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We use a newly introduced concept of neocompactness to study problems from
metric fixed point theory. In particular, we give a sufficient condition for a super-
reflexive Banach space X to have the fixed point property and obtain shorter proofs
of some well-known results in that theory.  2002 Elsevier Science (USA)

1. INTRODUCTION

The notion of neocompact sets was introduced by Fajardo and Keisler
in [15] as a generalization of ideas from [27]. With the help of that new
concept, the authors were able to present some essential features of non-
standard analysis in a conventional framework. In [14, 15, 28], they gave a
large number of examples of how to apply this elegant technique in solving
existence problems in probability theory and stochastic analysis (see also
[9]). But, as it was written in [28], this method “is intended to be more
than a proof technique—it has the potential to suggest new conjectures
and new proofs in a wide variety of settings.”
Nonstandard methods came to Banach space theory from the work of

Luxemburg [35], where the notion of nonstandard hull was introduced.
Another approach, based on the concept of Banach space ultraproducts,
was proposed by Bretagnolle, Dacunha-Castelle, and Krivine (see [6, 10]).
It seems that a nonstandard analysis approach has some conceptual advan-
tages over the ultraproduct method because it provides us with techniques
which are not very easy to express in the ultraproduct setting. But the more
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constructible nature of Banach space ultraproducts made this approach
more popular among specialists. In 1980, Maurey [36] applied the Banach
space ultraproduct construction to solve several difficult problems in metric
fixed point theory. His methods have been extended by numerous authors
to obtain many strong and deep results in this theory (see, for instance, [3,
12, 17, 32, 34, 38]). Let us also note that there is one more “nonstandard”
technique, based on the concept of ultranets, which is effectively used in
fixed point theory (see [3, 20, 30, 31, 33]).
In the present paper, we study some problems concerning the fixed point

property for nonexpansive mappings (see Section 2 for the definitions). Our
aim is to join techniques from metric fixed point theory with the strength
of the neometric approach to signal new possibilities in that theory.
Many results of the paper may be translated into ultraproduct language.

However, we show several examples where the neometric methods yield
stronger results with much less effort.
In Section 2 we recall basic definitions and some of the previous results

from fixed point theory for nonexpansive mappings. For more detailed
exposition of metric fixed point theory, we refer the reader to [3, 4, 20].
Section 3 contains a brief summary of neometric methods taken from

[13–16, 28]. We use these methods in Section 4 to give a new insight into
some old problems in metric fixed point theory. As corollaries, we obtain
well-known results such as the Goebel–Karlovitz lemma, Lin’s lemma, and
Maurey’s result about metric convexity of Fix T̃ .
In Section 5 we develop our approach in the case of superreflexive spaces.

In particular, we give a sufficient condition for a superreflexive Banach
space X to have the fixed point property which generalizes the results
from [40].
It is our hope that the results presented here will be useful to pursue

further study on interactions between nonstandard analysis and fixed point
theory.

2. FIXED POINT THEORY FOR NONEXPANSIVE MAPPINGS

Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E. A mapping T � C → C is said to be nonexpansive if

�Tx− Ty� ≤ �x− y�
for all x� y ∈ C. We say that E has the fixed point property (FPP, in short)
if every such mapping has a fixed point. We say that E has the weak fixed
point property (wc-FPP, in short) if we additionally assume that C is weakly
compact. It is clear that in the case of reflexive spaces, both definitions
coincide.
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In 1965, Browder [7] proved that Hilbert spaces have FPP. In the same
year, Browder [8] and Göhde [22] showed independently that uniformly
convex spaces have FPP, and Kirk [29] proved a more general result stat-
ing that all Banach spaces with the so-called normal structure have wc-FPP.
Whether or not every Banach space enjoyed the weak fixed point prop-
erty remained an open question until 1980, when Alspach [1] discovered
an example of a nonexpansive self-mapping defined on a weakly compact
convex subset of L1�0� 1� without fixed points. At the same time, Maurey
[36] used the Banach space ultraproduct construction to prove the fixed
point property for all reflexive subspaces of L1�0� 1�. He also showed [12]
that isometries in superreflexive spaces always have FPP. Quite recently,
Dowling and Lennard [11] have proved that every nonreflexive subspace
of L1�0� 1� fails FPP, and they have developed their techniques in a series
of papers. However, the following two important questions in metric fixed
point theory remain open:

(1) Does reflexivity imply the fixed point property?
(2) Does the fixed point property imply reflexivity?

Fixed point theory for nonexpansive mappings starts with the following
consequence of the Banach contraction principle (see, for instance, [20]):

Lemma 2.1. Let C be a nonempty, closed, convex, and bounded subset of
a Banach space E and let T � C → C be a nonexpansive mapping. Then

inf	�x− Tx�� x ∈ C
 = 0	

Lemma 2.1 asserts that T has “almost fixed points.” Consequently, there
exist sequences �xn
 in C such that limn→∞ �xn−Txn� = 0. Such sequences
are said to be approximate fixed point sequences. It is easy to see that T
has a fixed point if the set C is compact.
Assume now that C is weakly compact and put

� = 	K ⊂ C� K is nonempty, closed, convex, and T �K� ⊂ K
	
From the weak compactness of C, and decreasing chain of elements in �
has a nonempty intersection which belongs to � . By Zorn’s lemma, there
exists a minimal (in the sense of inclusion) convex and weakly compact set
K ⊂ C which is invariant under T � T �K� ⊂ K. Such sets are called minimal
invariant for T . If a mapping T � C → C has a fixed point x, then clearly
	x
 is a minimal T -invariant set. In view of Alspach’s example [1], there
exist minimal invariant sets which are not singletons. It turns out that the
geometrical structure of such sets is rather odd. For instance, a minimal set
K must be diametral, that is,

sup
y∈K
�x− y� = diam K
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for all x ∈ K. This observation led Kirk [29] to prove his celebrated fixed
point theorem. Since then, a very fruitful approach to the fixed point prob-
lem is to use special features of minimal invariant sets and to look for a
contradiction. We shall return to this theme in Section 4. For recent results
concerning minimal invariant sets, we refer the reader to [19] and [21].

3. NEOCOMPACT SETS AND LONG SEQUENCES

A family of neocompact sets is a generalization of the family of compact
sets and shares many of its properties. Let us first recall basic definitions
from [15].
By the product �× � of two metric spaces � = �M�ρ� and � = �N�σ�

we mean the pair �M ×N�ρ× σ�, where

�ρ× σ��x� y� = max	ρ�x1� y1�� σ�x2� y2�
	

Definition 3.1. Let M be a collection of complete metric spaces �
which is closed under finite cartesian products, and, for each � ∈ M, let
���� be a collection of subsets of M, which we call basic sets. By a neocom-
pact family over �M��� we mean the triple �M����� such that, for each
� ∈ M, ���� is a collection of subsets of � with the following properties,
where ��� vary over M:

(a) ���� ⊂ ����.
(b) ���� is closed under finite unions; that is, if A�B ∈ ����, then

A ∪ B ∈ ����.
(c) ���� is closed under finite and countable intersections.

(d) If C ∈ ���� and D ∈ ��� �, then C ×D ∈ ���× � �.
(e) If C ∈ ��� × � �, then the set 	x� �∃ y ∈ � ��x� y� ∈ C
 belongs

to ����, and the analogous rule holds for each factor in a finite cartesian
product.

(f) If C ∈ ��� × � � and D is a nonempty set in ��� �, then
	x� �∀ y ∈ D��x� y� ∈ C
 belongs to ����, and the analogous rule holds
for each factor in a finite cartesian product.

The sets in ���� are called neocompact sets.

Definition 3.2. We say that a neocompact family �M����� has the
countable compactness property, or is countably compact, if, for each � ∈
M, every decreasing chain C0 ⊃ C1 ⊃ · · · of nonempty sets in ���� has a
nonempty intersection

⋂
n Cn.
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Definition 3.3. A set C ⊂ � is neoclosed in � if C ∩D is neocompact
in � for every neocompact set D in �. The complement of a neoclosed set
is called neoopen.
A set C ⊂ � is neoseparable in � if it is the closure of the union of a

countable collection of basic subsets of �.
Let D ⊂ �. A function f � D→ � is neocontinuous from � to � if, for

every neocompact set A ⊂ D in �, the restriction f � A = 	�x� f �x��� x ∈
A
 of f to A is neocompact in �× � .

Definition 3.4. We call a neocompact family �M����� a neometric
family, and call its members neometric spaces, if the metric space of reals is
a subspace of some � ∈M, and all the coordinate projections and distance
functions in M are neocontinuous.

Definition 3.5. A neometric family �M����� is said to have the
diagonal intersection property if, for every sequence �An
 of neocompact
sets and �εn
 of positive real numbers such that limn→∞ εn = 0, the “dia-
gonal intersection”

⋂
n�An�εn is neocompact (hereAε = 	x� ρ�x�A� ≤ ε
).

The classical example of a countably compact neometric family is the
standard neometric family �S�����, where S is the family of all complete
metric spaces, and

���� = ���� = 	A ⊂ �� A is compact
	
Several other neometric families were introduced in [14].
We are particularly interested in the so-called huge neometric family. To

understand well the rest of this section, some knowledge of nonstandard
analysis is needed. But, in future considerations, we shall try not to use
nonstandard techniques directly, but properties of neocompact sets and
long sequences only.
We fix an ℵ1-saturated nonstandard universe. Recall that for a given

internal ∗metric space � �M� ρ̄�, the standard part of an element X ∈ �M
is the equivalence class ◦X = 	Y ∈ �M� ρ̄�X�Y � ≈ 0
, and if C ⊂ �M , then
◦C = 	◦X� X ∈ C
. For each U ∈ �M , the nonstandard hull �� �M�U� is
the set 	◦X� ρ̄�X�U� is finite
 with the metric ρ�◦X� ◦Y � = st�ρ̄�X�Y ��. It
is well known that each nonstandard hull is a complete metric space. The
monad of a subset A ⊂ �� �M�U� is the set

monad �A� = 	X ∈ �M� ◦X ∈ A
	
By a �0

1 subset of set �M we mean the intersection of a countable collection
of internal subsets of �M . The next definition comes from [14].

Definition 3.6. The huge neometric family �H����� is defined as fol-
lows. H is the class of the metric spaces ��� ρ� such that � is a closed
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subset of some nonstandard hull �� �M�U�. For each � ∈ H, the collections
of basic and neocompact subsets of � are

���� = 	B ⊂ �� B = ◦A for some internal set A ⊂ monad ���
�
���� = 	C ⊂ �� C = ◦A for some �0

1 set A ⊂ monad ���
	
It is proved in [14] that �H����� is a countably compact neometric

family with the diagonal intersection property.
Note that the concept of the nonstandard hull of a Banach space is

closely related to the Banach space ultraproduct. If E is a Banach space and
A ⊂ E, we shall write Ẽ for the nonstandard hull ��∗E� 0� and Ã for the set
◦�∗A�. It is easy to see that for each Banach space E in the original super-
structure, E is a closed subset of Ẽ if we identify each x ∈ E with ◦�∗x�.
Hence E ∈ H. Moreover, Ã is a basic set for every bounded A ⊂ E. If we
recall that the ∗balls and ∗spheres in ∗E are internal, we immediately obtain
that the balls and spheres in Ẽ are basic, too.
The list of basic facts about the huge neometric family is given in [28].

In the next sections, we shall especially use the following one.

Proposition 3.7. Let ��� ∈ H, let C ⊂ � be a neocompact set, and let
f � C → � . Then f is neocontinuous if and only if there is an internal function
F such that ◦F�X� = f �◦X� for all X ∈ monadC.

A very useful tool for studying central notions of the huge neometric fam-
ily is the concept of long sequences. We briefly recall some basic definitions
and results from [13].

Definition 3.8. A function �xn
 mapping � into a set S will be called
a sequence in S, and a (possibly external) function �xJ
 mapping ∗� into S
will be called a long sequence in S.

Definition 3.9. We say that a statement φ�J� holds a.e., or that φ�J�
holds for all sufficiently small infinite J, if there is an infinite hyperinteger
K such that φ�J� is true for all infinite hyperintegers J ≤ K.

Proposition 3.10 (countable completeness). The set of all S ⊂ ∗� such
that J ∈ S a.e. is a countably complete filter.

Definition 3.11. If �xJ
 is a long sequence in � ∈ H and �XJ
 is an
internal long sequence in �M such that xJ = ◦XJ for all finite J and all
sufficiently small infinite J, we say that �XJ
 lifts �xJ
. By an �-sequence
we shall mean a long sequence �xJ
 in � which has a lifting. A (short)
sequence �xn
 of elements of � will be said to be �-extendible if it is
the restriction to ∗� of some �-sequence �xJ
, and �xJ
 will be called an
�-extension of �xn
.
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Proposition 3.12. If limn→∞ xn = b in �, then �xn
 is �-extendible and
xJ = b a.e.

Proposition 3.13. If a set C ⊂ � is neocompact, then every (short)
sequence �xn
 in C has an �-extension to a long sequence �xJ
 in C.
Proposition 3.14. Suppose C ⊂ �, C is neoclosed, and �xJ
 is an �-

sequence such that limn→∞ ρ�xn�C� = 0. Then xJ ∈ C a.e.

Proposition 3.15. Let C ⊂ � and let f � C → � be neocontinuous from
� to � . If a sequence �xn
 in C is �-extendible, then �f �xn�
 is � -extendible
to an � -sequence �yJ
, and f �xJ� = yJ a.e.
Proposition 3.16. Let C be neoseparable in �, and let �xJ
 be an �-

sequence such that xJ ∈ C a.e. Then for each k ∈ �, xn ∈ C
1
k for all but

finitely many n ∈ �.

4. GENERAL RESULTS

Let us first recall that the relative Chebyshev radius rG�A� is given by

rG�A� = inf
y∈G

sup
x∈A
�x− y�	

Here A is a bounded subset of a Banach space E and G ⊂ E.
From now on, we work in an ℵ1-saturated nonstandard universe and let

�H����� be its huge neometric family. Let us consider a weakly compact
set C in a Banach space E ∈ H. Then C is also weakly compact in the
nonstandard hull Ẽ. Note that C̃ = 	◦Y � Y ∈ ∗C
 is not necessarily weakly
compact. The following lemma is the starting point of our considerations.

Lemma 4.1. Let C be a convex, weakly compact subset of a Banach space
E. Then rC̃�C� = rC�C�.
Proof. Obviously rC̃�C� ≤ rC�C�. Assume that rC̃�C� < r < rC�C� for

some r > 0 and notice that⋂
x∈C
BE�x� r� ∩ C =  �

where BE�x� r� is the closed ball in E centered at x with radius r. From the
weak compactness of C we have

n⋂
k=1
BE�xi� r� ∩ C =  

for some x1� 	 	 	 � xn ∈ C. Hence, for every x ∈ C, there exists i ∈ 	1� 	 	 	 � n

such that �x− xi� > r. By transfer, and passing to the nonstandard hull Ẽ =
��∗E� 0�, for every x ∈ C̃, there exists i ∈ 	1� 	 	 	 � n
 such that �x− xi� ≥ r.
Therefore rC̃�C� ≥ rC̃�	x1� 	 	 	 � xn
� ≥ r and we obtain a contradiction.
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Remark 4.2. Let us note, especially for those readers who prefer the
ultraproduct approach, that the transfer principle may be replaced in that
proof by the argument that the nonstandard hull Ẽ is finitely representable
in E.

Assume now that a Banach space E does not have the weak fixed point
property. Then, as in Section 2, there exists a nonexpansive mapping T
and a weakly compact, convex set K, which is minimal invariant for T .
Without loss of generality we may assume that diamK = 1. If we denote
by T̃ � K̃ → K̃ a natural extension of T and bear in mind Lemma 2.1, we
immediately obtain that Fix T̃ , the set of fixed points of T̃ , is nonempty.
Using Lemma 4.1, we get a simple proof of the following well-known result
which will be useful in our work (see [3, 20, 34, 39]).

Proposition 4.3. Under the above assumptions, for every x ∈ K and w ∈
Fix T̃ ,

�x−w� = 1	

Proof. Let us first notice that if w ∈ Fix T̃ and r > 0, then BẼ�w� r�
is invariant under T̃ . Set x ∈ K and assume that �x − w� = r < 1. Then
the intersection BẼ�w� r� ∩ K is a nonempty T̃ -invariant subset of K. But
K is minimal and hence K ⊂ BẼ�w� r�. Thus, from Lemma 4.1, rK�K� =
rK̃�K� ≤ r. This contradicts the fact that K is diametral [29]:

rK�K� = diam K = 1	

Now we can start our machinery. We shall always assume that K is min-
imal invariant for T and diamK = 1.

Theorem 4.4 (Lin [34]). If �wn
 is an approximate fixed point sequence
for T̃ in K̃, then limn→∞ �wn − x� = 1 for all x ∈ K.

Proof. Let us first notice that K̃ is a neocompact (even a basic) set
and T̃ � K̃ → K̃ is a neocontinuous function. If we write un = Twn, it
follows from Proposition 3.13 that uJ ∈ K̃ a.e. and, from Proposition 3.15,
uJ = TwJ a.e. But the metric ρ�x� y� = �x− y� is also neocontinuous and
compositions of neocontinuous functions are neocontinuous. Hence, and
from Proposition 3.12, wJ = uJ a.e. and consequently, wJ ∈ Fix T̃ for all
sufficiently small infinite J. Fix x ∈ K and notice that �x − wJ� = 1 a.e.
by Proposition 4.3. Moreover, it is not difficult to see that the unit sphere
SẼ�x� 1� is a basic, hence a neoseparable, set. If we now use Proposition
3.16, we obtain the desired conclusion.
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Let us notice that the well-known Goebel–Karlovitz lemma is now a
direct consequence of the above result.

Corollary 4.5 (Goebel [18], Karlovitz [26]). If �xn
 is an approximate
fixed point sequence for T in K, then limn→∞ �xn − x� = 1 for all x ∈ K.

Further considerations of this section are motivated by the following
observation. Assume that C is a bounded and convex subset of a Banach
space E and T � C → C is a nonexpansive mapping.

Proposition 4.6. If C ⊂ D for some neocompact set D ⊂ Ẽ, then Fix T̃ ∩
D "=  .

Even more can be said.

Proposition 4.7. Let D be a neocompact set and let �wn
 be an approx-
imate fixed point sequence for T̃ in C̃ such that dist�wn�D� → 0 if wn→∞.
Then Fix T̃ ∩D "=  .

Proof. We concluded from Proposition 3.14 that wJ ∈ D a.e. But �wn

is an approximate fixed point sequence, so wJ ∈ Fix T̃ a.e. This completes
the proof.

Note that another proof of the above result is possible with the use of
the so-called approximation theorem (see [15]).
In particular, Proposition 4.7 is true for a minimal invariant set K. It

follows that, in order to prove the weak fixed point property for E, it is
enough to separate the set K from Fix T̃ by a neocompact set. Therefore,
we should know as much as possible about the structure of these sets. The
following theorem gives us some information about the structure of Fix T̃ .

Theorem 4.8. Suppose T � C → C is nonexpansive, suppose C is a
bounded and convex subset of E, and assume that

∞⋂
n=1
BẼ�zn� rn� ∩ C̃ "=  

for some z1� z2� z3� 	 	 	 ∈ Fix T̃ and r1� r2� r3� 	 	 	 > 0. Then
∞⋂
n=1
BẼ�zn� rn� ∩ Fix T̃ "=  	

Proof. Let us first notice that the set D = ⋂∞
n=1 BẼ�zn� rn� ∩ C̃ is a closed

convex subset of C̃ which is invariant under T̃ , and hence there exists an
approximate fixed point sequence �wn
 ⊂ D. As before, wj ∈ Fix T̃ a.e. But
the balls BẼ�zn� rn� are neocompact (see remarks after Definition 3.6) and
consequently D is neocompact. Therefore, wj ∈ D a.e. and the proof is
complete.
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In spite of its short proof, Theorem 4.8 is strong enough to generalize
the well-known result of Maurey which is often used in fixed point theory.
Recall [37] that a set A of a Banach space E is said to be metrically convex
if, for every x� y ∈ A with x "= y, there exists z ∈ A, x "= z "= y, such that
�x − z� + �y − z� = �x − y�. Equivalently, assuming that A is closed, for
every x� y ∈ A there exists z ∈ A such that �x− z� = �y − z� = 1

2�x− y�
(see also [20, Lemma 2.2]).

Corollary 4.9 (Maurey [36]). The set Fix T̃ is metrically convex.

Proof. It is enough to consider z1� z2 ∈ Fix T̃ and r1 = r2 = 1
2�z1 −

z2�.
Proposition 4.8 suggests the following definition:

Definition 4.10. A set A of a Banach space E is said to be ω1-
metrically convex if, for every sequence �xn
 ⊂ A and �rn
 ⊂ 	+, the
condition

⋂∞
n=1 BE�xn� rn� ∩ convA "=  implies

⋂∞
n=1 BE�xn� rn� ∩A "=  .

Combining Propositions 4.3 and 4.6 and Theorem 4.8, we obtain

Proposition 4.11. Let C be a convex, weakly compact subset of a Banach
space E and let A be an ω1-metrically convex subset of the nonstandard hull Ẽ
with diamA = diamC = 1 and �x− y� = 1 for every x ∈ C and y ∈ A. If
for every such pair of sets C and A, there exists a neocompact set D with
C ⊂ D and A ∩D =  , then E has the weak fixed point property.

A large library of neocompact sets and neocontinuous functions is given
in [9] and [15]. Let us point out that the assumptions of Proposition 4.11
are easily satisfied if E has normal structure. Indeed, in this case we have
K ⊂ D, where D = BẼ�x0� r� for some x0 ∈ K and r < 1.

In the next section, we show how to simplify the assumptions of the above
theorem in the case of superreflexive spaces.

5. THE CASE OF SUPERREFLEXIVE SPACES

We start this section by recalling the following characterization of super-
reflexive spaces due to Henson and Moore ([23, 24]; see also [25]).

Theorem 5.1. For a Banach space E, the following assertions are equiv-
alent:

(1) E is superreflexive.

(2) Ẽ is reflexive.

(3) Ẽ is superreflexive.

(4) Ẽ′ ∼= �Ẽ�′.
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In view of Proposition 3.7, the above result leads to the following obser-
vation:

Proposition 5.2. Let E be a superreflexive space. Then every functional
f ∈ �Ẽ�′ is a neocontinuous function from Ẽ to 	.

Proof. Let f ∈ �Ẽ�′. Since Ẽ′ ∼= �Ẽ�′, there exists F ∈ ∗�E′� such that
f �◦X� = ◦F�X� for every X ∈ ∗E.

Unless otherwise stated, we will further assume that E is a superreflexive
space and C is a closed and convex (hence weakly compact) subset of E.
Let T � C → C be a nonexpansive mapping and let �xn
 be an approxi-

mate fixed point sequence for T . There is no loss of generality in assuming
that �xn
 converges weakly to 0 ∈ C.
Proposition 5.3. Under the above assumptions, for every F ∈ �Ẽ�′, there

exists x ∈ Fix T̃ such that F�x� = 0.

Proof. Since �xn
 tends weakly to zero, limn→∞ F�xn� = 0 and, from
Propositions 3.12, 3.15, and 5.2, F�xJ� = 0 a.e. On the other hand, xJ ∈
Fix T̃ a.e. and the proof is complete.

It is natural to ask whether we can replace functionals in Proposition 5.3
by some other functions. In the following lemma, E denotes an arbitrary
Banach space.

Lemma 5.4. Let S be a weakly compact subset of a nonstandard hull
Ẽ and let f � S → 	 be a weakly continuous function. Then there exists a
sequence �fn
 of neocontinuous and weakly continuous functions which tends
to f uniformly on S� limn→∞ supx∈S �fn�x� − f �x�� = 0.

Proof. Denote by C�S� the Banach algebra of all weakly continuous,
real-valued functions defined on S with the usual supremum norm and
let X be the subalgebra of C�S� generated by the unit function and all
neocontinuous linear functionals. It is rather routine to check that every
g ∈ X is neocontinuous because internal functions are preserved under
finite sum and product operations. Moreover, X separates points of S. By
the Stone–Weierstrass Theorem, cl�X� = C�S�, which is our claim.

In view of Lemma 5.4, the following improvement of Proposition 5.3 is
now a consequence of the countable compactness property (see Definition
3.2) or the countable completeness property (Proposition 3.10).

Proposition 5.5. Let �xn
 be an approximate fixed point sequence of a
nonexpansive map T � C → C which is weakly convergent to 0 ∈ C. Then,
for any weakly continuous map f � C̃ → 	, there exists x ∈ Fix T̃ such that
f �x� = f �0�.
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Proof. Let us first notice that C̃ is weakly compact as the closed and
convex subset of a superreflexive space Ẽ. By Lemma 5.4, for any weakly
continuous f � C̃ → 	, there exists a sequence �fn
 of neocontinuous and
weakly continuous functions such that

lim
n→∞ sup

x∈C̃
�fn�x� − f �x�� = 0	 �,�

Fix a sequence �εn
 of positive real numbers with limn→∞ εn = 0 and write

Ak = 	x ∈ Fix T̃ � �f �x� − f �0�� ≤ εk
	
It follows from �,� that, for every εk, there exists a neocontinuous function
fnk such that supx∈C̃ �fnk�x� − f �x�� < εk/3. If we put

Ck =
{
x ∈ Fix T̃ � �fnk�x� − fnk�0�� ≤

εk
3

}
�

we obtain Ck ⊂ Ak for k = 1� 2� 	 	 	 and consequently,
⋂∞
k=1 Ck ⊂⋂∞

k=1Ak = 	x ∈ Fix T̃ � f �x� = f �0�
. But limi→∞ fnk�xi� = fnk�0� and
hence, fnk�xJ� = 0 a.e. for every fixed nk. By Proposition 3.10,

⋂∞
k=1 Ck "=  

and consequently,
⋂∞
k=1Ak "=  . This means that f �x� = f �0� for some

x ∈ Fix T̃ and the proof is complete.

Let us give examples how to apply the above results.
Recall [3] that a nonexpansive map T̃ � C → C is said to be of convex type

if Fix T̃ is convex.

Corollary 5.6 (see also [3]). Let E be superreflexive. If a nonexpansive
mapping T � C → C is of convex type, then it has a fixed point.

Proof. As before, we may assume that an approximate fixed point
sequence �xn
 ⊂ C converges weakly to 0 ∈ C. If 0 ∈ Fix T̃ , we are done.
If 0 /∈ Fix T̃ , it is enough to notice that Fix T̃ is closed and convex, and
apply the Hahn–Banach Theorem.

It is well known that every nonexpansive T is of convex type if Ẽ is strictly
convex. But in the case of nonstandard hulls, strict convexity is equivalent
to uniform convexity.
The situation is more interesting if we consider a minimal invariant set

K for T .

Theorem 5.7. Let E be superreflexive and assume that for every ω1-
metrically convex set A ⊂ SẼ with diamA ≤ 1, there exists a weakly con-
tinuous function f � Ẽ → 	 such that f �x� > f �0� for every x ∈ A. Then E
has the fixed point property.



170 andrzej wísnicki

Proof. Assume conversely that E does not have the fixed point property
and let T � K→ K be a nonexpansive mapping with a minimal invariant set
K for T . We may assume that �xn
 ⊂ K is weakly convergent to 0 ∈ K and
diamK = 1. Then, from Proposition 4.3, Fix T̃ ⊂ SẼ , diam Fix T̃ = 1, and,
from Proposition 4.8, Fix T̃ is ω1-metrically convex. By the assumptions,
there exists a weakly continuous function f � Ẽ→ R such that f �x� > f �0�
for x ∈ Fix T̃ . This contradicts Proposition 5.5.

In [40], we introduced and studied the so-called �Sm� property for a
Banach space E. Let us recall the definition. A Banach space E is said
to have the �Sm� property if, for every metrically convex set A ⊂ SE with
diamA ≤ 1, there exists F ∈ E′ such that F�x� > 0 for every x ∈ A.

The following result is now a direct consequence of Theorem 5.7.

Corollary 5.8 [40]. If a superreflexive nonstandard hull Ẽ has property
�Sm�, then E has the fixed point property.

In [40], the �Sm� property was proved for various classes of Banach
spaces including separable and strictly convex, as well as uniformly non-
creasy spaces (see [38] for the definition). In view of Corollary 5.8, it seems
to be an important open question whether all superreflexive spaces have
property �Sm� or, more generally, whether the assumptions of Theorem 5.7
are satisfied in every superreflexive Banach space. Note that no example of
a Banach space without the �Sm� property is even known.
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