave velocity and S-wave velocity

of wet rock samples as shown in Eq. (18) with a correlation
coefficient of r= 0.62, indicates that S-wave velocity of wet
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rock samples can be simply estimated from P-wave velocity of
wet rock samples (Fig. 18).

Vs-wet ¼ 0:75Vp-wet� 871 m=s ð18Þ
4. Conclusion

The studied sandstones are represented by quartz arenite com-
posed of quartz grains cemented together by silica, iron oxides,

and/or clay content. The cementation sometimes slightly
reduces porosity. Dissolution and leaching out of quartz, clay
contents and feldspar are the main porosity enhancing diage-
netic factors giving rise to excellent porosity and permeable
paths for pore fluid movement.

The relationship between porosity and permeability for the
rock samples is affected by cementation with silica, iron oxides
and/or clay content, (Plate 1A, B, D and E). The pore filling

silica, iron oxides and/or clay content have an effect on the
pore size. Pore lining iron oxides and clay contents have an
effect on the pore throat radius. Both the pore size and the dis-

tribution of pore throat radius have a strong effect on the
porosity–permeability relationship. The theoretical relation
between porosity and dry bulk density can be used to predict
porosity from bulk density if the grain density is known.

The investigated relationships of porosity versus seismic
velocities, permeability versus seismic velocities and density
versus seismic velocities for both dry and wet rock samples

indicate poor to fair relationships. The resulting relationships
indicate that porosity and density affect both P-wave and S-
wave velocities. The relationships between permeability and

seismic velocities could not be identified. Besides these petro-
physical parameters, seismic velocities are mainly controlled
by rock texture and mineral composition.

The statistical analysis indicate that the P-wave velocity is
higher in the fully saturated state, where the average value of
P-wave of wet rock samples is 2950 m/s and P-wave of dry
rock samples is 2766 m/s. The S-wave velocity is higher in

the dry state, where the average S-wave velocity of dry rock
samples is 1585 m/s and the average S-wave velocity of wet
rock samples is 1357 m/s. The increase in P-wave velocity

and decrease in S-wave velocities with increasing saturation
are in agreement with Gassmann’s theory [11].

The relationships indicate that the P-wave velocity of wet

rock samples is strongly correlated with the P-wave velocity
of dry rock samples, and the derived equations can be used
for the prediction of the P-wave velocity of wet rock from

the P-wave velocity of dry rock. The S-wave velocity of wet
rock samples is strongly correlated with the S-wave velocity
of dry rock samples, too. The derived equations can be used
for the prediction of the S-wave velocity of wet rock from

the S-wave of dry rock.
The resulting linear relations between S-wave velocity and P-

wave velocity of both dry and wet rock samples are character-

ized by high correlation coefficients for both dry and wet rock
samples. The linear equations enable the estimation of S-wave
velocity from P-wave velocity for both dry and wet rock.
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