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Abstract

Laboratory core flooding experiments coupled with CT scanning has been shown to be very useful for examining CO2-brine 
displacement processes [1]. These experiments can be used to measure core average properties such as absolute and relative 
permeability, and also to examine sub core-scale saturation and porosity distributions. By examining the sub core scale fluid 
distributions during the displacement process, it is possible to study the displacement efficiency of CO2-brine drainage processes, 
residual trapping and fluid saturation at the millimeter to sub-millimeter scale. One potentially useful tool for studying CO2-brine 
systems is using numerical simulation to replicate and study these core flooding systems. This could be used to study the interactions 
and relative impact of different parameters such as capillary pressure, relative permeability and heterogeneity on brine displacement 
by CO2 under various flow conditions.

One challenge to successfully conducting such numerical experiments has been accurate representation of the permeability 
distribution inside the core at the millimeter and sub-millimeter scale. Other simulation parameters can all be measured using 
laboratory experiments, but permeability must be derived from other properties at the core and sub core-scale. Previous work has 
shown that predicting sub core-scale permeability distributions based on porosity does not result in accurate representation of  
permeability at such a small scale [1]. To improve these predictions, a new method based on capillary pressure and was developed 
and used to accurately predict sub core-scale permeability distributions [1] in a relatively homogeneous Berea sandstone.

The work presented in this paper uses the same method to calculate permeability in  a strongly heterogeneous sandstone core from 
the Otway Basin Pilot Project in Australia. Simulations show that the results are consistent with previous results in the homogeneous 
cores, with statistically significant capability to predict sub core-scale CO2 distributions in the core. Due to the extreme heterogeneity 
of the core used in this study, the average match is not as good as for a relatively homogeneous rock core, however, a visual
comparison shows that the results are still very good, and that the new method used to calculate permeability may still be valid even 
in the presence of strong heterogeneity.
© 2010 Elsevier Ltd. All rights reserved
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1. Introduction

Laboratory core flooding experiments provide important absolute and relative permeability information about 
subsurface rock formations from recovered cores [2]. These measurements are routine in the oil and gas industry, and 
when combined with a CT scanning device, can be used to make sub core-scale measurements of rock porosity and 
fl uid saturation [3].  I f rock properties were accurately represented at the sub core-scale, it would be possible to 
numerically simulate the core flood under different flow and thermophysical conditions to study the resulting changes 
in fluid distributions, and saturation values. This ability would be very useful for many reasons, particularly because 
these experiments are very challenging and time consuming to conduct, and because many simulations can be 
conducted simultaneously.
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Until recently, such attempts at numerically simulating these experiments were primarily limited to matching core 
average properties such as average saturation and pressure drop across the core, or looking at purely qualitative qualities 
of the core flood. A recent method developed by Krause et al. [1] allows researchers to extend this to making 
quantitative predictions of fluid distributions at the sub core-scale by taking advantage of fluid saturation measurements 
from the experiment, to predict permeability, which cannot be measured at the sub core-scale. Results in Krause et al. 
[1] show that this method works to accurately predict the fluid saturation in the rock core at the sub core-scale for a 
relatively homogeneous Berea sandstone core, and this current work demonstrates the methods accuracy for certain 
heterogeneous cores.

In this work, a steady-state core fl ooding experiment using CO2 and brine is conducted to measure relative 
permeability and to obtain a high resolution dataset for studying the factors controlling the CO2 saturation distribution.  
The heterogeneous sandstone core used in this study comes from the Waare C formation at the Otway Basin Pilot 
Project in Australia, and was specifically selected because of its high degree of heterogeneity. The experimental core 
fl ooding system uses a series of pressure transducers and a CT scanner to calculate the core average permeability and 
relative permeability, the CT scanner is used to measure sub core-scale porosity and CO2 saturation distributions within 
the rock core [4] during the experiment.

Using these experimental data, numerical simulations are conducted by creating a discretized grid of the core and 
assigning porosity values from measurements made using the CT scanner. Permeability of each el ement in the grid is 
then calculated using the methods provided in Krause et al. [1], briefly described in this paper. Simulations of the core 
fl ood experiment are conducted at the same conditions as the experiment. The CO2 saturation distribution determined 
by each simulation is then compared to the experimentally measured distribution to determine how well the simulations 
predict the measured saturation.

2. Experimental and Simulation Procedure

Experimental Apparatus and Procedure
The core fl ooding experimental apparatus and procedure is described in detail in Perrin and Benson [4]. The 

experiment is conducted at reservoir pressure of 12.41 MPa and a temperature of 63 ˚C, at which CO2 is a supercritical 
fl uid. The core is very heterogeneous, and is 8.33 cm long and 5.08 cm in diameter. The experiment includes a set of 
high precision pressure transducers to measure the pressure drop across the core, and uses a CT scanner to measure sub 
core-scale porosity and saturation distributions during the experiment.  The experiment uses constant injection rate of 
2.44 ml/min and a constant outlet pressure boundary condition of 12.41 MPa. Relative permeability is measured using a 
single core steady state method as described in Perrin and Benson [4].

Porosity and saturation are indirectly measured by taking a series of four CT scans of the core at the desired 
resolution. The first image is the dry core, the second image is the CO2 saturated core at the experimental pressure and 
temperature, the third is the brine saturated core, all taken before the experiment begins and in the given order. Lastly, 
images of the core are obtained during the core flooding experiment after steady state has been reached, which is 
defined as the time when saturation and pressure drop across the core have stabilized. The porosity and saturation in 
each grid element of the core image can then be calculated using methods presented in Akin and Kovscek [2]. The 
measured porosity and CO2 saturation at 100 percent fractional flow of CO2 in the core are shown below in Figure 1 and 
Figure 2 respectively, the figure data has been upscaled by volume averaging from the original CT grid size of 0.254 
mm x 0.254 mm x 1 mm to the simulation grid size of 1.52 mm x 1.52 mm x 2 mm.

Figure 1.  Measured core porosity (grid element si ze is 1.52 mm x 1.52 mm x 2 mm)
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Figure 2.  Measured core CO2 saturation at 100 percent fractional flow of CO2

Simulation Procedure
To conduct the simulations, the compositional integral fi nite-difference simulator TOUGH2-MP with the ECO2N 

module is used [5], [6], [7]. TOUGH2-MP solves a discretized form of the mass and energy balance equations for non-
isothermal compressible multiphase flow. ECO2N incorporates an accurate equation of state for supercritical CO2 and 
NaCl brine. The simulations are parallelized on 16 processors using domain decomposition to reduce run time, 
simulations are fully implicit, and are conducted using the same thermophysical conditions as the experiment. The core 
grid shown below in Figure 3 has 712 cells in each slice with a total of 41 slices, which includes one additional inlet and 
one additional outlet slice to create the boundary conditions. The inlet slice is designed to simulate the constant fl ux 
injection used in the experiment, and each cell has the same generation (injection) rate, such that the sum equals 2.44
ml/min. The permeability of the inlet slice is adjusted to mimic the role of the diffuser plate in the experiment by setting 
the vertical and horizontal directions to a very large value (6,300 md). This approach has been shown to best simulate
the core inlet conditions in the experiment. The outlet slice cells have infinite volume and the capillary pressure gradient 
between the last slice in the core and the outlet is set equal to zero, which has been shown to most reliably simulate the 
constant pressure outlet condition from the experiment. Initially, the core is filled with CO2 saturated brine.

Figure 3.  Simulation grid (grid element size is 1.52 mm x 1.52 mm x 2 mm)

A summary of the thermophysical conditions in the experiment and simulation, as well as core and gridding 
information, is shown below in Table 1. The simulations are conducted until steady state is achieved by injecting CO2
until the pressure drop across the core and the core average saturation stabilized, injecting a total fluid volume of 14
pore volumes in each simulation. The injected CO2 is saturated with brine to prevent dry-out, as in the experiment.

Table 1. Summary of simulation and injection conditions

Simulation 
Conditions Thermophysical Data Injection Conditions Simulation Grid Data

T (˚C) 63 Dissolved CO2
init

(mass fraction) 0.04106 qCO2-Gas (kg/s) 1.743E- 05 Simulation Cells 27768

P (MPa) 12.41 ρCO2 (kg/m3) 429.90 qCO2-Aq (kg/s) 0.00E+00 Cell Length (mm) 2

xNaCl (ppm) 6500 ρH2O (kg/m3) 986.95 qH2O-Gas (kg/s) 1.106E- 07 Cell Width (mm) 1.52

φave 0.180 σCO2-Brine (N/m) 0.0285 qH2O-Aq (kg/s) 0.00E+00 Longitudinal 
Upscaling 2:1

kave (md) 62.3 Injection Rate 
(ml/min) 2.44 qNaCl (kg/s) 0.00E+00 In-Slice Upscaling 6:1

Core Average Absolute Permeability and Relative Permeability
Core average permeability and relative permeability are calculated in the experiment using Darcy’s law. Absolute 

permeability (k) is calculated by injecting only brine, setting the flow rate (q) and measuring the core dimensions (area 
(A), length (L)) and pressure drop (ΔP) and using the correlation of Philips et al. [8] to calculate brine viscosity (μ). 

Inject
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Using this method, a core average absolute permeability of 62.3 md is calculated. Once absolute permeability is 
determined, relative permeability can be determined by injecting increasingfractional flows ofCO2 and brine, and using 
Darcy's law for multiphase flow, shown in Eq. 1, solve for kr,i once pressure has stabilized at each fractional flow. The 
drainage relative permeability data is shown in Error! Reference source not found., along with curve fits used to 
calculate relative permeability in the simulator.Saturation along the x axis is normalized to residual wetting phase 
saturation, assumed to be 0.20.

Figure 4.  Relative Permeability Data (dots) and Curve Fit Used in Simulations (lines)
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Capillary pressure is measured using mercury intrusion up to 228 MPa with a Micromeritics Autopore IV 9500 

mercury porosimeter on small coresamples cut from an adjacent core from which the experimental core was cut. This 
data was then converted to a capillary pressure curve for the brine-CO2 system using Eq. 2, where σ is the interfacial 
tension and θ is the contact angle between the two phases. Interfacial tension was assumed to be 485 dynes/cm for Hg-
Air and 28.5 dynes/cm for CO2-brine [9] and contact angle was assumed to be 130̊ for Hg-Air and 180˚ for CO2-brine.
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Capillary pressure is calculated from a curve fit. Additionally, the Leverett J-Function is used to scale the measured 
capillary pressure data to the porosity and permeability of each grid element, given by Eq. 3 [10], [11].
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J(Sw) is the J-Function and is simply a dimensionless function of normalized wetting phase saturation used to fit to a 
single measured capillary pressure curve from a sample of known porosity and permeability. The J-Function typically 
has several fitting parameters which are determined empirically to give the best curve fit to the experimental data. The 
J-Function used in this study was developed by Silin et al. [12] and is shown in Eq. 4.
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A, B, λ1 and λ2 are empirical fitting parameters and S* is the wetting phase saturation normalized to residual liquid 
saturation. Eqs. 3 and 4 are then used to determine the fitting parameters to match the measured data using the 
experimentally measured porosity of the core of 0.180, and permeability of 62.3 md. The fit to the measured data is 
shown in Figure 5 using the curve fitting parameters of 0.01 for A, 0.04 for B, 2.0 for λ1 and 1.9 for λ2. Due to the 
unique shape of the capillary pressure curve, an exact fit to the data using an equation is not possible. 

Once the fitting parameters are determined, they are assumed not to change because it has been shown that J(Sw) is 
the same function for rocks of similar origin, but different permeability and porosity [10], [11]. For cores with variable 
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rock types, this assumption may not be accurate, but different fitting parameters could be easily incorporated if capillary 
pressure data on the different rock types were available. Therefore, once porosity has been measured and permeability 
calculated for each unique grid element, a unique capillary pressure curve can be created for each grid element in the 
simulation using Eq. 3.  This is done automatically in the simulator.

Figure 5. Sample 1 measured capillary pressure data and curve fit J-Fit 1

Sub Core-Scale Permeability
With these assumptions, the only independent parameter required to conduct the simulations is the sub core-scale 

permeability, all other input has been measured experimentally. The method is relatively complex, and the reader is 
referred to Krause et al. [1] for further reference, but a summary of the method is givenhere. The method begins by first 
assuming that at steady state, for viscous dominated flow systems, capillary equilibrium exists within the core, once this 
assumption is made, it must be true that Pc,i in Eq. 3 is equal for every grid block in the core. (Note: that we relax this 
assumption in one of the simulations provided below.) We can see now in Eq. 3, that the only unknown is k, because 
J(Sw) has the same fitting parameters for every grid block, and every grid block has a measured saturation value from 
the experiment, which can be input into Eq. 4 to calculate a value for J(Sw) at steady state, this is a fundamental property 
of Leverett scaling, as shown by Leverett [10], [11]. Since porosity is also measured and the interfacial tension is 
known from Chalbaud et al. [9], we can now rearrange Eq. 3 into Eq. 5 and solve for permeability, where is the 
capillary pressure as determined from Figure 5 for the core average saturation.
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3. Simulations

A total of three simulations are conducted using Eq. 5 to calculate permeability. In simulation 1, the curve fitting 
parameters fromFigure 5 are used to calculate the values of J(Sw,i) in Eq. 5. Simulation 2 uses the discretely measured 
capillary pressure data to calculate permeability, rather than a curve fit. This is possible because the curve fit is only 
required for the simulation, and a spline fit to the actual data can easily be used to calculate permeability directly by 
using Eq. 3 to solve for a discrete set of points for J(Sw) using the measured data and core average permeability and 
porosity. Simulation 3 also uses the discretely measured Pc curve to calculate permeability, but instead of using one 
value for the average capillary pressure, , it is assumed that there is a capillary pressure gradient across the core, as 
some researchers have shown to be possible [1], [13], therefore, is calculated for each slice in the coreusing the slice 
average saturations, and applied to the corresponding grid elements in eachslice.  The core in this simulation has 39 
unique values for .

It is also important to point outthat since the measured sub core-scale CO2 saturation ranges from zero to one, a 
residual liquid saturation of zero must always be used when calculating the J-Function values used in Eq. 5 to calculate 
permeability in each grid element, not doing so would result in nonphysical permeability values. Changing the residual 
liquid saturation does not change the accuracy of the J-Function fit however, because it is a dimensionless function of 
normalized saturation. It is also evident from the curve fit in Figure 5 that at very low wetting phase saturations, the 
calculated permeability will be very large; therefore the maximum permeability is arbitrarily limited to 2,000 md.

Simulations Results
The results for these simulations are shown in Table 2, which shows only one slice for visual comparison.Slice 12 

was selected because its properties are similar to the core average, and because it has strong heterogeneity which 
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enhances the spatial variations in CO2 saturation, however, results are consistent across all slices. The permeability 
distribution in the slice isprimarily dominated by regions of high and low permeability. The permeability distributions 
for each simulation are similar, although there is some difference between simulation 1 which uses the curve fit to 
calculate permeability, and the other simulations, which use discrete data.

Comparing the saturation to the permeability, it is obvious that saturation correlates well withpermeability, which is 
a result of using this method to calculate permeability, since saturation is an input. Comparing the visual match between 
the simulations and the experiment, the correlation is clear for all of the simulations. Looking at the histograms 
however, it is apparent that the match is not exact. This is largely due to a numerical artefact, whereby a residual liquid 
saturation of 0.2 was imposed in the simulations, whereas CO2 saturations greater than 80 percent were measured in the 
core at the sub core-scale. Work is ongoing to address this discrepancy. Absent that artefact however, the histogram for 
simulation 1 appears to match the experiment very well, with the others having a somewhat different characteristics, 
which is primarily due to using discrete capillary pressure data to calculate permeability, and a capillary pressure curve 
fit in the simulations. If a better curve fit were possible, or tabular data could be used for capillary pressure in the 
simulation, the match would improve. In terms of the range of values predicted by the simulation, simulations 2 and 3, 
which use discrete data to calculate permeability, have a standard deviation about the mean saturation which is closest 
to the experimental value.

Spatial Correlation
The table shows the qualitative match between the simulations and experiment, however, to quantitatively show the 

quality of the match, a plot of the predicted CO2 saturation from the simulations vs. the experimental measurement is 
shown in Figure 6. The figure shows a clear spatial correlation between the experimentally measured saturation and the 
numerical prediction, although the correlation does not exactly follow the perfect correlation line in dark blue, the 
match is still clear. The figure also shows distinctly different characteristics for simulation 1, using a curve fit to 
calculate permeability, and the other simulations, which usediscrete data. This is due in part to using discrete data to 
calculate permeability using Eq. 5, and a curve fit for capillary pressure in the simulations for simulations 2 and 3,  
whereas simulation 1 uses the same curve fit for calculating permeability and in the simulations.

Table 2.  Simulation results for Slice 12 of the Heterogeneous Waare C Core

Description Slice Permeability Slice CO2 Saturation Core Saturation Histogram
Experimentally 

Measured Saturation
Grid Element Dim.
(2x1.52x1.52 mm)

CO2 Saturation Std. Dev.
0.343

Simulation 1

Eq. 5 J(Sw) – Curve Fit
- Single Core Average

CO2 Saturation Std. Dev. 
0.173

Simulation 2

Eq. 5 J(Sw) – Discrete
- Single Core Average

CO2 Saturation Std. Dev.
0.218

Simulation 3

Eq. 5 J(Sw) – Discrete
- Unique for each Slice

CO2 Saturation Std. Dev.  
0.217
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Figure 6. Plot showing simulation CO2 saturation by grid element  vs. corresponding experimental measurement inslice 12

4. Statistical Comparison

To make a quantitative comparison between the different simulations, the coefficient of determination, or R2, of the 
sub core-scale saturation prediction can be compared for each simulation. This is calculated for slice 12, shown in Table 
2, and also for the entire core for each simulation; the values are shown in Table 3. The R2 values in the table are all 
significant for the selected slice, however the core average is lower, but still positive. The average is lower because 
slices with a great deal of heterogeneity, especially farther from the inlet, have a lower average R2, this is especially true 
in simulation 2, where a capillary pressure gradient is assumed to be true when calculating permeability. Despite the 
lower statistical match in simulations 2 and 3, the qualitative visual match to remains quite good for most slices.

The table shows that the core average saturation error is relatively large, but this is primarily due to imposing a 
residual liquid saturation of 0.20 in the simulations, which was derived from a relative permeability history match to the 
measured data. Similar results were obtained for a homogeneous core in [1], and is still a large improvement over 
simpler methods used to calculate permeability. Allowing a lower value for the residual liquid saturation would increase 
the core average saturation and the standard deviation. Research is ongoing to reconcile the relative permeability data 
with the lower residual saturation needed to obtain a better match to the sub core-scale saturation distribution.

Table 3.  Statistical comparison of simulation results

Simulation Slice 12
Saturation R2

Core 
Saturation R2

Average CO2
Saturation

Saturation 
Error (%)

CO2 Saturation 
Std. Dev.

Std. Dev. 
Error (%)

1 0.815 0.539 0.449 -20.1 0.173 -49.6
2 0.741 0.152 0.395 -42.4 0.218 -36.5
3 0.715 0.253 0.406 -27.8 0.217 -36.7

5. Discussion of Results

The results from these simulations show that a good qualitative match to experimentally measured sub core-scale 
saturation distributions is possible using the method in Krause et al. [1] to calculate permeability. The results in this 
study are consistent with results on homogeneous cores in theprevious studyin Krause et al. [1]. Despite advances over 
previous methods used to calculate permeability, using this method does not result in a perfect correlation to the 
experimental results. There are several factors which contribute to this.

In the experiment, saturation values range from zero to one at the grid element scale, however, a residual liquid 
saturation of 0.20 was specified for these simulations, lowering the residual liquid saturation to zero will remove the 
artificial ceiling this places on the maximum CO2 saturation, but may also results in higher error in the relative 
permeability history match. A second factor which will affect the saturation distributions is the capillary pressure fit 
used in the simulations, since the fit in Figure 5 is not exact, the capillary pressure will not be accurate at some 
saturations; a better fit would be desired, but is difficult to achieve because of the shape of the measured data curve.

Another factor which will have a strong effect on the maximum CO2 saturation is relative permeability. Based on the 
input data, residual liquid phase saturation and relative permeability are the only whole core rock properties used in 
these simulations; porosity, permeability and capillary pressure are all unique to individualgrid elements. In strongly 
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heterogeneous rocks, it may be more accurate to assign one observed rock type one relative permeability correlation, 
and another rock type a different correlation. Since relative permeability is measured for the whole core, this would be 
difficult however, without curves measured on samples of each pure rock type present in the heterogeneous core.  This
also extends to capillary pressure curve fitting parameters, where more than one set of parameters may be required.

6. Conclusions

This work has shown that in order to use sub core-scale experiments and simulations to study multiphase fl ow 
behaviour, accurate representation of geological properties is paramount for making quantitative conclusions about the 
processes controlling sub-core scale saturation distributions. Since these systems can be studied in such detail, they are 
very useful for understanding how fluid properties and geological parameters govern multiphase flow and influence the 
behaviour and distribution of CO2 under different conditions and flow regimes. Therefore, in order to maximize the 
usefulness of these experiments and the previously developed method used to calculate permeability [1], the objective 
of this work was to validate the method on highly heterogeneous cores typical of reservoir rocks.

Simulations in this work have shown that the method gives results for heterogeneous cores which are consistent with 
results in previous work [1] for relatively homogeneous cores, although with some reduction in accuracy. The whole 
core saturation distribution match as given by the R2 value is not as good as for homogeneous cores in previous work, 
but it is still a statistically significant improvement over simple porosity based methods previously used to calculate sub 
core-scale permeability. This is to be expected, as highly heterogeneous systems pose a significantly greater challenge 
to match to a high degree of accuracy as compared to relatively homogeneous systems. The simulations in Table 2 show 
that a qualitative visual match to the experiment is achieved, and Figure 6 shows that a definite correlation exists 
between the simulation CO2 saturation results, and the experimental measurements.

Although the method gives accurate results, there are some limitations which future work will address. The effect of 
avoiding the imposition of a residual liquid saturation in the simulations is ongoing. In addition, we hope that future 
modification of the simulation code is possible to allow a more accurate representation of measured capillary pressure 
curves.  Finally, future work will also test the uniqueness of the calculated permeability distribution.
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