
Journal of Computational and Applied Mathematics 145 (2002) 113–131
www.elsevier.com/locate/cam

A numerical algorithm for modelling of boson–fermion stars
in dilatonic gravity�

T.L. Boyadjieva, M.D. Todorovb, P.P. Fizievc;∗, S.S. Yazadjievc
aFaculty of Mathematics and Computer Science, University of So�a, So�a, Bulgaria

bFaculty of Applied Mathematics and Computer Science, Technical University of So�a, So�a, Bulgaria
cFaculty of Physics, University of So�a, So�a, Bulgaria

Received 6 November 2000; received in revised form 25 July 2001

Abstract

We investigate numerically class of models of the static spherically symmetric boson–fermion stars in the scalar-tensor
theory of gravity with massive dilaton 6eld. The proper mathematical model of such stars is interpreted as a nonlinear
two-parametric eigenvalue problem. The 6rst of the parameters is the unknown internal boundary (the radius of the
fermionic part of the star) Rs, and the second one represents the frequency � of the time oscillations of the bosonic 6eld.
To solve this problem, the whole space [0;∞) is splitted in two domains: internal [0; Rs] (inside the star) and external

[Rs;∞) (outside the star). In each domain the physical model leads to two nonlinear boundary value problems in respect
of metric functions, the functions describing the fermionic and bosonic matter, and the dilaton 6eld. These boundary value
problems have di>erent dimensions inside and outside the star, respectively. The solutions in these regions are obtained
separately and matched using the necessary algebraic continuity conditions including Rs and �. The continuous analogue
of Newton method for solving both the nonlinear di>erential and algebraic problems is used.

The proposed method essentially di>ers from that one explained in our paper (J. Comput. Phys. 166 (2) (2001) 253) and
ensures certain advantages. In this way, we obtain the behavior of the basic geometric quantities and functions describing
a dilaton 6eld and matter 6elds, which build the star. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Main model

Boson stars are gravitationally bound macroscopic quantum states made up of scalar bosons
[21,27,7,16]. They di>er from the usual fermionic stars in that they are only prevented from col-
lapsing gravitationally by the Heisenberg uncertainty principle. For self-interacting boson 6eld the
mass of the boson star, even for small values of the coupling constant, turns out to be of the
order of Chandrasekhar’s mass when the boson mass is similar to a proton mass. Thus, the boson
stars arise as possible candidates for nonbaryonic dark matter in the universe and consequently as a
possible solution of the one of the outstanding problems in modern astrophysics — the problem of
nonluminous matter in the universe. Most of the stars are of primordial origin being formed from
an original gas of fermions and bosons in the early universe. That is why it should be expected that
most stars are a mixture of both, fermions and bosons in di>erent proportions.

Boson–fermion stars are also a good model for learning more about the nature of strong gravita-
tional 6elds not only in general relativity but also in the other theories of gravity.

The most natural and promising generalizations of general relativity are the scalar-tensor theories
of gravity [5,10,33,9]. In these theories gravity is mediated not only by a tensor 6eld (the metric
of space-time) but also by a scalar 6eld (the dilaton). These dilatonic theories of gravity contain
arbitrary functions of the scalar 6eld that determine the gravitational “constant” as a dynamical
variable and the strength of the coupling between the scalar 6eld and matter. It should be stressed
that speci6c scalar-tensor theories of gravity arise naturally as low energy limit of the string theory
[17,6,14,28,22–24], which is the most promising modern model of uni6cation of all fundamental
physical interactions.

Boson stars in scalar-tensor theories of gravity with massless dilaton have been widely investigated
recently both numerically and analytically [29,18,30,31,8,3,34]. Mixed boson–fermion stars in scalar
tensor theories of gravity, however, have not been investigated so far in contrast to the general
relativistic case, in which boson–fermion stars have been investigated [19].

In the present paper, we consider boson–fermion stars in the most general scalar-tensor theory of
gravity with massive dilaton.

In the Einstein frame the 6eld equations in the presence of fermion and boson matter are:
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where ∇m is the Levi–Civita connection with respect to the metric gmn (l=0; : : : ; 3, m=0; : : : ; 3,
n=0; : : : ; 3). The constant �∗ is given by �∗=8�G∗, where G∗ is the bare Newtonian gravitational
constant. The physical gravitational “constant” is G∗A2(’), where A(’) is a function of the dilaton
6eld ’ depending on the concrete scalar-tensor theory of gravity. W̃ (�+�) is the potential of the
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boson 6eld. The dilaton potential U (’) can be written in the form U (’)=m2
DV (’), where mD is

the dilaton mass and V (’) is a given dimensionless function of ’.
The function �(’)= d[ln A(’)]=d’ determines the strength of the coupling between the dilaton

6eld ’ and the matter. The functions
B
T and

F
T are correspondingly the trace of the energy–momentum

tensor of the fermionic matter 1
F
Tn
m and bosonic matter

B
Tn
m. Their explicit forms are:
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Here � is a complex scalar 6eld, describing the bosonic matter, while �+ is its complex conjugated
function. The energy density and the pressure of the fermionic Ouid in the Einstein frame are
�=A4(’)�̃ and p=A4(’)p̃, where �̃ and p̃ are the physical energy density and pressure. Instead of
giving the equation of state of the fermionic matter in the form p̃= p̃(�̃), it is more convenient to
write it in a parametric form

�̃= �̃0g(�); p̃= �̃0f(�); (4)

where �̃0 is a properly chosen dimensional constant and � is the dimensionless Fermi momentum.
The physical four-velocity of the Ouid is denoted by u�. The potential for the boson 6eld has the

form:

W̃ (�+�)=− m2
D

2
�+� − 1

4
�̃(�+�)2:

The 6eld equations together with the Bianchi identities lead to the local conservation law of the
energy–momentum of matter

∇n

F
Tn
m = �(’)

F
T@m’: (5)

We will consider a static and spherically symmetric mixed boson–fermion star in asymptotic Oat
space-time. This means that the metric gmn has the form

ds2 = exp[�(R)] dt2 − exp[ (R)] dR2 − R2(d! 2 + sin2 ! d 2); (6)

where R; !;  are usual spherical coordinates. The 6eld con6guration is static when the boson 6eld
� satis6es the relationship:

�= #̃(R) exp(i!t):

Here ! is a real number and #̃(R) is a real function. Taking into account the assumption that has
been made the system of the 6eld equation is reduced to a system of ordinary di>erential equations
(ODEs). Before we explicitly write the system, we are going to introduce a rescaled (dimensionless)
radial coordinate by r=mBR, where mB is the mass of the bosons. From now on, a prime will

1 In the present article we consider fermionic matter only in macroscopic approximation, i.e., after averaging quantum
Ouctuations of the corresponding fermion 6elds. Thus, we actually consider standard classical relativistic matter.
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denote a di>erentiation with respect to the dimensionless radial coordinate r. After introducing the
dimensionless quantities
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and de6ning the dimensionless energy–momentum tensors as Tn
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m=m
2
B, the components of the

dimensionless energy–momentum tensor of the fermionic and bosonic matter become correspond-
ingly:
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Here, the parameter b= �∗�̃0=m2
B describes the relation between the Compton length of dilaton and

the usual radius of neutron star in general relativity.

The functions
B
T and

F
T , describing the trace of energy–momentum tensor, have the form:
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F
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For the independent dimensionless radial coordinate r we have r ∈ [0; Rs]∪[Rs;∞), where 0¡Rs ¡∞
is the unknown radius of the fermionic part of the mixed boson–fermion star.

With all de6nitions we have given, the main system of di>erential equations governing the structure
of static and spherically symmetric boson–fermion stars can be presented in the following form:

1. In the interior of the fermionic part of the star (the functions in this domain are subscribed by i)
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Here  (r); �(r); ’(r); #(r), and �(r) are unknown functions of r, and � is an unknown parameter.
Having in mind the physical assumptions, we have to solve Eqs. (7) under the following boundary
conditions:

 (0)=
d’
dr

(0)=
d#
dr

(0)= 0; #(0)= #c; �(0)= �c; (8)

�(Rs)= 0 (9)

where #c and �c are the values of density of, respectively, the bosonic and fermionic matter at the
star’s center. The 6rst BC in (8) ensures the existence of local Lorentzian system in some vicinity of
the star’s center. The second and third conditions in (8) guarantee the nonsingularity of the dilaton
6eld and the boson matter at the star’s center. As for the quantities #c and �c in the last two BCs
(8) they must be given. At last the quantity Rs in (9) is the radius of the fermionic part of the star,
where the pressure of the fermionic matter vanishes (for more physical details see [4]).

2. In the external domain (subscribed by e) there is no fermionic matter, i.e., it can be formally
supposed that the function �(r) ≡ 0 if x¿Rs. The fermionic part of the energy–momentum tensor
also vanishes identically and, thus, the di>erential equations with respect to the rest four unknown
functions  (r), �(r), ’(r), and #(r) are:
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As it is required by the asymptotic Oatness of space-time (see [4]), the boundary conditions (BCs)
at the in6nity are:

�(∞)= 0; ’(∞)= 0; #(∞)= 0; (11)

where we denote (·)(∞)= limr→∞ (·)(r).
We seek for a solution [ (r); �(r); ’(r); #(r); �(r); Rs; �] subjected to the nonlinear ODEs (7) and

(10), satisfying the BCs (8), (9), and (11). At that we assume the function �(r) is continuous in the
interval [0; Rs]; while the functions  (r); �(r) are continuous and the functions ’(r); #(r) are smooth
in the whole interval [0;∞), including the unknown internal boundary r=Rs.

The so-posed boundary value problem (BVP) represents a nonlinear two-parametric eigenvalue
problem with respect to the quantities Rs and �.
Let us emphasize that a number of methods for solving the free-boundary problems are considered

in detail in [32,25].
Here, we aim at applying the new solving method to the above-formulated problem.

2. Method of solution

At 6rst we scale the variable r using the Landau transformation [32] and, in this way, we obtain
a 6xed computational domain. Namely,

x=
r
Rs

; x∈ [0; 1] ∪ [1;∞):

For our further considerations, it is convenient to present the systems (7) and (10) in the following
equivalent forms as systems of 6rst order ODEs:

−ỹ′
i + RsF̃i(Rsx; ỹ i; �)= 0; (12)

−ỹ′
e + RsF̃e(Rsx; ỹ e; �)= 0 (13)

with respect to the unknown vector functions

ỹ i(x) ≡ ( (x); �(x); ’(x); /(x); #(x); 0(x); �(x))T;

ỹ e(x) ≡ ( (x); �(x); ’(x); /(x); #(x); 0(x))T

and right hand sides F̃i ≡ (F1; F2; /; F3; 0; F4; F5)T; F̃e ≡ (F1; F2; /; F3; 0; F4)T, where (:)′ stands for
di>erentiation towards the new variable x.

For given values of the parameters Rs and �, the independent solving of the internal system (12)
requires seven BCs. At the same time we have at disposal only six conditions of the kind (8) and
(9). In order to complete the problem, we set additionally one more parametric condition (the value
of someone from among the functions  (x); �(x); ’(x); /(x); #(x), or 0(x)) at the point x=1). Let
us set for example:

’i(1)=’s; (14)
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where ’s is a parameter. Then, the boundary conditions (8), (9), and (14) of the internal BVP can
be presented in the form:

B0; iỹ i(0)− D0; i = 0; B1; iỹ i(1)− D1; i(’s)= 0: (15)

Here, the matrices B0; i = diag(1; 0; 0; 1; 1; 1; 1); D0; i = diag(0; 0; 0; 0; #c; 0; �c);
B1; i = diag(0; 0; 1; 0; 0; 0; 1), D1; i = diag(0; 0; ’s; 0; 0; 0; 0).

Obviously, the solution in the internal domain x∈ [0; 1] depends not only on the variable x; but
it also is a function of the three parameters Rs; �; ’s, i.e., ỹ i = ỹ i(x; �; Rs; ’s):
In the external domain x¿ 1 the vector of solutions

ỹ e(x) ≡ ( (x); �(x); ’(x); /(x); #(x); 0(x))T

is 6D. Thereupon, six BCs are indispensable for solving Eq. (13). At the same time only the three
BCs (11) are known. Let us consider that the solution ỹ i(x) in the internal domain x∈ [0; 1] is
known. Then, we postulate the rest three de6cient conditions to be the continuity conditions at the
point x=1: The 6rst of them is similar to condition (14) and the other two we assign to two
arbitrary functions from among  (x); �(x); /(x); #(x), and 0(x); for example:

 e(1)=  i(1); ’e(1)=’s; #e(1)= #i(1):

It is convenient to present the BCs in the external domain in matrix form again:

B1;eỹ e(1)− D1;e(’s)= 0; B∞;eỹ e(∞)= 0 (16)

where the matrices B1;e = diag(1; 0; 1; 0; 1; 0),

D1;e = diag( i(1); 0; ’s; 0; #i(1); 0); B∞;e = diag(0; 1; 1; 0; 1; 0):

Let the solutions ỹ i = ỹ i(x; �; Rs; ’s) and ỹ e = ỹ e(x; �; Rs; ’s) be supposed known. Generally
speaking, for given arbitrary values of the parameters Rs; �, and ’s the continuity conditions with
respect to the functions �(x); /(x), and 0(x) at the point x=1 are not satis6ed. We choose the
parameters Rs; �, and ’s in such manner that the continuity conditions for the functions �(x); /(x),
and 0(x) are held, i.e.,

�e(1; Rs; �; ’s)− �i(1; Rs; �; ’s)= 0;

/e(1; Rs; �; ’s)− /i(1; Rs; �; ’s)= 0;

0e(1; Rs; �; ’s)− 0i(1; Rs; �; ’s)= 0: (17)

These conditions should be interpreted as three nonlinear algebraic equations in regard to the
unknown quantities Rs; �, and ’s. The usual way for solving the above-mentioned kind of Eqs.
(17) is by means of various iteration methods, for example Newton’s methods. The traditional
technology similar to methods like shutting [36], requires separate treatment of the BVPs and the
algebraic continuity equations and brings itself to additional linear ODEs for elements of the cor-
responding to (17) Jacobi matrix. These elements are functions of the variable x and they have to
be known actually only at the point x=1. The solving of both the nonlinear BVPs (12), (15) and
(13), (16), and the attached linear equations is another hard enough task.

In the present work, using the continuous analogue of Newton method (CANM) [15,12] (see the
comprehensive reviews [20,26]) we propose a common treatment of both di>erential and algebraic
problems.
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We suppose that the nonlinear spectral problem (12), (15), (13), (16), and (17) has a “well
separated” [20] exact solution. Let the functions ỹ i;0(x); ỹ e;0(x) and the parameters Rs;0; �0; ’s;0 be
initial approximations of this solution. CANM leads to the following iteration process:

ỹ i; k+1(x)= ỹ i; k(x) + 4k z̃i; k(x); (18)

ỹ e; k+1(x)= ỹ e; k(x) + 4k z̃e; k(x); (19)

Rs; k+1 =Rs; k + 4k6k ; (20)

�k+1 =�k + 4k!k; (21)

’s; k+1 =’s; k + 4k7k : (22)

Here 4k ∈ (0; 1] is a parameter, which can rule the convergence of iteration process. The increments
z̃i; k(x); z̃e; k(x); 6k ; !k , and 7k; k =0; 1; 2; : : : satisfy the linear ODEs (for sake of simplicity we will
henceforth omit the number of iterations k):

−z̃ ′i + Rs
@F̃i

@ỹ i
z̃i +

(
Rs

@F̃i

@Rs
+ F̃i

)
6+ Rs

@F̃i

@�
!= ỹ′

i − RsF̃i; (23)

−z̃ ′e + Rs
@F̃e

@ỹ e
z̃e +

(
Rs

@F̃e

@Rs
+ F̃e

)
6+ Rs

@F̃e

@�
!= ỹ′

e − RsF̃e: (24)

In the above two equations all coeRcients and right-hand sides as well are known functions of the
arguments x; Rs; � by means of the solution from the previous iteration. We seek for the unknowns
z̃i(x) of Eq. (23) and z̃e(x) of Eq. (24) as linear combinations with coeRcients 6; ! and 7:

z̃i(x)= s̃i(x) + 6ũ i(x) + !ṽi(x) + 7w̃i(x); (25)

z̃e(x)= s̃e(x) + 6ũ e(x) + !ṽe(x) + 7w̃e(x): (26)

Here s̃i(x); ũ i(x); ṽi(x), w̃i(x) and s̃e(x); ũ e(x); ṽe(x); w̃e(x) are new unknown functions, which are
de6ned in either, internal or external domains. Substituting for the decomposition (25) into Eq. (23)
after reduction we obtain:

−̃s ′i + Qi(x)̃si = ỹ′
i − RsF̃i;

−ũ ′
i + Qi(x)̃u i =−

(
F̃i + Rs

@F̃i

@Rs

)
;

−ṽ ′i + Qi(x)̃vi =− Rs
@F̃i

@�
;

−w̃ ′
i + Qi(x)w̃i = 0 (27)

where Qi(x) ≡ Rs[@F̃i (Rsx; ỹ i; �) =@ỹ i] stands for a square matrix (7 × 7), which consists of the
FrechSet derivatives of operator F̃i at the point {ỹ i(x); Rs; �}.
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Similarly, applying CANM to the BCs (15) and taking into account the dependence of matrix
D1; i on the parameter ’s yields:

B0; ĩzi(0)=D0; i − B0; iỹ i(0); B1; ĩzi(1)=D1; i − B1; iỹ i(1)− D′
1; i7:

By means of the representation (25) we obtain the following eight BCs (four left + four right) for
Eqs. (27):

B0; ĩsi(0)=D0; i − B0; iỹ i(0); B1; ĩsi(1)=D1; i − B1; iỹ i(1);

B0; ĩu i(0)= 0; B1; ĩu i(1)= 0;

B0; ĩvi(0)= 0; B1; ĩvi(1)= 0;

B0; iw̃i(0)= 0; B1; iw̃i(1)=− D′
1; i(’s):

(28)

Let us now substitute for decomposition (26) into the linear equations for external domain (24).
As a result, we obtain the following four vector equations with regard to the unknown functions
s̃e(x); ũ e(x); ṽe(x), and w̃e(x) with eight BCs (four left + four right):

−̃s ′e + Qe(x)̃se = ỹ′
e − RsF̃e;

−ũ ′
e + Qe(x)̃u e =−

(
F̃e + Rs

@F̃e

@Rs

)
;

−ṽ ′e + Qe(x)̃ve =− Rs
@F̃e

@�
;

−w̃′
e + Qe(x)w̃e = 0: (29)

Here, Qe(x) ≡ Rs[@F̃e(Rsx; ỹ e; �)=@ỹ e] is a square matrix (6 × 6) whose elements are FrechSet’s
derivatives of the operator F̃e at the point {ỹ e(x); Rs; �}.

The corresponding linear BCs are obtained in the same way as (28) and they become

B1; ẽse(1)=D1;e − B1;eỹ e(1); B∞; ẽse(∞)=− B∞;eỹ e(∞);

B1;eũ e(1)= 0; B∞;eũ e(∞)= 0;

B1; ẽve(1)= 0; B∞; ẽve(∞)= 0;

B1;ew̃e(1)=− D′
1;e(’s); B∞;ew̃e(∞)= 0:

(30)

In the end, to compute the increments {6; !; 7} of parameters Rs; �, and ’s we use the three
continuity conditions (17).

Let the solutions of linear BVPs (27), (28), and (29), (30) at the kth iteration stage be assumed as
known. For simplicity, we introduce the vector ˜̃y(x) ≡ (�(x); /(x); 0(x))T. For two arbitrary functions
hi(x) and he(x), de6ned in left and right vicinity of the point x=1, we set Th ≡ he(1) − hi(1).
Then, applying CANM to Eqs. (17) and having in mind the decompositions (25), (26), we attain
the vector equation:

T˜̃u6+T˜̃v!+T˜̃w7=− (T˜̃y + T̃s̃); (31)
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which represents an algebraic system consisting of three linear scalar equations with respect to the
three unknowns 6, !, and 7.

The general sequence of the algorithm can be recapitulated in the following way. Let us assume
that the functions ỹ i; k(x); ỹ e; k(x), and parameters Rs; k ; �k ; ’s; k are given for k¿ 0. We solve the
linear BVPs (27), (28) and, thus, we compute the functions s̃i; k(x); ũ i; k(x), ṽi; k(x); w̃i; k(x) in the
internal domain x∈ [0; 1]. Then, we solve the linear BVPs (29), (30) in the external domain x∈ [1;∞]
and compute the functions s̃e; k(x); ũ e; k(x); ṽe; k(x), and w̃e; k(x). Next, to obtain the increments 6k; !k ,
and 7k we solve the linear algebraic system (31). Using the decompositions (25), (26) and then the
formulae (18)–(22), we calculate the functions ỹ i; k+1(x), ỹ e; k+1(x), the radius of the star Rs; k+1, the
frequency �k+1, and the parameter ’s; k+1 as well at the new iteration stage k + 1.

At the every iteration k an optimal time step 4opt is determinated in accordance to the Ermakov
and Kalitkin formula [11]:

4opt ≈ 
(0)

(0) + 
(1)

;

where the residual 
(4) is calculated as follows:


(4k)=max[
f; (Rs; k + 4k6k)2; (�k + 4k!k)2; (’s; k + 4k7k)2]

and 
f is the Euclidean residual of the right-hand sides of the 6rst equations in systems (27)–(28)
and (29)–(30).

The criterion for termination of the iterations is 
(4opt)¡�, where � ∼ 10−8 ÷ 10−12 for some k.
Taking into account the smoothness of sought solutions, we solve the linear BVPs (27), (28), and

(29), (30), employing spline collocation scheme of fourth order of approximation (see, for example,
[1,2,35]). At that, we utilize essentially the important feature that each of the above-mentioned two
groups vector BVPs (internal and external) has one and the same left-hand side.

It is worth noting that the algebraic systems of linear equations and system (31) as well become
ill-posed in the vicinity of the “exact” solution, i.e., for suRciently small residuals 
. That is why
for small 
, for example if 
¡ 10−3 (then 4opt ∼ 1 usually), it is expedient to use the Newton–
Kantorovich method when the respective matrices are 6xed for some 
¿ 10−3.

3. Some numerical results

For the purpose of illustrating, we will shortly discuss some results obtained from numerical
experiments.

In the present article, we consider concrete scalar-tensor model with functions (see Section 1):

A(’)= exp
(

’√
3

)
; V (’)= 3

2[1− A2(’)]2;

f(�)= 1
8[(2� − 3)

√
� + �2 + 3 ln(

√
� +

√
1 + �)];

g(�)= 1
8[(6� + 3)

√
� + �2 − 3 ln(

√
� +

√
1 + �)];

W (#)=− 1
2 (#

2 + 1
2�#4):
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Fig. 1. The function #(x) for #c = 0:4; �c = 1:2.
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Fig. 2. The function ’(x) for #c = 0:4; �c = 1:2.

The quantities b; � are given parameters. For completeness, we note that in the concrete case the
functions f(�) and g(�) represent the equation of state of noninteracting neutron gas in parametric
form, while the function W (#) describes the boson 6eld with quartic self-interaction.

The calculated eigenfunctions #(x); ’(x); �(x), and �(x) are plotted correspondingly in Figs. 1–4
for the values of the parameters &=0:1; �=10 and b=1: The behavior of the mentioned functions
is typical for a wider range of the parameters not only for those values presented in the 6gures.
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Fig. 4. The function �(x) for #c = 0:4; �c = 1:2.

The function #(x) decreases rapidly from its central value #c = 0:4 (in the case under consideration)
to zero, at that when dimensionless coordinate x¿ 6, the function does not exceed 10−4. Similarly
the function �(x) has the largest derivative for x∈ (0; 9). After that it approaches slowly zero at
in6nity like 1=x. For example, when x ≈ 9 the derivative �′(x) ≈ 10−2, while for x¿ 27 we have
�′(x)¡ 10−4, i.e., the asymptotical behavior of calculated grid function and its derivative agrees
very well with the theoretical prediction (see [4]). The function ’(x) increases rapidly for x¡ 4;
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besides that it trends asymptotically to zero. Obviously, the quantitative behavior of ’(x) for central

value #c = 0:4 is determinated by the dominance of the term
B
T over the term

F
T (see [4]). At last

the function �(x) is nontrivial in the internal domain x∈ [0; 1], i.e., inside the star. Here, it varies
monotonously and continuously from its central value (in the case under consideration) �c = 1:2 until
zero at x=1, corresponding to the radius of the star.

The computed grid functions #(x); ’(x); �(x) are compared with their theoretical predictions when
x → ∞

#as(x) ∼ 1
xRs

exp(−xRs

√
1− �2); ’as(x) ∼ 1

xRs
exp
(
−&’′′(0)

2
xRs

)
;

�as(x) ∼ M
xRs

; where M is the star mass (see below):

The following results are obtained:

|#(x)− #as(x)|=0 within 10−7;
ln|’(x)− ’as(x)|=Cx + D, where the constants C ¡ 0; D¿ 0 (Fig. 5);
|�(x)− �as(x)|= �0. In the case of the solution under consideration the constant �0 � 4:03× 10−4.

From physical point of view, it is important to know the mass of the boson–fermion star and the
total number of particles (bosons and fermions) making up the star.
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The dimensionless star mass can be calculated via the formula:

M =
∫ ∞

0

[
B

T 0
0 +

F

T 0
0 + exp(− )

(
d’
dr

)2
+

&2

2
V (’)

]
r2 dr:

The dimensionless rest mass of the bosons (total number of bosons times the boson mass) is given
by

MRB =�
∫ ∞

0
A2(’) exp

(
 − �
2

)
#2r2 dr:

The dimensionless rest mass of the fermions is correspondingly:

MRF = b
∫ ∞

0
A3(’) exp

(
 
2

)
n(�)r2 dr

where n(�) is the density of the fermions. In the case we consider we have n(�)= �3=2(x).
The dependencies of the star mass M and the rest mass of fermions MRF on the central value

�c of the function �(x) are shown in a con6guration diagram on Fig. 6 for �=0, &=0:1, b=1,
and #c = 0:002. It should be pointed that for such small central value #c we have in practice “pure”
fermionic star. On the 6gure, it is seen that from small values of �c to values near beyond the peak
the rest mass is greater than the total mass of the star, which means that the star is potentially stable.

In Fig. 7 the binding energy of the star Eb =M −MRB −MRF is drawn against the rest mass of
fermions MRF for �=0, &=0:1, b=1, and #c = 0:002. Fig. 7 is actually a bifurcation diagram. By
increasing the central value of the function �(x) one meets a cusp. The appearance of a cusp shows
that the stability of the star changes — a perturbation mode develops instability. Beyond the cusp
the star is unstable and may collapse eventually forming a black hole. The corresponding physical
results for pure boson stars are considered in our recent paper [13].
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Fig. 8. The star mass as a function of central values �c and #c.

In the case of a mixed boson–fermion star with approximately equal parts of bosons and fermions,
the total mass of the star is plotted in Fig. 8 as a function of the central densities #c and �c at
the corresponding ranges of these parameters. The projection of the mass surface on the appropriate
plane gives, correspondingly, the pure fermionic and bosonic case we have discussed above.
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4. Concluding remarks

In the present paper a two-parametric nonlinear BVP about spherically symmetric mixed boson–
fermion stars is solved. The computational domain is divided into two parts, in which two systems
of ODEs with di>erent number of equations are considered and treated numerically. Through CANM
they are reduced to linear systems of seven ODEs in the inner part (inside the star) and six ODEs
in the outer part (outside the star). In order to solve the internal system an additional parametric
BC about one of the sought function is introduced (say ’(1)=’s). Three BCs on the left side are
necessary to complete the outer BVP. To this end we choose the calculated values of two functions
 (x) and #(x) at the point x=1, and ’s, as well. In this way the continuity of the above quantities
at the radius of star is ensured. Generally, the continuity of the rest free functions �(x), ’′(x),
and #′(x) in the point x=1 is not guaranteed. The continuity requirement for them leads to three
algebraic equations, depending on the parameters Rs, �, and ’s. Applying CANM to these nonlinear
continuity conditions we solve completely both the di>erential and the algebraic problems.

This implementation of the original BVP is more convenient and common with regard to that
presented in [4] because it does not depend on choice of the concrete model of a fermionic matter
(the functions f(r) and g(r)), and enables to avoid the separate integration of the equation about
fermionic matter �(r).

The uniform structure of matrices of the left-hand sides of linearized systems in both domains,
inside and outside the star, is the second principal advantage of the presented numerical algorithm,
which makes easier and accelerates its numerical treatment.

Appendix

To facilitate the readers the continuous analogue of Newton method (CANM) will be presented
brieOy below.

Let us consider the nonlinear equation

A(x)= 0; (A.1)

where the nonlinear operator y= A(x) maps the Banach space X (the element x∈X ) into the Banach
space Y (y∈Y ). To solve Eq. (A.1) it means to 6nd such elements x∗ ∈X , which are mapped by
the operator A into the trivial element of space Y .
If we suppose that xk is known approximation to the sought solution at the kth iteration stage,

then the increment Txk is computed by the formula

Txk =  (xk); xk+1 = xk +Txk ; k =0; 1; 2; : : : ;

where x0 — given element.
The iteration method used determines the manner of constructing the function  (x). For example,

in the case of Newton’s method  (x)= − [A′(x)]−1A(x) where A′(x) is a linear operator — the
FrechSet derivative of function A(x). For each iteration process of kind mentioned above one can
build a continuous analogue introducing a continuous parameter t; 06 t ¡∞ instead the discrete
variable k (k =0; 1; 2; : : :): Further we suppose the smooth dependence x= x(t) and introduce the
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derivative d[x(t)]=dt instead of the increment Txk . In this way we obtain the di>erential equation

d
dt

x(t)=−  [(x(t)]; x(0)= x0: (A.2)

Thus, the solving original Eq. (A.1) is realized by the solving of the above Cauchy problem (A.2)
on the positive half-axis 06 t ¡∞.
There are proved numerous theorems (see [15]) related to the convergence to the isolated solution

x∗ of the continuous analogues of various iteration methods.
In the particular case of CANM we can present Eq. (A.2) as

d
dt

A[x(t)]=− A[x(t)]; x(0)= x0: (A.3)

From here we obtain the 6rst integral

A[x(t)]= e−tA(x0):

If the function A(x) is smooth and the operator [A′(x)]−1 is bounded in the vicinity of initial approx-
imation x0, then in the same vicinity there exists an isolated root x∗ of Eq. (A.1) and limt→∞ x(t) →
x∗.

For example, let us consider the convergence conditions of CANM for the following simple BVP:

A(y) ≡ {y′′ + f(x; y); y(0); y(1)}=0; x∈ (0; 1): (A.4)

Theorem 1 (Jidkov et al. [20]). Let the solution of BVP (A:4) exists and can be localized. Fur-
thermore

(i) the function f(x; y) is smooth in some domain D;
(ii) BVP

v′′ + f′
y(x; y)v=0; v(0)= v(1)= 0

has only trivial solution for each smooth function y(x)∈D;
(iii) ‖y′′

0 + f(x; y0)‖6 � where �¿ 0 is little enough; and function y0(x); smooth in domain D is
an initial approximation of the sought solution y∗(x).

Then the system with respect to functions y(x; t) and v(x; t)

v′′xx + f′
y(x; y)v=− [y′′

xx + f(x; y)]; y′
t = v (A.5)

with BCs

v(0; t)= v(1; t)= 0; y(x; 0)=y0(x) (A.6)

has on half-strip s= {(x; t): 06 x6 1; 06 t ¡∞} an unique solution; subjected to the condition

lim
t→∞ ‖y(x; t)− y∗(x)‖C2[0;1] = 0:
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The most simple method for approximated integration of the problem (A.2) is the Euler method.
Let us build the set tk ; k =0; 1; 2; : : : and 4k = tk+1 − tk . Then the following sequence of linear
problems is reached:

A′(xk)vk =− A(xk); xk+1 = xk + 4kvk ; k =0; 1; 2; : : : ;

where x0 is a given element. When the parameter 4k ≡ 1 we obtain the classical Newton method.
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