JOURNAL OF ALGEBRA 170, 470-486 (1994)

A Geometric Presentation of the A,-Modules
of C,(gq) and D,(q)

Steve M. CoHeEN*

Department of Mathematical Sciences, Roosevelt University, Chicago, Hlinois 60605
Communicated by George Glauberman

Received November 2, 1992

The fixed-point sheaf of the A,-module V' for each of the groups C,(g) and
D, (q) is constructed. It is shown that the (-homology module of the sheaf is
isomorphic to V. This gives a presentation of V' by geometric generators and
relations. « 1994 Academic Press, Inc.

INTRODUCTION

The following is proven:

THEOREM. Let V be the A ,-module of the group G, where either
() G=Cfg),n=3o0r
(i) G = D,(g), n = 4,

and let ¥, be the irreducible sheaf it determines. Then Hy(.#,.) = V.

Before discussing the theorem we note the following:

(1) The field F, can be replaced with any perfect field of prime
characteristic or a field of algebraic numbers.

(2) The module V arises naturally as a quotient of the alternating
square of the natural module N of G. For G = D (g),V = Alt*(N); for
G = C,(g), V is a codimension-1 quotient of Alt*(N). Properties of the
alternating square are not, however, used in the proof of the theorem.

(3) V is irreducible except:
() G =C,(g)and p/n,
(i) G = D(g)and p = 2.

*This work is in part based upon a thesis completed in partial fulfillment of the require-
ments for the doctoral degree at the Graduate College of the University of lllinois at
Chicago.
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In these cases V' is indecomposible and has an irreducible submodule W
(of codimension 1 or 2) [CPS]; then ¥, = ¥, [RS].

In local group theory one often obtains information about group mod-
ules from local-geometric information. Ronan and Smith {RS] considered
the case of a Chevalley group G acting on an indecomposable module V'
in the natural characteristic. They construct a coefficient system %, by
attaching subspaces of 1 to the Tits building complex associated with G.
A general result is that V' is recovered as a quotient of the zero-homology
module of .# .. In many cases dim( H,(.#, ) is close to that of V" or it can
be shown that H,(.#,) = V. Many results were established in this regard
in [RS] as well as in papers by Cohen and Smith [CS], Segev and Smith
[SS], Smith and Vélklein [SV], and Vélklein [V].

In the background section where the construction of % is described,
many facts are provided regarding the C, and D, root systems, the weight
decomposition of V, and the structure of the C, and D, buildings, with
references to the works of Humphreys [H] and Carter [C]. The presheaf
terms and the relations among them are established in detail using some
sheaf results of [RS] and elementary weight theory [H], [CR].

In the second section the theorem is proven using the same procedures
as those in [CS] regarding the natural module of F,(gq). Following the
apartment method of Ronan and Smith, one obtains an upper bound on
the dimension by exhibiting a generating set defined on a fixed apartment.
It is argued that it is sufficient to show that this set generates analogous
sets defined on any neighboring apartment. The crucial spanning argu-
ments are reduced to analyzing rank-2 substructures which ‘“‘connect”
neighboring sets of generators. The latter analysis follows Vélkiein’s
method of reduction of rank where the cases are reduced to a set of
root-orbits induced by the action of the Weyl group stabilizer of the weight
A,. Once these cases are all classified, the generating set is further refined
so it can be seen that its dimension is bounded by dim(V'). Then using the
[RS] result that V' is a quotient of H,(#,,) the theorem will follow. The C,
case was computed by the author while a graduate student at the Univer-
sity of Ilinois at Chicago with thesis advisor Stephen Smith. The D, case
was checked independently by Tony Fisher while he was a graduate
student at the University of Chicago.

1. CoNsTRUCTION OF THE FIXED-POINT SHEAF

The C, and D, Root Systems

For a reference for the standard facts provided here, see, for example,
Part III of Humphreys [H]. The n-node Dynkin diagrams are labelled as
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C D,

n n

Fiii. 1. The Dynkin diagrams of types C,, and D,,.

shown in Fig. 1. We obtain representations of both root systems by
considering the following sets of vectors in R”,

@, ={+2e;:1 <i<n}
b, = {i(i‘, te):l<i<j S"}’

where ¢; and e; are the standard basis vectors of R". Letting @ and @,
denote the root systems of C,, and D,, respectively, we have @ = @, U P
and @, = &;. We can obtain sets of fundamental roots as follows:

1. = {e;
I, ={e —¢

—e.,2e,:1<i<n—1} (a basis of @)

i+1

e e,:1 <i<n-—1) (a basis of @,,).

i+ n~1+

We denote fundamental roots by a, == ¢; — ¢, for i <n and «, = 2¢,
in Il and «,=¢€,_, + ¢, in II,. In any root system all roots can be
written as Z-lincar combinations of the fundamental roots where the
coefficients are either all non-negative (@) or all non-positive (¢ 7). In
some situations it is convenient to represent roots as strings of these
coefficients (using the ordering of the fundamental roots). We list all of
the positive roots (@) for both root systems in Table 1. These roots along
with their negatives comprise all @, and @,,. Whenever possible we will
use the symbol ¢ to denote either root system. Note that A :=¢, + e,
(122...221 in @, and 122...211 in @;,) is the high short root, i.c., the
sum of its coeflicients is maximal among the short roots (@y).

Weight Theory of V

Again, for more complete details we refer the reader to Humphreys [H].
For convenience we will refer to the A,-module of C,(q) as V. and the
Ay-module of D,{q) as V,,. The high short root A = ¢, + ¢, is the high
weight of V.. and V,,. Each root system has a dual basis (A}, A,,...,A,) to
I1, that is, (A;,A;,...,A4,) spans R", and (@, A;) =8, where (,)
denotes the usual inner product in R”, and A = A,. In both cases the set
of non-zero weights corresponds to @. For any y € &g, let V, denote the
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TABLE 1
Positive Roots of €, and D,

Vector
i, j-Range form String in &, String in @,
(i Gy ()
l<i<j<n e, = ¢ 00...011...100...0 00...011...100...0
(y () )
Il<i<jsn-2 e, +e, 00...001...122...21 00...011...122...211
(i) (1)
l<i<n-2 e, +e, 00...011,. .12t 00...011...11]
(i) (i)
l<i<n-1 e, +e, G0...011...111 00...011...101
(i)
l<i<n 2¢, 00...022...221 —

1-dimensional weight space of y; then I = GV. The complete decompo-
sition of the module into weight spaces includes an (n — 1)-dimensional
O-weight space in V. and an n-dimensional 0-weight space in V). Since

bl = 4(g)

4('1) R Gl A i
2 2 2
2n(2n — 1) 2n 0
= — 4+ n =
2 2 (2)

we obtain

dim(V,) = (22”) -1

dim(V,,) = (22”)

The C, and D, Buildings

For a reference for this information see, for example, Chapters 2 and 15
of Carter [C]. The building A is a simplicial complex built up from the
geometry of the natural module of G. Each simplex in A is identified with
a flag of subspaces of } stabilized by a parabolic subgroup of G. The
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incidence structure of 4 mirrors the structure of the containment lattice
of parabolic subgroups of G. That is, if ¢, and o, are simplices in A
corresponding to parabolics P, and P, in G, then o, is a face of o, if and
only if P, is a subgroup of P,. Each vertex type in A corresponds to a
conjugacy class of maximal parabolic subgroups which are indexed by the
n nodes of the Dynkin diagram, while maximal simplices or chambers
correspond to Borel subgroups of G. Geometrically, the ith node corre-
sponds to an (i — 1)-simplex, except in type D,, where both node n — 1
and n correspond to (n — 1)-simplices [T].

We obtain a representative parabolic from each conjugacy class in the
following way: Fix a Cartan subgroup H < G. For each a € @, let X,
denote the root group of a relative to H. Then for each subset IT' < I1,
let ®(II') = @ N ZIT" and define

Py =(H,X,;ac® N (2 TTUZ ')
U(IT') = (X, a € ®N\Z7IT')

LIy =(H,X,:a € ®)).

Each parabolic in G is conjugate to some P(IT') = UCIT') - L(IT'), where
UIT') is the unipotent radical of P(II') and L(II') a Levi complement.
Maximal parabolics are determined by subsets [T, := IT\ {a,} for 1 <i < n.

Let N = N,(H). The set of simplices corresponding to all of the N
conjugates of P(IT') over all subsets II' C IT comprises the apartment A
in A. The apartment has the structure of a Coxeter complex for the Weyl
group W = N/H.

The Fixed-Point Sheaf

The fixed-point sheaf ¥, is constructed on the building 4 in the
following way. At each simplex o corresponding to the parabolic P = U -
L, attach the subspace spanned by vectors which are fixed by the unipotent
radical U. We denote this sheaf space by #,. We construct a chain-com-
plex on the sheaf spaces by composing the usual oriented boundary map
on the building complex with the natural inclusion maps among the sheaf
spaces (see [RS] for more complete details), and form homology quotients.
Our concern here is with H ().

To compute H (.#,) we need to study C, = &%, and C, = 8.7 in
F . The sizes of the sheaf spaces and the relations among them are
established by identifying these spaces as fundamental modules of Cheval-
ley groups of lower rank. To accomplish this we utilize a result of Smith [S]
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that V'Y, the fixed space of the unipotent radical, is an irreducible module
of the Levi complement.
We analyze C, by considering the maximal subsets of /1.

ProrosITiON 1. For G = C,(q) (D(g), VY = L1V, is isomor-
phic to the natural symplectic (orthogonal) module of C, \(q) (D, _(g)).
Therefore dim(V V) = 2(n — 1).

Proof. By definition L(Il,) = <{H, X, :a € &(11,)). P(II,) is a root
system of type C,_, (D,_,) with ordered fundamental basis II, =
(as,...,a,); thus there is a natural surjection of L(II,) onto C,_(q)
(D, _,(g)) with the kernel of that surjection acting by scalars on L(II,)V,.
Since A corresponds to A, in the dual basis to I of R", A is the first
fundamental weight in the C,,_, (D, _,) subsystem, and therefore the high
weight of the natural module of C,_(q) (D, _(g)). |

ProrosiTION 2

(i) For(a) G=CJlg),2<i<n, or (b)) G=DJ(gl2<i<n-—-2
vy — LIV, is isomorphic to the alternating square of the natural

module of A, (). Therefore dim(V’V) = ( ;).
(ii) For G =DJ(q) and i = n — 1 or n, LUI)V, is isomorphic to the
alternating square of A,_\(q) and therefore dim(}V!10) = ('2')

Proof. Fori<nand G=C\(q)ori<n~1and G = DJq), LUI)
=Lla,,a,,...,a, ) X Lla; |, a,,,,...,a,) which maps naturally onto
A,_(q)x C,_,_[(g) or A,_(q)*x D,_,_(q). Since V, is fixed by the
right factor, LUT )V, = L{a,, a5, ..., a;_)V,. A corresponds to the sec-
ond fundamental weight relative to ®(a, a,,...,a,_;), and A, | root
subsystem; therefore L{a, a,,...,a;_;)V, is the second fundamental
module of A,_,(g), the alternating square of the natural module.

For G = C,(q) (i = n), or G = D,(q) (i = n — 1) the subdiagram de-
termined by [I; is connected and of type A, _,. Again A corresponds to
the second fundamental weight of ®(/1;) and L(I1)V, is the exterior
power of the natural module of A, _(q). |

We next determine the relations among these subspaces relevant to a
description of C(.#,).

ProrosiTiON 3
(i) For (a2 <i<j<nand G=C,(q); or (b)2<i<j<n, with
i<n-—2and G =D,/(g), VW pudl

(ii) For(a)2 <i<nand G = C,(q);or (b)2 <i <n,withi ¥ n — 1
and G = D (q), VU n Y s isomorphic to the natural module of
A;_5(q). Therefore dim(V'V/ ) n pUdhny — ¢ — 1,
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(iii) For G = D (q), VY 0 n YUY s jsomorphic to the natural
module of A,_(q) and therefore has dimension n — 1 while V!0 n
U,y o P i ’
|4 is isomorphic to the exterior power of the natural module of A, ,{(q)
n—1

and therefore has dimension (

Proof.

(i) This follows from the observation made in the proof of Proposi-
tion 2 that the non-scalar action of L(I],) on V, is determined by that of
L(aj, ay,...,a;_ ). Since { <j, Lla;,ay,...,a, ) <Lla,a,,....,a; )
and therefore VWU = LTV, < LUV, = VYU (the outer equalities
due to [SD.

(it) YU o pudls = pUdhndio(gince @ NN, N IT) = (DM
NII) U (@™ NII,)) and thus we need only determine the module L{II,
NILW,. LU NTL) = Lla,,as,...,a;,_ ) X Lla,,,...,a,) with the
non-scalar action on V, determined by the left factor. We are therefore

i n-1 n
2An — 1) > | c 3c---c(2)c -c( N ) c (2)
G-
-2
TTTS(- 1
C'l
(n—-1)
An—1) > | C

3 C o
\l
2— ..

Fii. 2. Dimensions of vertex sheat spaces and their intersections.
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TABLE 11
The Weight Decompositions of Representative Vertex Spaces

i Weights of 1 Weights of PE10

1 e, +e{l <l<n el+e,(2_%f$n)
2,3,..., n—2n e, +el <k <l<i) e +rel <k <l<i)
n~1 e te,(l<k<l<n-—-1 e, +e,(I<l<n—-1

considering the module of the first fundamental weight of an A4,_,
subsystem. Thus, L(II, N I1)V, is isomorphic to the natural module of
A,_,(g) and the result follows.

(iii) As in (ii) it is sufficient to consider L(IT, _, N )V, and L(IT,_,
NIT)HV,. With G =D, (q), H(II,_, N II)) is an A,_, subsystem with
A = A, the first fundamental weight, while @(IT,_, N 11) is an A4, _,
subsystem with A the second fundamental weight. Again the results follow

from our knowledge of the fundamental weight modules of A4, (g). 1

The diagram of the sheaf spaces and the relations among them is given
in Fig. 2. With the dimensions established the list of roots can be used to
determine the weights involved with the sheaf spaces relative to a choice
of H Fora € ®gand B € &,if B # ~a and B + a &€ P, then X fixes
V.. 1t is straightforward to check this, and we summarize the results in
Table II.

2. CarLcuLaTioN ofF H(F )

Introduction

We are proving that H (%) which we will abbreviate by V is isomor-
phic to V. It is sufficient to show that dim(V) < dim(V) since V is a
quotient of ¥ [RS]. To get an upper bound on the dimension of V we
construct a generating set of 1-space vertices—that is, conjugates of V,.
Following the apartment method of [RS], we base this construction at a
fixed apartment A4 in 4. We argue that it spans every 1-space vertex in 4
by showing that it spans the analogous set on every neighboring apart-
ment. Vélklein’s [V] reduction of rank method is employed to reduce the
crucial spanning arguments to classifying the rank-2 substructures which
arise in this context. This is facilitated by a complete analysis of the Weyl
group action on pairs of roots (a, 8) with a € @.

481/170/2-9
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Construction of the Generating Set

We continue to fix an apartment A relative to a choice of Cartan
subgroup H. Then W = N (H)/H is the Weyl group which acts on the
root system @®(A4). V, denotes the sheaf space attached to the vertex
corresponding to P(I1,). For cach a« € ¢ (A) let V,, = V. where wA = a
for some w € W. We define subgroups of G generated by sets of root
groups corresponding to rank-1 and -2 subsystems of &. Subspaces of .7,
arc generated by ¥V, under the action of a subgroup corresponding to a

«

root subsystem containing a.
DEFINITION

(1) We construct rank-1 and -2 subgroups as follows:
(@) L, =X, (ad € PlA).
(b)Y L, ,=(X,:y € Pla,B) (a.B) € O A) X P(A).

(ii) Subspaces generated by the subgroup action are defined by:
(@) L(V,)y=(VE:gelL,)(lae PJlA)
(b) L, V) =VEgel, (e, pB)e PlA)X P(A)
(c) LCA) ==LV, a € D A)).

Regarding these dcfinitions we note that the action of L, on ¥V,
parallels that of SL,(g) acting on the high weight space of the adjoint
module of 2 X 2 traceless matrices; there are g + 1 1-spaces in L(V) =
LV _ ). We will eventually show that L(V,) is 3-dimensional in homology
and therefore dim(L(A4)) < 3(|®,|/2) = 6(’2')

Our main effort is to show that ¥ = L(A). We follow the “apartment
method” of [RS] by focusing on the apartments which are neighbors to A,
Two apartments in 4 are neighbors if they intersect in a half-apartment.
We can reduce showing V = L(A) to the following:

LemMma 1. Let A and A’ be neighboring apartments. Then L(A') C L(A).

Sufficiency of Lemma | to show that V = L(A). From our account of
the weight decomposition of representative vertex spaces (see Table II) in
4, it is clear that the higher dimensional vertex spaces are generated in
homology by the Weyl conjugates of V,. L(A) includes all such 1-spaces
attached to vertices of the apartment A. Therefore showing V=1(A)
reduces to showing that L(A') € L(A) for any apartment A4’ in 4. We
know, however, that the apartments in A are connected by the neighbor
relation (see Lemma 4.4 of [RS]) and are finite in number. It follows by
induction that it is sufficient to consider L(A’) for A' a neighbor to A.
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Reduction to Rank-2

To prove the lemma we first note some facts about neighboring apart-
ments. If 4 and A’ are neighbors, the half-apartment A N A" is fixed by a
root group Xz < G with g € ®(A4). Furthermore, X, is transitive on the
set of apartments which share 4 N A’ [RS]. Then A' = A% for some
84 € X4, and L(A) = L(A)*s = (L(V)*|a € D (A)).

LW, ) c L, ,(V,); thus we classify these rank-2 substructures. We
obtain generators from L(A4) by appealing to rank-2 results of [RS], [V].

Orbits of W,

Since W is transitive on @, each pair of roots (a, 8) with a € &g is
conjugate to (A, 8'), where B' can be chosen as a particular orbit represen-
tative under the action of W,, the Weyl group stabilizer of A. We will see
that this reduces the process of classifying the rank-2 structures L (V)
to examining at most six cases.

We begin the calculation of the W,-orbits of @ by noting that W is
generated by fundamental reflections 5, i = 1,2,...,n, where s{B) =
B — 2a, B)/{a,a;). Since {a,;, A) = 5, (see Section 1: Weight The-
ory of V'), then s(A) = A for i # 2. Then W, is the (maximal) subgroup of
W generated by {s, .7 # 2}.

The Weyl group acting on pairs of roots preserves the inner product;
thus every member of a W, orbit has the same inner product with A. The
orbits of W, are nearly determined by the range of inner products.

Lemma 2. For n > 3 in either system W, induces six orbits on @g. Four
of these orbits are composed of roots with inner product +2 or +1 with A
and two of the orbits have inner product 0 with X. Otherwise, for n = 3 and
G = C,(q), @ has exactly five orbits.

Proof. (1) {(B,A) = +£2:
Wi(A) = {A}; Wi(=-A) ={-A}.

This is the case when 8 = +A. By definition W, fixes A and as the Weyl
group action commutes with F,, W, fixes —A as well.

(2) (B, A} = £ 1L

Wiay) ={e;te:i=12:j=3,4,... n}

Wi—a,) ={—(e; te)i=12j=3,4,..,n}
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As previously noted (A, @,) = 1. We check directly that for3<j<n-—

l,a,=e¢;—¢;,, and

2e; —ej 1.3 —¢€))

s(e,—e)=(e,—¢€;)— (e, —
J 2 2 ! ]
! (ej—ejH,ejfeﬁQ

si(e; —¢;) = (e; — e;) — e
1

To account for roots of the form e, + e, we note for the C,-root system
where a, = 2¢,;:

2<2en’ €~ 6’">

sn(el - en) = (eZ - en) - W(Zen) = (62 + en)

2<en—l #_en’€2+en>
Sn~1(ez+en)=(ez+en)_ <€ e ¢ — e > envl—en)
n—1 n>n—1 n
=e+e,_ .
For the D, -root system, (a, =e,_; + €,)
( ) ( ) 2<2€n~l +€",€2-€">( 4 )
s i€, — ¢ =€, —¢€ - €, _1 e
" " § <£’,,,| +€n’en~l +en> g "
=(82+en—l)'
In both systems for 3 <j<n — |,
We, | +e,e;—€, )
n~1 nrt2 n—1
s (e — €, = (¢, —€,_ - e te
u( 2 " l) ( 2 n l) <é’" ; +6’,,,€,1_1 +€”>( n-1 n)
= (€2+€n)
(e, +e) N 2<el,l—ej,ez+ej)( ) N
AP ! e:.) = €, e, — €. | —¢€) =€ €i_)
J j i <€;-l —e. e — 3j< j j j

2e, — e, e, +e)

(e, — ey, € — €;)

si(e; +e)=e,+e — (e, —e,)) =¢, +e.
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Similar relations hold for ~a,.

3) (B, A)=0
(a) Wla,) = {ta)}
For ) = ¢, —¢;, S{a;) = —a; and S{a)) =a, for 3 <j <n.

(b) Wasy) ={+(e, xe):3<i<j<n}
For the C, system we note that for 3 <i <n

2<2€n’ ei - en>

2e, = e, +
<2€ 26”> €, €, €y

SN( el - ell) = el - el! -

ne
SnAl(el + en) = ei + L’”,I.
For the D, system,

2<en—l + en*ei - en>
<€"7| te +en>

Sn(ei_en) =ei—en— e (en—l+en) :ei+en—l

n*n—1

s,(e;—e,_|)=e te,.
In either system for3 <i<j<n—2

si(e; —e ) = (e +e)
and for3 <i<j<n-1

sile; —¢;) = (e, —¢;,)

si(e; =€) = (e ~¢).

Finally, as s4(e; — e,) = —(e; — e,), we obtain analogous relations for
the negatives as well. We have now accounted for all roots of @, and the
lemma follows. ||

LemMa 3. @, is partitioned into exactly three orbits corresponding to
inner products 0, 2, and —2. (Note that G = C,(q).)

Proof.
(D) (B,A) =0.Wla,) ={£2¢:i23 Forld<i<nm

2e; — e .26,,)

<el T Cii1r € —_ei+1>

si(2e,.1) = 2¢,,, — (e; —e;y) = 2e,.
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(2) (B,A) = +2.
(a) W,(2e,) = {2e),2e,};
(b) WA(—2e2) ={—-2e,,— 2e,}.
2{e, — €,,2¢e5)

(e, —e,,e, — €y

si(2e,) = 2e, — (e, —e;) = 2e,

and similarly s (—2e,) = —2e,. We have now accounted for all roots in
@, , and the lemma follows. |

Rank-2 Analysis

With the orbits of W, established we can now classify the structures of
the form L, 4(V,) (a € &5, 8 € @) and find generators for them in
L(A).

Lemma 4. Let G = C,(q) and let (a, B) € ®; X P. Then if either

(a) {a,B) = 2 with B P, or

(b) (a, B) is conjugate to (A,+ «,) via the Weyl group then the
following hold:

(i) @(a,B)is a (B)C, root system with fundamental roots conju-
gate to «, and 2e,.

(i) L, 4(V,) is a quotient of the sheaf of the natural 4-dimen-
sional symplectic module of C,(g).

(iii) L, B(V ) is at most 5-dimensional generated by {V, 5, L(}V} )}
c L(A), where &, is the short fundamental root and A is the high short
root of ®(a, B).

Proof. By Weyl group conjugation we may assume that « = A. For 8
long, using conjugation by W, and part (2) in the proof of Lemma 3 we
may assume B = +2e,; otherwise we assume 8 = a,. In either case
(A, B) ={+a,,+ 2¢, + 2e,,+ A} is a rank-2 root system with roots of
different length. Fundamental roots can be chosen as a, and 2e,, thus
establishing part (i).

To prove (ii), we construct the fixed-point sheaf of L, g acting on

L, gV}). As in Section | we fix a Cartan subgroup H=Hn L, p and
construct representative parabolic subgroups and their Levi decomposn-
tions (for convenience we denote each fundamental root as a root string
relative to the fundamental basis (a,, 2¢,), as was done in Table I):

a, =10, 2e,=01, 2e,=21, A=11,
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P =U "L, WithUl:<Xl()*Xl|’X2]>'Ll=<E’Xt()]>
Py=U, L, withlU,=<{X,, X, X,),L,={(H,X_ )

P =U,L, with Uy = (X, Xopu X0 X0 Ly = H.

We determine the fixed spaces of the U, by again utilizing the thecorem
of Smith [S] and focus on the Levi complement. For L,, we note that
+01 = +2¢, = +£022...21 € @¢(11)). By Proposition 1 we know that
L(I1)) acts on V, to generate a copy of the natural symplectic module of
C,_ (q). Using the weight decomposition of this known module we see
that L, acts naturally on the 2-space generated by weight spaces V, and
V5, (= Vul), and these are fixed by U,. Analyzing geometrically, since
L, < L(I1), we see that all of the conjugates of I/, by L, are incident to
the sheaf term at the simplex corresponding to P(I1,); these conjugates
are therefore gencrated in homology by I, and V, .

To compute the module L,V, we note that +10 = +a, € @(/1,) and
therefore L, < L(Il,), which fixes ¥, by Proposition 2. Finally, P, N
P, = P, is a Borel subgroup of L, ,, which stabilizes the flag V,
v, V"I>. The resulting configuration of spaces is precisely the presheaf of
the natural module of £2(q), proving (ii).

For part (iii) we appeal to [RS, 4.1, 4.3], where the 0-homology of the
fixed-point sheaf of the natural module of C,(g) was computed. It was
determined to be at most 5-dimensional, generated by the two pairs of
short root 1-spaces, Vﬂ_‘I and V5, along with possibly an additional
1-space that can be chosen in L( V&I). By the universal property of H, [RS,
2.3], L, sV, is a homomorphic image of the 0-homology of the C, sheaf.
Thus L, 4(V)is generated by LGV ) and V' ;.

Lemma 5. Let a,B € ®(A) with {a,B) = +1. Then

(i) @la, B) is an A,-root subsystem
Gi) L, z(V,) is isomorphic to the sheaf of the A, adjoint module

(i) L, 4(V,) is 8-dimensional, generated by V . 5, L(V; ), and L( Vi)
where A is the high root, and a, and a, are the fundamental roots of

Ha, B).

Proof.  Using Weyl conjugacy and part (2} of the proof of Lemma 2, we
may assume that « = A and B = ta,. Since A —a, =¢, + ¢4, and
A — 2a, is not a root, we obtain @(A, B) = {+A,+ a,,+(e; +€,)} an A,
system with fundamental roots «, and e, + e5, establishing (i).

To prove (ii) and (iii), we construct the fixed point sheaf of L, , acting
on L, 4zV,):
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Set H=Hn LAVB,&, =a,, a,=¢€ t ej,/_\ =A and for convenience
we use the root string codes: a; = 10,a, = 01,A = 11. We then define
representative parabolics as

v
i

=U L, with Uy = (X, X, 0, Ly = CH, X o)

~
1

U, L, with U, = (X, Xy,0, L, = <H’X¢m>

P,=U, Ly with Uy, = (X, Xy, Xy 0, Loy = H.

Since 10 = a, is in [I, N 115 then L, < L(I1,) N L(II;), which maps
naturally onto A,(q) X C,_,(g) or A(q) X D,_,(q). From our discussion
in the proof of Proposition 2, we see that the right factor acts trivially on
V,, while the left factor generates the natural 2-space stabilized by L(71,)
N L(I1,) (see Proposition 3). This 2-space is spanned by V, and V, .,
and these are fixed by U,. Geometrically we see that all L, conjugates of
V, are incident to the vertices in A corresponding to P(I1,) and P(I1,).

We can then conjugate by a suitable element of W, which transposes a,
and e, + e, to obtain analogous conclusions for U, and L,. That is, L,
stabilizes the 2-space generated by V), and V.

Finally, P,, fixes I,. The resulting configuration corresponds to the
presheaf of the adjoint module of A,(gq). By [SV], H, of this module is
actually isomorphic to the adjoint module. It is generated by the three
pairs of opposite root 1-spaces along with two additional 1-spaces selected
from L(V;)and L(V;), thus establishing the lemma. [

The above lemma gives us a way to determine the homological dimen-
sion of each L(V, ). Although there are g + 1 1-spaces in each L(V), the
relations reduce the dimension.

CoroLLarY 1. For each a € ®g, L(V,) is 3-dimensional.

Proof. We can embed L(V,) in a rank-2 system L, 4(V,) by selecting a
short root B with (a,8) = +1. By Lemma 5, L, 4(V) is isomorphic to
the 8-dimensional adjoint of A,(q). In the representation of the adjoint
module by 3 X 3 traceless matrices, L(V,) corresponds to 2 X 2 traceless
matrices. In this context it is clear that (V) is 3-dimensional. |

CororLLary 2. If (a,B) € & x & with {a,B) =0 and when G =
C(q), (a, B) is not conjugate to (A, + a,) (see Lemma 4), then

(i) (e, B) is an A, X A, root system
(i) L, ,V,) = L(V,) (and is therefore 3-dimensional by Corollary 1).
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Proof. Again using Lemmas 2 and 3, we may assume that @ = A and
B=+tay(n>3), B=a (G=DJg) or B=a,(G=CLg) In every
case A + B is not a root and therefore @(a, B) is an 4, X A, root system.
Furthermore, X, and X_, commute with X; and X_, and thus [L,, L,]
= 1. In all these cases, B € ®(I1,) and therefore L; < L(I1,), which fixes
V, by Proposition 2, part (i). L, fixes any L, conjugate of V), since
(L, Lgl =1 Thus L, 4(V}) = L(V}), and the corollary follows. ||

Proof of Lemma 1. We have accounted for every possible (a, B) € @,
x @. Every generating space in a neighboring L{A') is contained in a
rank-2 structure of the form LHVB(VQ), which in turn is generated by
1-spaces from L(A). This is sufficient to prove Lemma 1. ||

Final Arguments on dim(V)

With Lemma 1 proven we have ¥ C L(A). Since L(V,) is 3-dimensional
by Corollary 1, the dim(L(A)) <3 - 1|d| = 6('2’) We can improve on
this by noting, for example, that Lemma 5 shows that L(V,), L(V, ), and
L(V, _,) generate an 8-dimensional subspace, since only V', , are needed
from L_(AVA).

Let A=V, :y€e®dLA)\ + N} U{L(V):y € d(A) N II}). Us-
ing the data from the discussion in Section 1 on the Weight Theory of V,
we can show that A4 has the desired dimension. In particular, dim( A4)

< (22”) for G = D (q), since there are n simple roots in the D, -system

and 4('2’) —2n roots in @\ £ I, and 4('2') —2n+3n= 4('27) tn
= (22”) Since there are one fewer short simple roots in the C,-system,

then dim( A4) < (22”) — 1 for G = D,{(q). As these are the dimensions of

Vy, and V., respectively, we need only show:
LemMA 6. L(A) C A.

Proof. We must show that L(V)) C A for every y € d. We proceed
by induction on the height of y, ht(y) = L,|a,| for y = La;q; (a, € I1). If
ht(y) = 1 then y € +1I and L(V,) C 4 by definition. If ht(y) > I it can
be checked that y = & + B with @ € @, B € @ and ht(a), ht(B) < ht(y).
Then ®(«a, B) is a non-degenerate rank-2 root system of type A, or (B},
with fundamental roots a and B, and highroot y. As L C L, 4, L(V)) C
L, V) =L, zV).

If B is short then by Lemma 5, L, 4 V,) is generated by V', , L(V,),
and L(V,). Since V', are in A by definition, and L(V,) and L(}},) are in
A by induction, then L(V)) C L 4(V)) C A.
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Similarly if g8 is long, by Lemma 4, L, (V) isﬂgenerated by V., and
LV, and L(V) C L, 4(V)CA. Thus L(A)cA4. |

In each case we have now established

dim(V) = dim(L( A)) < dim( A) < dim(V')

and the theorem is proven.
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