
p ()

URL: http://www.elsevier.nl/locate/entcs/volume84.html 15 pages

NL-printable sets and Nondeterministic
Kolmogorov Complexity

Eric Allender
1;2

Dept. of Computer Science

Rutgers University

New Brunswick, NJ, USA

Abstract

This paper introduces nondeterministic space-bounded Kolmogorov complexity, and

we show that it has some nice properties not shared by some other resource-bounded

notions of K-complexity.

P-printable sets were de�ned by Hartmanis and Yesha and have been investigated

by several researchers. The analogous notion of L-printable sets was de�ned by

Fortnow et al; both P-printability and L-printability were shown to be related to

notions of resource-bounded Kolmogorov complexity. NL-printability was de�ned

by Jenner and Kirsig, but some basic questions regarding this notion were left open.

In this paper we answer a question of Jenner and Kirsig by providing a machine-

based characterization of the NL-printable sets.

1 Introduction

By de�nition, machines with small space bounds have limited memory. In

particular, they cannot remember where they have been, in the sense that a

(nondeterministic) logspace-bounded machine that is searching a graph cannot

in general remember the nodes that have been visited, and it cannot always

reproduce the exact path that led it to the current node.

In this paper we present a simple trick that sometimes allows NL ma-

chines to perform feats of memory. Stated another way, we show that short

descriptions are often suÆcient for NL machines to reproduce large objects of

interest. Although the technique is not really new { it is nearly two decades

old, and was used again recently to prove results about time-bounded Kol-

mogorov complexity [BFL02] { it seems that its usefulness in NL is not as

widely known as it should be.

1 Supported in part by NSF grant CCR-0104823.
2
allender@cs.rutgers.edu

c2003 Published by Elsevier Science B. V.

1

CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81979394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Allender

A more general goal of this paper is to examine di�erent notions of space-
bounded Kolmogorov complexity and present some applications of these no-

tions.

The original goal of this work was to improve our understanding of non-

deterministic logspace (NL). Thus, before we introduce space-bounded Kol-
mogorov complexity, let us review the relevant background about NL.

2 Preliminaries, and some Motivation

Many of the observations in this paper are motivated by the desire to prove

a collapse of some complexity classes between NL and UL. (UL is \unam-
biguous" logspace; more formal de�nitions appear below.) It was observed in

[ARZ99] that the nonuniform collapse NL/poly = UL/poly of [RA00] holds

also in the uniform case under a very plausible hypothesis. Namely, NL = UL
if there is a set in DSPACE(n) that has exponential \hardness" in the sense

of [NW94]. More recently, it has been pointed out by [KvM02] that this same
conclusion can be weakened to a worst-case circuit lower bound. That is,

NL = UL if there is a set in DSPACE(n) (such as SAT, for example) that

requires circuits (or even branching programs) of size 2�n, for some � > 0.

So almost certainly it is the case that NL and UL are equal, and thus all

of the various complexity classes between NL and UL are certainly equal, and
thus surely it should be possible to actually prove (unconditionally) that some

of these classes coincide in the uniform setting. There are several classes that
were de�ned in [BJLR91] that lie between NL and UL, but unfortunately this

paper cannot present any new collapse among these classes. Nonetheless, it

will be necessary for the reader to know what some of these classes are, and
thus we have the following list of de�nitions.

For a nondeterministic Turing machineM , the function #acc
M

: f0; 1g� !
N is de�ned so that #acc

M
(x) is the number of accepting computations of M

on input x. The reader is assumed to be familiar with deterministic and
nondeterministic logspace (L and NL, respectively). UL is the class of lan-
guages accepted by NL machines M that satisfy the restriction that, for all x,

#acc
M
(x) � 1. FewL is the class of languages 3 accepted by NL machines M

that satisfy the restriction that, for all x, #acc
M
(x) = jxjO(1).

We will also need to consider space bounds other than logarithmic; in
particular we will be interested in linear space bounds. The reader should

be familiar with DSPACE(n) and NSPACE(n), and can surely guess what

USPACE(n) is. FewSPACE(n) is the class of languages in NSPACE(n) ac-

3 Here we are using the name that was used by [BJLR91] to refer to this class. A possible

point of confusion is that this same class was called FewNL in [AR98]. The name FewNL was

originally used by [BDHM91] to refer to a related class that is called FewUL by [BJLR91].

The interested reader is referred to [BJLR91] for de�nitions; we will not need to refer further

to those classes here, and hence we omit the de�nitions. (The disinterested reader can simply

remember that all of these classes are almost certainly just di�erent names for NL.)

2

Allender

cepted by machines M that satisfy the restriction that, for all x, #acc
M
(x) =

2
O(jxj)

. In the likely case that NL = UL, it follows that USPACE(n) =

FewSPACE(n) = NSPACE(n). Conceivably, proving equality at the linear-

space level could be easier than proving equality of the corresponding logspace

classes.

One other subclass of NL that needs to be mentioned is RL (randomized

logspace); a language A is in RL if and only if there is a nondeterministic

logspace machine accepting A and making a nondeterministic choice on each

step, with the additional property that if x 2 A then at least half of the

sequences of nondeterministic choices lead to an accepting state. The class

RSPACE(n) is de�ned analogously. Just as it is conjectured that UL = NL,

there is a popular conjecture that RL = L. (For example, see [Sak96].) This

would imply RSPACE(n) = DSPACE(n).

We also need a logspace-analog of the complexity class Few of [CH90]: the

class LFew (which was called LogFew in [AR98]) is the set of all languages

A such that there is an NL machine M with the property that for all x,

#acc
M
(x) = jxjO(1), and there is a language B 2 L such that x 2 A if

and only if (x;#acc
M
(x)) 2 B. It is not immediately obvious that LFew is

contained in NL. This containment was shown �rst in the nonuniform setting

in [AR98], and then in [AZ98] a derandomization argument was used to show

LFew� NL. Shortly thereafter, a very simple hashing argument was used in

[ARZ99] to prove this same inclusion. It is this same simple hashing argument

that will be used over and over again in this note. It relies on the following

fact:

Theorem 2.1 ([FKS82][Lemma 2], [Meh82][Theorem B]) Let S be a set of

nO(1) n-bit strings (viewed as n-bit numbers). There is some prime number p

with O(logn) bits such that for any x 6= y in S, x 6� y(modp).

3 Nondeterministic Kolmogorov Complexity

The basic theory of Kolmogorov complexity (see, for example [LV97]) yields

a very nice measure of the \randomness" of a string x, but it su�ers from

the defect that this measure is not computable. This has motivated sev-

eral di�erent approaches to the task of de�ning resource-bounded versions

of Kolmogorov complexity. (Again, a good survey of this material can be

found in [LV97].) The approach that we will follow is based on a de�nition

of Levin [Lev84] as extended and adapted to other complexity measures in

[All01,ABK
+
02,AKRR03].

First, we present (an equivalent restatement of) Levin's Kt measure, along

with the deterministic time- and space-bounded Kolmogorov measures KT

and KS of [All01,ABK
+
02], as reformulated in [AKRR03].

De�nition 3.1 Let U be a deterministic Turing machine.

KtU(x)=minfjdj+ log t : 8b 2 f0; 1; �g8i � n + 1 U(d; i; b) runs in

3

Allender

time t and accepts i� xi = bg

KSU(x)=minfjdj+ s : 8b 2 f0; 1; �g8i � n + 1 U(d; i; b) runs in

space s and accepts i� xi = bg

KTU(x)=minfjdj+ t : 8b 2 f0; 1; �g8i � n+ 1 U(d; i; b) runs in

time t and accepts i� xi = bg

Here, we say that xi = � if i > jxj.

As usual, we will choose a �xed \optimal" Turing machine U and use

the notation Kt;KS; and KT to refer to KtU ;KSU ; and KTU . However, the

de�nition of \optimal" Turing machine depends on the measure under consid-

eration. For instance, U is Kt-optimal if for any Turing machine U 0 there exists

a constant c � 0 such that for all x, KtU(x) � KtU 0(x) + c log jxj. Notice that
there is an additive logarithmic term instead of the \usual" additive constant.

This comes from the slight slow-down that is incurred in the simulation of U 0

by U . Similarly, U is KS-optimal if for any Turing machine U 0 there exists a

constant c > 0 such that for all x, KSU(x) � cKTU 0(x), and U is KT-optimal

if for any Turing machine U 0 there exists a constant c > 0 such that for all

x, KTU(x) � cKTU 0(x) logKTU 0(x). The existence of optimal machines for

Kt;KS and KT complexity follows via standard arguments. The de�nition of

KT can be relativized to yield a measure KTA by providing U with access

to oracle A. Part of the motivation for the KT measure comes from the fact

that if x is a string encoding the truth-table of a Boolean function f , then the

minimum circuit size of f (on circuits with oracle A) is polynomially-related

to KT(x) (respectively to KTA(x)). Also, there are optimal machines such

that, for any languages A and B complete for DTIME(2n) and DSPACE(n),

respectively, it holds that

� Kt(x) + log jxj = �(KTA(x) + log jxj).

� KS(x) + log jxj = �(KTB(x) + log jxj).

Now, following the model of [AKRR03], let us introduce a nondeterministic

analog of KS complexity.

De�nition 3.2 Let U be a �xed nondeterministic Turing machine.

KNSU(x)=minfjdj+ s : 8b 2 f0; 1; �g8i � n + 1 U(d; i; b) runs in

space s and accepts i� xi = bg

As above, we de�ne KNS as KNSU , such that for all U
0, we have KNSU(x) �

c �KNSU 0(x) for some constant c.

One of the �rst types of resource-bounded Kolmogorov complexity to be

studied was \distinguishing" complexity. For more on the history of this

notion, see [BFL02]. In [AKRR03] a version of distinguishing complexity was

introduced that has the same avor as Levin's Kt measure:

De�nition 3.3 Let U be a deterministic Turing machine. De�ne KDtU(x)

to be min fjdj+ log t : 8y 2 �jxj U(d; y) runs in time t and accepts i� x = yg

4

Allender

Again, we have to be careful about the properties we require of the optimal
Turing machine. We de�ne KDt as KDtU , such that for all U 0, we have

KDtU(x) � KDtU 0(x)+ c log jxj for some constant c. Note that in fact we can
assume without loss of generality that this machine U has only one-way access

to its input y. For our space-bounded versions of distinguishing complexity,
we will need to impose this restriction. We emphasize this restriction on the
way we access our input by adding an \arrow" to our notation.

De�nition 3.4 Let U1 be a �xed nondeterministic Turing machine, and let U2

be a �xed deterministic Turing machine. We consider only Turing machines

with two input tapes (one containing d and one containing y), where the

machines have only one-way access to the tape containing y.

KN~DSU1(x)=minfjdj+ s : 8y 2 �jxj U1(d; y)

runs in space s and accepts i� x = yg

K~DSU2(x)=minfjdj+ s : 8y 2 �jxj U2(d; y)

runs in space s and accepts i� x = yg

The �rst important observation is that several of these de�nitions are es-
sentially equivalent to each other.

Proposition 3.5 The following functions are in the same �-equivalence class.

Thus they are more-or-less interchangeable (and in the rest of the paper we

will refer primarily to KNS).

� KTA(x)+ log jxj where A is any set complete for NSPACE(n) under linear-

time reductions. 4

� KNS(x) + log jxj.

� KN~DS(x) + log jxj.

Although this proposition is quite easy to prove, it is worth observing

that none of the other resource-bounded Kolmogorov complexity measures
studied in [All01,ABK+02,AKRR03] are known to enjoy similar properties.

For instance, although Kt is roughly the same thing as KTA for a language

A complete for E, it is observed in [AKRR03] that Kt and KDt are likely to

be quite di�erent. Similarly, although [AKRR03] observes that distinguishing

complexity coincides with time-bounded K-complexity in the nondeterministic
setting, it is not known how to capture this notion in terms of KTA relative to

any oracle A (primarily because nondeterministic time classes are not known

to be closed under complement).

4 Although we do not know how to guarantee that there is a universal machine U for KT
complexity that can simulate all other machines U 0 with at most linear slow-down, it is easy

to show that, for any machine U 0 and any set complete for NTIME(n) under linear-time
reductions, KTAU 0(x) can be bounded by KNS(x) + log jxj, and there exist machines U such

that KNS(x) can be bounded by KTAU (x) + log jxj; hence linear slow-down can be achieved
with such an oracle A; without loss of generality we use such a machine U in de�ning KTA.

5

Allender

It follows easily from Savitch's theorem that KS and KNS are polynomially

related.

Proposition 3.6 KNS(x) = O(KS(x)) and KS(x) = O((KNS(x) + log jxj)2).

On the other hand, the question of whether DSPACE(s(n)) is equal to

NSPACE(s(n)) is essentially the question of how close KNS and KS are.

To make the connection between Kolmogorov complexity and the DSPACE

vs. NSPACE question more explicit, we introduce 1-L and 1-NL computation,

and some measures of the Kolmogorov complexity of a language.

De�nition 3.7 1-L (1-NL) is the class of languages accepted by (nondeter-

ministic) logspace machines where the input head moves only from left to

right. (That is, the machine has a one-way input head.)

Proposition 3.8 Let A be a language in NSPACE(n) accepted by a nonde-

terministic machine M running in time cn. Let CompM be the language fw
: jwj = cx such that M accepts x along the path given by the sequence of

nondeterministic choices wg. Then CompM is in 1-L.

De�nition 3.9 Let A be a language and let K� be a Kolmogorov complexity

measure. We de�ne two measures of the Kolmogorov complexity of A:

K�
A
(n) = minfK�(x) : jxj = n and x 2 Ag

K�A(n) = maxfK�(x) : jxj = n and x 2 Ag

If A \ �n = ; then K�
A
(n) and K�A(n) are unde�ned.

The following observations are easy to prove. They are stated here merely

to provide some motivation for the preceding de�nitions. Later in the paper

we will add some more conditions to these lists of equivalent statements.

Proposition 3.10 NSPACE(n) = DSPACE(n) if and only if for every A 2
1-L;KSA(n) = O(logn).

Proposition 3.11 DSPACE(n) = USPACE(n) if and only if for all 1-sparse

sets
5 A 2 1-L, KSA(n) = O(logn).

Note that it is immediate that for every 1-sparse set A 2 1-L, K~DSA(n) =

O(logn). Recall also that the conjectured equality NL = UL implies that all

of the preceding conditions are equivalent.

Let us mention one additional preliminary observation.

Proposition 3.12 If KSA(n) = O(logn) for every dense
6 A 2 1-L, then

RSPACE(n) = DSPACE(n).

The hypothesis of Proposition 3.12 is very likely to be true; as already men-

tioned, [KvM02] presents a likely condition (that there is a set in DSPACE(n)

5 A set is 1-sparse if it contains at most one string of any given length.
6 A language is dense if, for each n, A contains at least half of the strings of length n or

no strings of length n.

6

Allender

that requires branching programs of size 2�n) that implies that every dense

language in A 2 L/poly has KS
A
(n) = O(logn). This is much stronger than

the hypothesis of Proposition 3.12, allowing nonuniform computations and

two-way access to the input.

Sets in 1-L and 1-NL are simple enough that we are able to say some-

thing nontrivial about their Kolmogorov complexity. This is where we use the

hashing lemma.

Theorem 3.13 Let A 2 1-NL. Then KNSA(n) = O(log jA=nj + logn) and

KNS
A
(n) = O(logn).

Observe that these bounds are essentially optimal (up to constant factors).

Proof. Let A 2 1-NL, accepted by machine M . Let m = jA=nj. Let B =

fx0m�n : x 2 Ag. By Theorem 2.1 there is a prime p of O(m) bits such that

all of the strings in B (and hence all of the strings in A=n) are equivalent

to di�erent values mod p. Given as a description (p; j;m; n;M) (of length

O(log jA=nj+logn)) and given access to a string y on a one-way input tape, a

nondeterministic machine can simulate the computation of the 1-NL machine

M on input y, simultaneously computing y mod p, and accepting if and only

M(y) accepts and y is equivalent to j mod p. Thus for any string x 2 A=n,

KN~DS(x) = O(log jA=nj + logn). The �rst claim now follows by Proposition

3.5.

For the second claim, observe �rst that the language f(n; C) : con�guration

C appears on the lexicographically �rst accepting computation path of M

on an input of length ng can be accepted by a nondeterministic machine in

space linear in j(n; C)j. (That is, starting at the initial con�guration, check

for each successor con�guration in turn if it is the �rst such con�guration

that appears on an accepting path; use the fact that NSPACE(n) is closed

under complementation.) Now observe that the language f(n; i; b) : along the

lexicographically �rst accepting con�guration on an input of length n, the ith

input symbol that is consumed is a bg is also in NSPACE(n). This clearly

shows that KTB(x) = O(logn) for some x 2 A=n and some B 2 NSPACE(n).

The second claim now follows by Proposition 3.5. 2

The proof of the �rst assertion in Theorem 3.13 does not make essential

use of nondeterminism. A similar proof shows:

Proposition 3.14 Let A 2 1-L. Then K~DS
A

(n) = O(log jA=nj+ logn).

4 NL-Printability

NL-printability was de�ned and studied in [JK89] as a generalization of the

P-printable sets that were de�ned in [HY84] and further studied in [AR88]

and elsewhere. The related notion of L-printability has also been studied

[JK89,FGLM99]. In general, for a complexity class C, a language A is C-

7

Allender

printable if there is a function f computable in C (blurring temporarily the

distinction between a class of languages and a class of functions) with the

property that f(0n) is a list of all of the strings in A that have length at most

n. For the cases C 2 fP;L;NLg, this notion is fairly robust to minor changes

in the de�nition (such as having the function f list only the strings of length

exactly n, listing the elements in lexicographical order, etc.)

Certainly all P-printable sets are sparse, but it seems as if not all sparse

sets in P are P-printable. Indeed, there are sparse sets in AC
0
that are not

P-printable if and only if FewE 6= E [AR88,RRW94].

When C is one of fL,Pg, it is fairly obvious what is meant by \f is com-

putable in C". However, the reader might be less clear as to what is meant

by \f is computable in NL". As it turns out, essentially all of the reasonable

possibilities are equivalent, including:

(i) f is computed by a logspace machine with an oracle from NL.

(ii) f is computed by an NC
1
circuit with oracle gates for a language in NL.

(iii) The set f(x; i; b) : the ith bit of f(x) is bg is in NL.

Hence NL-printability is the same as L
GAP

-printability, where GAP (the Graph

Accessibility Problem) is the standard NL-complete set, and L
A
-printability

is the notion that was studied in [FGLM99], relativized to oracle A.

P-printability and L-printability can be characterized in terms of small

time- and space-bounded Kolmogorov complexity. For instance, although it

is not stated this way in [FGLM99], A is L-printable if and only if A 2 L and

KS
A

(n) = O(logn). Later in this section we give a similar characterization of

NL-printability in terms of KNS-complexity.

A machine-based characterization of the P-printable sets was presented in

[AR88]; A is P-printable if and only if A is sparse and is accepted by a one-way

(deterministic or nondeterministic) logspace-bounded AuxPDA. (See [AR88]

for de�nitions.) No machine-based characterization of the L-printable sets was

presented in [FGLM99], and the results of this section partially explain why.

A machine-based characterization of the NL-printable sets was attempted in

[JK89], but only a partial characterization was acheived. (It was shown in

[JK89] that all NL-printable sets are accepted by 1-NL machines, but it was

left open if all sparse sets accepted by 1-NL machines are NL-printable. It

was shown only that such sets accepted by 1-UL machines are NL-printable.)

The main result of this section is the presentation of a machine-based charac-

terization of the NL-printable sets.

Theorem 4.1 The following are equivalent:

� A is NL-printable.

� A is NL-isomorphic to a tally set in NL.

� A 2 NL and KNS
A

(n) = O(logn).

� A is sparse and is accepted by a 1-NL machine.

8

Allender

Proof. The �rst two conditions can be shown to be equivalent using the

related proof in [FGLM99]. If A 2 NL and KNSA(n) = O(logn), then A is

NL-printable because we can try all of the small descriptions d and check that

the description really is a valid description (i.e., for each i there is exactly one

b such that U(d; i; b) accepts), and then determine what string is described by

d. Similarly, if A is NL-printable, then (n; j) is a short description of the j-th

string of length n produced by the printing routine, and hence KNSA(n) =

O(logn). As stated above, one of the remaining implications was shown in

[JK89]. Thus it suÆces to show that if A is sparse and is accepted by a

1-NL machine M , then A is NL-printable. However, this is immediate from

Theorem 3.13. 2

Theorem 4.1 causes us to pose three simple questions:

(1) Can the second condition be improved to show that NL-printable sets

are L-isomorphic to tally sets in NL? This seems unlikely, since it implies that

the elements have small KS complexity, and (as in the proof of Theorem 4.2

below) it follows that DSPACE(n) = FewSPACE(n).

(2) Can the second condition be improved to show that NL-printable sets

are NL-isomorphic to a tally set in L? This seems unlikely, although certainly

for \dense enough" NL-printable sets, they are NL-isomorphic to 0� (which

certainly quali�es as a tally set in L). This can be shown via a straightforward

modi�cation of a theorem in [FGLM99], to show that if two NL-printable sets

have \similar density" (as de�ned in [FGLM99]), then they are NL-isomorphic.

However, if we consider a tally set A 2 NSPACE(22
n

) accepted by a machine

M running in time, say, 22
2
n

), and consider the related set A0 = fy : jyj = 22
2
n

and y encodes a sequence of guesses of M encoding an acceping computation

on input 0ng then note that A0 is in 1-NL, and thus is NL-printable. If there

were a tally set T in L isomorphic to A0, then A would be in DSPACE(22
n

),

since a deterministic machine on input 0n could look to see if there is any

element of T having length between 2(2
2
n

)=k and 2k2
2
n

. Thus any such im-

provement would imply an unlikely collapse of very large complexity classes.

(3) It is natural to wonder if perhaps all sparse sets in 1-L are L-printable.

This also seems unlikely:

Theorem 4.2 The following are equivalent:

(i) All sparse sets A 2 1-L are L-printable (i.e., KSA(n) = O(logn)).

(ii) All sparse sets in 1-FewL are L-printable.

(iii) All sparse sets in 1-FewL are in L.

(iv) DSPACE(n) = FewSPACE(n).

Remark: The condition that KS(x) = O(K~DS(x) + log jxj) implies all

of the conditions in this theorem, but appears to be slightly stronger. It is

equivalent to the condition that for every language A 2 NSPACE(n) there is a

deterministic linear-space procedure that �nds an accepting computation for

9

Allender

those inputs on which there are few (or even only one) accepting paths.

Proof. (ii) trivially implies (i) and (iii). Let us show (i)) (ii), (iii)) (iv),

and (iv)) (i).

(i)) (ii): Let A be a sparse set in 1-FewL, accepted byM . Let B be the set

of all strings encoding sequences of con�gurations of an accepting computation

of M . By assumption, B is sparse, and is in 1-L, and thus by hypothesis B is

L-printable. Now A is L-printable via a routine that �rst prints the elements

of B, and then extracts, from the sequence of con�gurations, the strings of A

that are accepted by M .

(iii)) (iv): This is immediate from standard padding techniques [Boo74].

(iv)) (i): Here again we use the hashing technique. Let A be a sparse set

in 1-L, let B be the set f1n0p1j : there are at least j numbers i1; : : : ; ij such

that there exist words x1 � i1(modp); : : : ; xj � ij(modp) of length n in Ag,

and let C be the set f0n1p0i1kb : there is a string x in A=n with x � i(mod p),

where the kth bit of x is bg. It is easy to see that B and C are tally sets in

FewL, and by hypothesis all such sets are in L. Now we can L-print A by, on

input 0n, �nding a \good" p, and then cycling through all i's until each x has

been printed. 2

5 Upward Separation

Theorem 4.2 has the same general avor of the \upward separation" results

of [Har83,HIS85] (see also [Gla01,RRW94]). Upward separation results are of

the form \C1�C2 has no tally sets" if and only if \C1�C2 has no sparse sets".

Here are a couple more results with a similar avor to Theorem 4.2. The

proofs follow along similar lines.

Theorem 5.1 The following are equivalent:

(i) DSPACE(n) = NSPACE(n).

(ii) All sparse sets in 1-NL are in L.

(iii) All sparse sets in 1-NL are L-printable

(iv) For all A 2 1-L;KSA(n) = O(logn).

Theorem 5.2 The following are equivalent:

(i) DSPACE(n) = USPACE(n).

(ii) All 1-sparse sets in 1-UL are in L.

(iii) All 1-sparse sets in 1-UL are L-printable.

(iv) All 1-sparse sets in 1-L are L-printable.

(v) For all 1-sparse A 2 1-L;KSA(n) = KSA(n) = O(K~DSA(n) + logn).

Again, please note that, in the likely case that NL = UL, all of the condi-

tions in the preceding three theorems are equivalent.

10

Allender

6 OptL

The class OptL was de�ned in [AJ93] to be the class of functions f such that

there is an NL-transducer M with the property that f(x) is the lexicographi-

cally largest string produced by M along any accepting computation path on

input x. It is known that OptL is contained in AC1 [�AJ95], and the question

is raised in [RA00] if perhaps OptL is equal to FNL (the class of functions

computable in NL). The following takes care of an easy special case.

Theorem 6.1 Let f be a function in OptL with the property that there is an

NL transducer realizing f that produces at most nO(1) distinct outputs for any

string x of length n. Then f is in FNL.

Proof. Again, we use the hashing technique. The set f(x; p; i) : there is an

output of M(x) that is equivalent to i mod pg is easily seen to be in NL. An

NL machine can, on input x, �nd a \good" prime p, and then compare, for

given i and j, the individual bits of output strings yi and yj that are produced

by M(x) that are equivalent to i and j (mod p). In this way, it can determine

the lexicographically largest output of M on input x. 2

7 Promise Problems

Lacking a proof of NL = UL, we have considered the \easier" problem of

DSPACE(n) = USPACE(n), and as well as the problem of whether L = NL

is equivalent to L = UL, or even whether L = FewL is equivalent to L = UL.

Although we lack even a proof of this latter (modest) conjecture, we can prove

that if L contains a solution to the Unique-GAP problem, then L = FewL (and

in fact L = LFew). This is a direct logspace analogue to the fact (proved in

[BG92]) that if P contains a solution to the Unique-SAT promise problem,

then P = Few. Again, we use the hashing technique.

A solution to the Unique-GAP promise problem is a language A that:

� contains all instances (G; s; t) such that G is a directed acyclic graph with

exactly one path from s to t, and

� contains no instances (G; s; t) such that G is a directed acyclic graph with

no path from s to t.

If G contains more than one path from s to t, then A may or may not contain

(G; s; t).

Observe that the \minimal" solution to the Unique-GAP promise problem

(i.e., the language consisting of all triples (G; s; t) such that there is exactly one

path from s to t in G) is complete for NL [Lan97]. Of course, there are also

nonrecursive solutions to the Unique-GAP promise problem. Although the

Unique-GAP problem is the obvious graph-theoretic characterization of UL,

it is not known if UL contains any language that is a solution to the Unique-

GAP promise problem. Even if UL has a complete set (and we cannot prove

11

Allender

that it has a complete set), the existence of such a complete set is not known

to imply the existence of a set in UL that is a solution to the Unique-GAP

promise problem.

Although it is not known if LFew is contained in LUL, something similar

is known to happen. Let LPromiseUL denote the class of languages A with the

property that there is a logspace-bounded oracle Turing machineM such that

for any solution B to the Unique-GAP promise problem, MB accepts A.

Theorem 7.1 LFew is contained in LPromiseUL.

Proof. Let A be a language in LFew. (That is, there is an NL machine M

with the property that for all x, #acc
M
(x) = jxjO(1), and there is a language

B 2 L such that x 2 A if and only if (x;#acc
M
(x)) 2 B. Let C be a solution

to the Unique-GAP promise problem. We de�ne a machine accepting A that

uses C as its oracle (and that will also accept A given any other solution C 0).

On input x, search through all primes p ofO(logn) bits (where the constant

in the \big Oh" depends on the language A) to �nd a prime p that maximizes

the value i for which the following is true:

There are at least i values j1 < : : : < ji such that there exists an accepting

computation of M(x) that is equivalent to each of these i residues mod p,

and furthermore, for each con�guration � of M and for each j, if � is on

an accepting path of M(x) that is equivalent to j mod p, then there is a

successor of � that lies on such a path.

Note that for a \good" prime p, there is a unique way to guess these i residues

and a unique path for each residue, and thus once our logspace oracle machine

locates a \good" p it will be able to verify that p is good using only queries

to the part of C that satisfy the promise. (That is, since the condition above

can be tested in NL, the standard reduction to GAP allows us to test the

condition using queries to GAP. Since, for a \good" p the condition can be

tested by an NL machine with a unique accepting path, this can be tested

using queries to GAP that satisfy the promise.)

Once a good prime p has been found, it is clear that #acc
M
(x) can be

computed, and thus membership in A can be determined. 2

The preceding theorem has somewhat the same avor as the result of

[BF99] regarding \promise RP" { although the analogy is not strong. Al-

though we are unable to show that L = UL implies L = LFew, this does seem

like a small step in that direction.

8 Conclusion

For any NL machineM and input x, the lexicographically largest (or smallest)

accepting path ofM on x can be found and computed by an NL machine, using

only O(1) additional bits of description. On the other hand, it is not known

if there are nO(1) paths that can be found and computed by an NL machine,

12

Allender

using only O(logn) additional bits of description. The hashing technique that

is used in this paper does provide for a short description of each such path, if

there are no more than nO(1) paths in total.

It might be interesting to �nd if there is some machine-based characteri-

zation of C-printable sets, for other small classes C. It is not too hard to show

that every sparse set that is accepted by a uniform read-once bounded-width

branching program is L-printable. (Sketch: for each of the O(1) nodes v at

level i, compute the number of paths from s to v and from v to t. This enables

a logspace machine to take a number j and compute the jth accepting path

in the branching program, and to output the input variables that cause this

path to be followed.) It is not clear if this computation can be performed

in Boolean NC1, and it is even less clear that every NC1-printable set (or

even every AC0-printable set) can be accepted by read-once bounded-width

branching programs.

Is OptL = FNL (at least in the nonuniform setting)? Can new relationship

be proved among the classes fUL, FewUL, FewL, LFew, NLg in the uniform

setting?

Acknowledgement

I thank Vladimir Glasnak, Sunny Daniels, Michal Kouck�y, Detlef Ronnebur-

ger, Sambuddha Roy, and Samir Datta for helpful conversations.

References

[ABK+02] E. Allender, H. Buhrman, M. Kouck�y, D. van Melkebeek, and
D. Ronneburger. Power from random strings. In Proc. IEEE FOCS,
pages 669{678, 2002.

[AJ93] C. �Alvarez and B. Jenner. A very hard log-space counting class.
Theoretical Computer Science, 107:3{30, 1993.

[�AJ95] C. �Alvarez and B. Jenner. A note on logspace optimization.
Computational Complexity, 5:155{166, 1995.

[AKRR03] E. Allender, M. Kouck�y, D. Ronneburger, and S. Roy. Derandomization
and distinguishing complexity. In Proc. IEEE Conf. on Comput.

Complexity, 2003.

[All01] E. Allender. When worlds collide: Derandomization, lower bounds, and
Kolmogorov complexity. In Proc. FST&TCS, volume 2245 of Lecture
Notes in Computer Science, pages 1{15, 2001.

[AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM J. Comput.,
17:1193{1202, 1988.

13

Allender

[AR98] E. Allender and K. Reinhardt. Isolation, matching, and counting. In
Proc. IEEE Conf. on Comput. Complexity, pages 92{100, 1998. This
material was incorporated into [ARZ99].

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and
counting: Uniform and nonuniform upper bounds. Journal of Computer

and System Sciences, 59:164{181, 1999.

[AZ98] E. Allender and S. Zhou. Uniform inclusions in nondeterministic
logspace. In R. Freivalds, editor, Randomized Algorithms, pages 35{
41, 1998. MFCS Satellite Workshop, Brno, Czech Republic. A revised
version was incorporated into [ARZ99].

[BDHM91] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and
importance of logspace-MOD class. Math. Systems Theory, 25:223{237,
1991.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided randomness.
In Proc. STACS, volume 1563 of Lecture Notes in Computer Science,
pages 100{109, 1999.

[BFL02] H. Buhrman, L. Fortnow, and S. Laplante. Resource-bounded
Kolmogorov complexity revisited. SIAM J. Comput., 31(3):887{905,
2002.

[BG92] R. Beigel and J. Gill. Counting classes: thresholds, parity, mods, and
fewness. Theoretical Computer Science, 103:3{23, 1992.

[BJLR91] G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity
and fewness for logarithmic space. In Proc. 8th FCT, volume 529 of
Lecture Notes in Computer Science, pages 168{179, 1991.

[Boo74] R. V. Book. Tally languages and complexity classes. Information and

Control, 26:186{193, 1974.

[CH90] Jin-Yi Cai and Lane A. Hemachandra. On the power of parity
polynomial time. Mathematical Systems Theory, 23:95{106, 1990.

[FGLM99] L. Fortnow, J. Goldsmith, M. A. Levy, and S. Mahaney. L-printable
sets. SIAM J. Comput., 28:137{151, 1999.

[FKS82] M. Fredman, J. K�oml�os, and E. Szemer�edi. Storing a sparse table with
O(1) worst case access time. In Proc. IEEE FOCS, pages 165{169, 1982.

[Gla01] V. Glasnak. Sparse sets and collapse of complexity classes. Information

and Computation, 170:26{48, 2001.

[Har83] J. Hartmanis. On sparse sets in NP�P. Information Processing Letters,
16:55{60, 1983.

[HIS85] J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P:
EXPTIME versus NEXPTIME. Information and Control, 65:158{181,
1985.

14

Allender

[HY84] J. Hartmanis and Y. Yesha. Computation times of NP sets of di�erent
densities. Theoretical Computer Science, 34:17{32, 1984.

[JK89] B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz.
Dissertation, Universit�at Hamburg, 1989.

[KvM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has
subexponential size proofs unless the polynomial-time hierarchy
collapses. SIAM J. Comput., 31:1501{1526, 2002.

[Lan97] K.-J. Lange. An unambiguous class possessing a complete set. In Proc.

STACS, volume 1200 of Lecture Notes in Computer Science, pages 339{
350, 1997.

[Lev84] L. A. Levin. Randomness conservation inequalities; information and
independence in mathematical theories. Information and Control,
61:15{37, 1984.

[LV97] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and

its Applications, Second Edition. Springer, 1997.

[Meh82] K. Mehlhorn. On the program size of perfect and universal hash
functions. In Proc. IEEE FOCS, pages 170{175, 1982.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of

Computer and System Sciences, 49:149{167, 1994.

[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambiguous.
SIAM J. Comput., 29:1118{1131, 2000.

[RRW94] R. P. N. Rao, J. Rothe, and O. Watanabe. Upward separation for FewP
and related classes. Information Processing Letters, 52:175{180, 1994.

[Sak96] M. Saks. Randomization and derandomization in space-bounded
computation. In Proc. IEEE Conf. on Comput. Complexity, pages 128{
149, 1996.

15

