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Evoked responses in functional magnetic resonance imaging (fMRI) are affected by the presence of acoustic
scanner noise (ASN). Particularly, stimulus-related activation of the auditory system and deactivation of the
default mode network have repeatedly been shown to diminish. In contrast, little is known about the
influence of ASN on the spontaneous fluctuations in brain activity that are crucial for network-related
neuroimaging methods like independent component analysis (ICA) or functional and effective connectivity
analysis (ECA). The present study assessed the robustness of intrinsic connectivity networks in the human
brain to the presence of ASN by comparing ‘silent’ (sparse) and ‘noisy’ (continuous) acquisition schemes, both
during task performance and during rest. In agreement with existing literature, ASN strongly diminished
conventional evoked response levels. In contrast, ICA and ECA robustly identified similar functional networks
regardless of the scanning method. ASN affected the strength of only few independent components, and
effective connectivity was hardly sensitive to ASN overall. However, unexpectedly, ICA revealed notable
differences in the underlying neurodynamics. In particular, low-frequency network oscillations dominated in
the commonly used continuous scanning environment, but signal spectra were significantly flatter during the
less noisy sparse scanning runs. We tentatively attribute these differences to the ubiquitous influence of ASN
on alertness and arousal.
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Introduction

Many studies have characterized the influence of the acoustic
environment on various types of processing in the human brain. In the
context of neuroimaging research, the confounding effect of the loud
acoustic scanner noise (ASN) that occurs during gradient switching in
functional magnetic resonance imaging (fMRI) has received particular
attention (Bandettini et al., 1998; Talavage et al., 1999; Amaro et al.,
2002; Moelker and Pattynama, 2003). It has repeatedly been shown
that blood oxygenation level dependent (BOLD) activation contrasts
in response to sound stimuli typically decrease throughout the
auditory system, due to a combination of elevated baseline activity
and saturated hemodynamic responses (Scarff et al., 2004; Langers et
al., 2005b; Gaab et al., 2007). Furthermore, other brain systems that
are not nominally involved in sound processing can be affected by
ASN, including those related to vision (Zhang et al., 2005), motion
(Cho et al., 1998; Fuchino et al., 2006), nociception (Boyle et al., 2006),
working memory (Tomasi et al., 2005), or the default mode network
(Gaab et al., 2008).
So far, the effects of ASN were studied exclusively in the context of
task-related responses. In recent years, novel experimental designs
have been developed for fMRI that do not rely on controlled task
performance, enabling measurement during diverse paradigms,
naturalistic behavior, or rest. This development has been made
possible by the emergence of multivariate analysis techniques that do
not require priormodels of stimulus-evoked brain activity. As a case in
point, one may consider the numerous measures related to functional
and effective brain connectivity (Friston, 1994; Horwitz et al., 2005;
Rogers et al., 2007; Cole et al., 2010). These methods typically operate
by identifying similarities in the functional dynamics of large sets of
voxels or multiple regions of interest (ROIs). Observed covariations
can arise as a result of joint responses to imposed stimuli or tasks, but
may likewise emerge when interacting brain regions react to each
other's spontaneous activity.

Functional and effective connectivity methods have consistently
revealed networks in the human brain that show coherent patterns of
activity. Similar intrinsic connectivity networks have been found in a
variety of tasks, and various networks persist even during rest
(Damoiseaux et al., 2006; Fox and Raichle, 2007; Smith et al., 2009).
Such resting state networks are thought to arise due to the presence of
predominantly low-frequency spontaneous variations in brain activity
(Cordes et al., 2001; Fransson, 2005; Auer, 2008). The origin of these
slow but coherent neural fluctuations is not well understood. Some
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Fig. 1. Experimental design. Four different types of functional runs were acquired. Each
2-s EPI acquisition is illustrated in the form of a vertical open bar; each 8-s sound
stimulus is represented as a shaded hexagon. Two acquisitionmethods (continuous and
sparse) were combined with two task paradigms (rest and task). During continuous
scanning, 200 image volumes were acquired without interruption. In contrast, the 40
sparse acquisitions were separated by periods of scanner inactivity. Additional
preparation scans (labeled ‘0’ in the figure) were executed but were not analyzed.
The rest runs did not include any task performance or stimulus presentation. The task
runs included the presentation of a series of diverse sound fragments, including one
silent interval among every five consecutive fragments. Subjects were instructed to
memorize the fragments, and their recollection was tested after the fMRI session. The
sound stimuli were presented during the periods of scanner inactivity for the sparse
runs, and at corresponding moments (while the scanner was active) for the continuous
runs. Each type of run was repeated twice per subject, and corresponding runs were
pair-wise concatenated for further analysis.
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networks are thought to be driven by internal mental processing, like
the default mode network (Raichle and Snyder, 2007). Still, it seems
reasonable to assume that sensory information contributes todrive such
networks or to modulate their ongoing activity (Grossberg, 1999;
Friston, 2009). With that in mind, intrusive ASNmay well influence the
activity of intrinsic brain networks during rest, even if these are not
nominally associated with sound processing. Yet, despite its potentially
widespread influence on spontaneous brain activity in fMRI, the
presence of ASN has so far largely been neglected in the context of
functional connectivity analyses.

At first glance, the same issues that play a role in conventional
behavioral paradigms may also occur in resting state studies.
Connectivity measures quantify the presence of coherent fluctuations
in brain activity, whether evoked or spontaneous. If brain systems are
driven into a state of constant activity by the presence of ongoing ASN,
the acquired BOLD fMRI signals may conceivably saturate near a fixed
ceiling (Langers et al., 2005b). This might result in less signal
variation, rendering relationships regarding functional behavior
more difficult to detect. However, contrariwise, ASN might also
augment the magnitude of neural fluctuations when taking modula-
tory interactions into consideration. For instance, whereas the
auditory cortex might show little activity in the absence of any
acoustic stimulation, in the presence of ASN its activity could be high
when the subject is attending to the acoustic environment but lower
when the subject is focusing on other input (Woods et al., 2009). Thus,
ASNmight enlarge the range of occurring signal variations by acting as
a source of stimulation that may subsequently be subjected to sensory
gating (Campbell et al., 2007; Mayer et al., 2009). In conventional
approaches that model stimulus-evoked activity only, these modula-
tions would not be registered unless they correlate with the
experimental protocol. However, connectivity measures are sensitive
to all sources of coherent signal variations, and may benefit from their
presence.

In contrast with the prevailing notion that ASN primarily reduces
sound-related responses in auditory processing centers alone, we
entertain the option that ASN alters both spontaneous and evoked
fluctuations in activity in muchmorewidespread brain networks than
previously thought. Our working hypothesis is that ASN broadly
influences the observable functional relationships between brain
regions, and that functional connectivity levels may be either
increased or decreased in the presence of ASN compared to those in
a more silent environment.

So far, intrinsic connectivity networks in fMRI have almost
exclusively been studied with noisy scanning methods. The current
study was set up to investigate the effects of the accompanying ASN
on the outcomes of various functional and effective connectivity
measures in healthy subjects. In addition to conventional noisy
acquisition schemes, sparse scanning methods were employed that
are commonly used to mitigate the effects of ASN in dedicated study
designs (Hall et al., 1999). We considered not only the central
auditory system but also other intrinsic brain networks, both in task-
related and resting state designs.

Materials and methods

Subjects

Twelve healthy subjects (7 M, 5 F; mean 25 y, range 21–35 y) were
invited to participate in this fMRI study on the basis of written
informed consent, in approved accordance with the requirements of
the institution's medical ethical committee. All subjects were right
handed (Oldfield, 1971). They reported no history of auditory,
neurological, or psychiatric disorders. Standard clinical audiometry
was performed to confirm that all subjects had normal hearing.
Hearing thresholds amounted to 11±6 dB HL (mean±SD; averaged
over all subjects, both ears, and frequencies of 250–8000 kHz). One
subject was excluded after data preprocessing because of excessive
head motion due to urinary urges during the imaging session.
Data acquisition

Subjects were placed supinely in the bore of a 3.0-T MR system
(Philips Intera, Best, the Netherlands), which was equipped with a
standard 8-channel phased-array (SENSE) transmit/receive head coil.
The functional imaging session consisted of eight runs of almost 7 min
duration, each consisting of a dynamic series of identical T2*-sensitive
whole-brain multislice gradient/field-echo echo-planar imaging (EPI)
volume acquisitions (TE 23 ms; TA 2.0 s; FA 90°; matrix 64×64×48;
resolution 3.0×3.0×3.0 mm3; EPI factor 25; interleaved slice order,
no slice gap). Initial preparation scans were used to achieve stable
image contrast and to trigger the start of stimulus delivery, but these
were not included in the analysis. Subjects wore ear plugs and a
headset to dampen the ASN to approximately 70 dB SPL. The scanner
coolant pump and fan were turned off during imaging to further
diminish ambient noise levels.

The runs differed from each other with respect to the acquisition
method, labeled continuous or sparse, and the behavioral paradigm,
labeled rest or task. Together, this gave 4 possible combinations, for
each of which two runs were performed (see Fig. 1). In the continuous
runs, images were acquired without interruption (200 volumes; TR
2.0 s); in the sparse runs (Hall et al., 1999), functional acquisitions
were alternated with 8.0-s periods of scanner inactivity (40 volumes;
TR 10.0 s). In the rest runs, subjects were instructed to remain awake
and lie still with their eyes open, but no task was imposed and no
stimuli were delivered; in the task runs, subjects performed an
auditory memory task that involved the presentation of sound stimuli
through MR-compatible electrodynamic headphones (MR Confon
GmbH, Magdeburg, Germany) (Baumgart et al., 1998).
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The memory task comprised a diverse series of 64 different 8.0-s
sound fragments thatwere presented at intensity levels of approximately
either 40 or 70 dB SPL. Stimuli included artificial waveforms and
environmental noises of divergent spectrotemporal complexity, animal
sounds,music, and vocalizations (http://audio-fmri.langers.nl/soundfiles.
html). The sound fragmentswere timed such that they coincidedwith the
silent intervals between consecutive scans in the sparse runs. The timing
of the continuous runs was chosen in such a way that every fifth scan
corresponded exactly with one of the sparse scans (i.e., continuous scans
#5,10,15,…,200 corresponded with sparse scans #1,2,3,…,40). In other
words, the periods during which sound fragments were presented were
precisely filled with four acquisitions in the continuous runs. To limit the
difficulty of the task, each fragment was presented twice: once during a
continuous run, with interfering ASN, and once during a sparse run, on a
silent background. In themiddle of every block offive consecutive stimuli
(i.e., directly preceding the sparse scans numbered #3,8,13,…,38), a
fragment was inserted that contained silence only.

Prior to the fMRI session, the subjects were informed that their
recollection of the sound stimuli would be tested afterwards. This test
took place outside of the scanner environment, immediately after the
fMRI session. All 64 familiar sound fragments were mixed with 64
novel sound fragments and presented in random order. For each
subject, a different subset of 64 stimuli out of the complete set of 128
sound fragments was used in the fMRI session. Subjects reported
whether they recognized the fragments from the fMRI session by
means of a two-alternative forced choice questionnaire (i.e., by
answering either ‘yes’ or ‘no’). The main purpose of the behavioral
task was to promote and monitor alertness of the subject during the
MRI session.
Preprocessing and linear regression

During data processing, we used MatLab (The MathWorks Inc.),
supplemented with a subset of processing routines from the SPM5
software package (Wellcome Department of Imaging Neuroscience,
http://www.fil.ion.ucl.ac.uk/spm/) and the Group ICA of fMRI Toolbox
v.1.3e (GIFT, http://icatb.sourceforge.net/groupica.htm).

Contrast differences between odd and even slices due to the
interleaved slice order were eliminated by interpolating between
pairs of adjacent slices, shifting the imaging grid over half the slice
thickness. Next, the functional imaging volumes were corrected for
motion effects using 3-D rigid body transformations. The anatomical
images were coregistered to the functional volumes, and all images
were normalized into MNI stereotaxic space using affine transforma-
tions. To improve signal-to-noise characteristics and to equalize the
effective resolutionwithin and across slices, but still retain sensitivity to
activation in small sub-cortical processing nuclei (like the inferior
colliculi), all images were moderately smoothed using an isotropic 5-
mm full width at half maximum (FWHM) Gaussian kernel. A
logarithmic transformationwas carried out in order to naturally express
all derived voxel signal measures in units of percentage signal change
(given the small relative magnitude of the BOLD effect, a truncated
Taylor series expansion of the transformed signal Ŝ(t)=100·ln(S(t))
gives rise to ΔŜ(t)=100·ΔS(t)/S0, indicating that the absolute signal
change inΔŜ(t) equals the relative signal change inΔS(t) expressed as a
percentage relative to its baseline level S0).

Mass-univariate general linear regression models (GLMs) were
constructed and assessed for each subject, including: [i] boxcar
functions, modeling the sound presentations; [ii] 3rd-degree polyno-
mials for each run, modeling baseline and drift effects; [iii] translation
and rotation parameters in the x-, y- and z-direction, modeling residual
motion; and [iv] the average signal of all brain voxels, modeling global
mean signal variations. The estimated sound-evoked response ampli-
tudes were entered into a group-level random effects analysis. The
other regressors (ii–iv)were considered confounds, and their estimated
effects were subtracted from the preprocessed functional imaging
volumes prior to the functional connectivity analyses that followed.

Independent component analysis

Within each subject, the pairs of runs of identical type were
concatenated, resulting in two 80-volume sparse runs (one rest and
one task) and two 400-volume continuous runs (idem). The dimen-
sionality of the available data was reduced in three stages by retaining
only the strongest principal components (Calhounet al., 2001). First, the
four types of runs were each reduced to an equal number of 24
components. Next, an aggregate dataset was constructed by concate-
nating these four reduced runs in time, and reducing the result again to
24 components. Finally, the data of all subjects were similarly
concatenated and reduced back to 24 components. This last step was
applied to the aggregate data, but in parallel also to the reduced data of
each of the four types of runs separately.

Multivariate spatial independent component analysis (ICA) was
performed using the InfoMax algorithm to extract maximally
independent components (Bell and Sejnowski, 1995). The concate-
nated component time courses were scaled to unit variance; the
corresponding spatial mapswere scaled in the opposite direction such
that their outer product remained the same. As a result, the spatial
maps contained the spatial distribution of the root-mean-square
component amplitude (expressed in percentage signal change units),
while the time courses described the components' signal dynamics
only (in dimensionless units). In the end, five sets of 24 group-level
independent components were obtained: one set for the aggregate
data that contained all four types of runs in equal proportion, and four
more sets for each of the types of runs separately.

Because independent components have no meaningful order by
themselves, the five sets were retrospectively brought into corre-
spondence by matching the component maps from the aggregate set
one-on-one to those from each of the four other sets. This was
achieved in an automatedmanner using the Kuhn-Munkres algorithm
by maximizing a combined similarity measure that is based on the
pair-wise inner products between component maps (Langers, 2010).

Six components were subjectively interpreted to arise from MR-
imaging artifacts, for instance related to interactions between
pulsatile motion, spin-history, relaxation, andmagnetic susceptibility.
These were largely confined to the ‘edges’ of the brain (in particular
on the ventral side and surrounding the brainstem), were spread out
widely but sparsely, or tended to co-localize with CSF compartments.
The other eighteen components were deemed to be of neural origin
on the basis of their coherent spatial distribution that well
corresponded with particular gray matter brain structures (Smith
et al., 2009; Schöpf et al., 2010). Ten components were selected for
detailed analysis, either because their time courses and corresponding
spectra suggested the presence of evoked responses in relation to the
employed stimuli and task in the task runs, or because they contained
brain systems that were otherwise considered to be of potential
interest. The rejected neural components typically comprised brain
systems that already appeared to be represented in some of the
selected components, that were considered unrelated to the task, or
that were judged to be insufficiently well separated from artifactual
signal contributions.

The time courses of the selected aggregate independent components
were partitioned according to subject, and according to the four types of
runs. The resulting single-run data were Fourier transformed to obtain
logarithmic power spectra. To eliminate differences due to spectral
aliasing and to minimize confounding effects of hemodynamic delays,
the outcomes for the continuous runs were sub-sampled to the same
temporal resolution as the sparse runs by retaining acquisitions #5,10,
…,400 only. No averaging or temporal filtering was carried out before
this decimation process. Subsequently, component data were fitted by
means of linear regression: time courses were fitted with a constant
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offset to model the silent baseline as well as a boxcar function
representing the sound presentations (equal to 0.0 for volumes #3,8,
…,78, and 1.0 otherwise); power spectra were fitted with a model that
includedanoffset, a linear slope, and a single covariate tomodel peaksat
16 and32 cycles/run (correspondingwith the fundamental frequencyof
the silent fragments in the stimulus presentations, and its second
harmonic). Only the data in the range of 8–39 cycles/run (i.e.: 0.01–
0.05 Hz) were included in the spectral fit: lower frequencies were
discarded because they were affected by the polynomial baseline and
drift removal during preprocessing; higher frequencies exceeded the
Nyquist frequency. Even though no stimuli were presented in the rest
paradigm, the samemodelswere used for all runs (including the evoked
response terms) to allow paired comparisons to be made on the
estimated coefficients.

Connectivity analysis

Eighteen ROIs were placed near local maxima of the major active
regions in the maps of the ten selected independent components of
interest. All ROIs were equal in size and consisted of two small clusters
of 19 voxels each (one central voxel, plus its six face- and twelve edge-
neighbors). These were mostly positioned symmetrically in left and
right homologous areas of the brain. Exceptions were made for
activated areas that were confined to the vicinity of the midsagittal
Table 1
Regions of interest (ROIs).

ROI Description

AUD Auditory cortex

SMG Supramarginal gyrus

PRE Precuneus

MFG Middle frontal gyrus

THA Thalamus

STS Superior temporal sulcus

OFC Orbitofrontal cortex

PAL Left parietal cortex

FRL Left frontal cortex

PAR Right parietal cortex

FRR Right frontal cortex

ACC Anterior cingulate cortex

INS Insula

ANG Angular gyrus

PCC Posterior cingulate cortex

MED Medial sensorimotor cortex

CEN Pericentral sensorimotor cortex

VIS Visual cortex
plane, for which the two clusters were both centered on this plane.
Also, for areas that showed up only unilaterally in a particular
component, both clusters were positioned in the same hemisphere;
however, in these cases exact ‘mirror-image’ ROIs could always be
defined on the basis of areas that showed up in another component.
Fig. 7a illustrates the location of these ROIs. Table 1 provides a detailed
list that includes MNI coordinates and nearest designations according
to the Talairach Daemon anatomical labeling of the WFU PickAtlas
toolbox (Lancaster et al., 2000; Maldjian et al., 2003); the
corresponding lateralization is indicated in square brackets (L/M/
R=Left/Midplane/Right).

Functional and effective connectivity analyses were performed.
For all ROIs, time courses were determined for each of the four types
of runs, averaged over all voxels in the ROI and concatenated across
subjects. Functional connectivity maps were derived by calculating
the Pearson correlation coefficients R between the ROI time courses
and the time courses of all other voxels in the brain. Furthermore,
18×18 matrices Σ were determined that contained the covariances
between all pairs of ROIs. A non-causal effective connectivity model
was assessed by computing the concentration matrix C=Σ−1, and
deriving a matrix ρ containing partial correlation coefficients accord-
ing to ρmn=−Cmn/√(Cmm∙Cnn) (Marrelec et al., 2006).

For a subset of pairs of ROIs (AUD–STS, CEN–MED, INS–ACC, PAR–
PAL, MFG–PRE, and PCC–ANG), the partial correlation ρmn was
Coordinates Anatomical labeling

(−54,−15,+06) Superior temporal gyrus [L]
(+54,−15,+06) Superior temporal gyrus [R]

(−60,−39,+30) Inferior parietal lobule [L]
(+60,−39,+30) Inferior parietal lobule [R]

(−06,−57,+48) Precuneus [L]
(+06,−57,+48) Precuneus [R]

(−30,+30,+42) Middle frontal gyrus [L]
(+30,+30,+42) Middle frontal gyrus [R]

(−12,−06,+15) Extra-nuclear [L]
(+12,−06,+15) Extra-nuclear [R]

(−60,−33,−03) Middle temporal gyrus [L]
(+60,−33,−03) Middle temporal gyrus [R]

(−45,+18,+21) Sub-gyral [L]
(+45,+18,+21) Sub-gyral [R]

(−39,−57,+42) Inferior parietal lobule [L]
(−30,−72,+42) Precuneus [L]

(−30,+12,+54) Superior frontal gyrus [L]
(−45,+03,+45) Middle frontal gyrus [L]

(+39,−57,+42) Inferior parietal lobule [R]
(+30,−72,+42) Precuneus [R]

(+30,+12,+54) Superior frontal gyrus [R]
(+45,+03,+45) Middle frontal gyrus [R]

(±00,+33,+18) Anterior cingulate [M]
(±00,+18,+36) Cingulate gyrus [M]

(−45,+15,−06) Inferior frontal gyrus [L]
(+45,+15,−06) Inferior frontal gyrus [R]

(−45,−69,+24) Middle temporal gyrus [L]
(+45,−69,+24) Middle temporal gyrus [R]

(−12,−54,+06) Posterior cingulate [L]
(+12,−54,+06) Posterior cingulate [R]

(±00,−15,+54) Medial frontal gyrus [M]
(±00,−33,+60) Paracentral lobule [M]

(−42,−27,+57) Postcentral gyrus [L]
(+42,−27,+57) Postcentral gyrus [R]

(−15,−81,−12) Lingual gyrus [L]
(+15,−81,−12) Lingual gyrus [R]
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decomposed into frequency contributions as follows. Let the vectors
xm and xn represent the centered partial signals of ROIs m and n (i.e.,
the signals of the two ROIs that remain after the signal mean as well as
effects that are attributable to all other 16 ROIs have been removed by
means of linear regression). Then, the partial correlation coefficient
satisfies ρmn=(xm/|xm|)T(xn/|xn|). Denote the discrete Fourier trans-
forms of the signals xm and xn by ξm and ξn. From Parseval's theorem,
it follows that ρmn=(ξm/|ξm|)T(ξn/|ξn|). In other words, the partial
correlation coefficient can equally be expressed as a sum of terms in
the temporal or frequency domain. Although the Fourier terms are
complex-valued, the contributions from aliased frequencies form
complex conjugate pairs and can be additively combined. Thus, the
partial correlation can be spectrally decomposed into frequency terms
that add to ρmn.

Statistical analysis

Group-level activation in the GLMwas assessed by means of t-tests.
Corrections for multiple comparisons to account for the multitude
of voxels were based on Gaussian random field theory (Friston et al.,
2007).

The regression coefficients that were derived from the indepen-
dent component time courses were determined subject by subject,
and submitted to single sample t-tests. Paired comparisons between
outcomes of task and rest runs, as well as continuous and sparse runs,
were made by performing t-tests on the differences. Interactions
between the effects of the behavioral paradigm and acquisition
method were assessed on the basis of a contrast vector of the form
[+1,−1,−1,+1].

The group-level significance of the obtained effective connectivity
levels was evaluated by means of a bootstrap resampling method.
Concatenated time courses were repeatedly constructed by randomly
sampling – with replacement – eleven subjects from the available
group, and partial correlation coefficients were determined on the
basis of the resampled data. Ten million such outcomes were used to
construct probability distributions for the effective connectivity levels
of all connections between ROIs, and these were used to assess the
significance of deviations from zero. A Bonferroni correction was
applied for the 153 connections in the model.

Results

Task performance

The behavioral outcomes of the stimulus recollection test that was
administered after the MRI session are summarized in Table 2. Of the
128 sound fragments that were presented during the test, 64 had
alreadybeenpresentedduring the fMRI paradigm, and64werenew. For
each fragment, subjects indicatedwhether they did or did not recognize
the stimulus from the MRI session. The table includes the mean±SE
Table 2
Behavioral outcomes.

Measure Outcome

TP 37±2%
FP 10±2%
FN 13±2%
TN 40±2%

SEN 73±4%
SPE 80±3%
PPV 79±2%
NPV 76±2%

SEN40,continuous 67±4%
SEN70,continuous 64±5%
SEN40,sparse 79±4%
SEN70,sparse 81±4%
across subjects of the relative number of true positives (TP) that were
correctly remembered, false positives (FP) that were mistakenly
recognized, false negatives (FN) that were mistakenly not recognized,
and true negatives (TN) that were correctly not remembered, each
expressed as a percentage of the total number of fragments. Some
incorrect answers (FP and FN) were given, but correct answers (TP and
TN)were substantiallymore abundant andwell above chance level. This
suggests that the task was doable but not trivial. The derived sensitivity
(SEN=TP/(TP+FN)), specificity (SPE=TN/(TN+FP)), positive pre-
dictive value (PPV=TP/(TP+FP)), and negative predictive value
(NPV=TN/(TN+FN)) confirmed this impression.

The sensitivities to stimuli of 40 or 70 dB SPL in the presence or
absence of ASN (continuous or sparse, respectively) are listed
separately. According to paired t-tests, the stimuli from the sparse
runs were remembered significantly better on average than those
from the continuous runs, both for the 40-dB (p=0.001) and the 70-
dB (p=0.0004) presentation levels, but the louder stimuli were not
remembered differently from the softer stimuli (pN0.1). However,
note that because all presented stimuli were played twice during
different runs, these figures may be distorted and differences between
the various types of runs diminished (for example, a 40-dB sound
fragment that was presented during a continuous run may have been
completely inaudible, but still recognized correctly if it was also
presented at 70 dB during a sparse run). As a result, performance for
the stimuli during the continuous runs alonemight have been close to
the 50% chance level, and for the sparse runs alone above 90%. But the
finding that stimuli were remembered best in the absence of ASN
remains.

General linear model (GLM)

Conventional regression analysis was applied to the task runs by
means of a mass-univariate random effects model (Friston et al.,
2007). Fig. 2 displays the significance of sound-evoked brain activity
at the group level, as obtained by contrasting the mean fMRI signal
following sound presentations with baseline. Although for both the
continuous and the sparse runs extensive activation was observed in
the bilateral superior temporal lobes containing auditory cortex,
activation was most significant and extensive in the sparse runs.
Furthermore, task-related activity was observed in the lateral frontal
lobe, againmost strongly in the sparse runs. Finally, in the sparse runs,
the analysis revealed activation in various sub-cortical auditory nuclei
(like the inferior colliculi) and in the cerebellum, as well as
deactivation in various regions associated with the default mode
network (medial and lateral areas in the parietal and frontal lobes).
These areas did not achieve significance in the continuous runs.

Independent component analysis (ICA)

The spatial maps of ten extracted neural components of interest
are shown in Fig. 3. On the basis of the included brain areas thesewere
labeled as: [I] auditory cortex; [II] precuneus and supramarginal
gyrus; [III] thalamus and putamen; [IV] auditory association cortex;
[V] left frontal and parietal cortex; [VI] right frontal and parietal
cortex; [VII] anterior cingulate cortex and insula; [VIII] posterior
cingulate and medial prefrontal cortex; [IX] sensorimotor cortex; and,
[X] visual cortex. The maps of corresponding components were
remarkably comparable across all types of runs (whether resting state
or task-related, continuous or sparse), despite the fact that they were
separately derived from independent datasets. In Fig. 5a, each
component's overall root-mean-square (RMS) amplitude A is plotted.

In the components I–III, the spatial maps depended strongly on the
type of run. In the auditory cortex (I), signals were much stronger
during the task runs than during the rest runs. A weaker but
significant dependence upon the acquisition method was found: in
the rest runs, signals were marginally stronger during continuous



Fig. 2. Sound-evoked activation. Group-level evoked activation was determined by means of a conventional linear regression model for the continuous (left) and sparse (right) task
runs separately. The glass brain views (top) show the outcomes of voxel-wise two-tailed t-tests by means of grayscale coloring. In addition, various axial, coronal, and sagittal cross-
sectional images (bottom) display positive as well as negative activation by means of a color code; in each image, the maximum activation in 5 contiguous slices was projected on an
anatomical background. All images were thresholded at a confidence level pb0.05, corrected for family-wise errors (FWE); for the glass brain, a minimum cluster size of k=10
voxels was additionally imposed. Sound-evoked activation was primarily found in the temporal and frontal lobes, most extensively and confidently in the runs with sparse
acquisitions as compared to the continuous ones. Stimulus-related activation in sub-cortical auditory nuclei and in the cerebellum as well as deactivation in the default mode
network was observed in the sparse runs only.
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runs, while in the task runs, signals were strongest during sparse runs.
The interaction between behavioral paradigm and acquisitionmethod
was significant. In the second component (II), the precuneus aswell as
bilateral frontal areas were most extensively represented in the two
rest runs. In addition, weaker clusters were found near the
supramarginal gyrus. For the component that comprised superior
thalamic regions and the putamen (III), the level and extent of activity
was dependent upon task performance, but did not depend upon the
acquisition method.

In the components IV–VII, little dependence upon the type of
run was visible in the maps, although overall component power was
significantly different in some paired comparisons. The auditory
association cortex (IV) was similarly active in all runs, except the
sparse task run. This component also included ventrolateral frontal
regions. Next, two components were found that appeared to be each
other's mirror images. Although homologous bilateral areas in frontal
and parietal cortex were involved, they were strongly lateralized
towards the left (V) and right (VI) hemisphere, respectively. Finally,
the insula and anterior cingulate gyrus were grouped in one
Fig. 3. Independent component maps. The spatial distribution of the extracted independent c
in all voxels (A, expressed in percentage signal change units [%]). The maps of ten selected co
sectional images, the activity in 5 adjacent slices was overlaid by means of a color code usin
provide an overview of the component. These maps were derived from the aggregate data, i
task paradigms. Immediately on their right, corresponding axial cross-sections are shown o
involved either continuous (left column) or sparse (right column) acquisitions, and eith
comparable fashion for most types of runs. Nevertheless, the type of run affected the distri
component (VII). This also included activation of medial prefrontal
cortex, with varying sign.

The components VIII–X showed little dependence upon the type of
run in the maps, and none of the comparisons of component power
reached significance. One component (VIII) comprised bilateral active
clusters near the junction of the angular gyrus and middle occipital
gyrus, amoremedial cluster near the junction of the posterior cingulate
gyrus and the ventral part of the precuneus, and a cluster in the medial
prefrontal cortex. Although this is reminiscent of the default mode
network in component II, this component did not appear to differ
between task and rest. Another component (IX) contained the
somatosensory and motor cortex in lateral and medial areas surround-
ing the central sulcus. In spite of the absence of any motor task, it
appeared marginally stronger in the task runs. However, the difference
was insignificant. Finally, activity of the visual cortex in the inferior
posterior occipital lobe (X) did not appear to depend on the type of run
at all.

The time courses and corresponding power spectra of the ten
components are graphed in Fig. 4. Thesedatawerefittedwith regression
omponents was determined from the component's root-mean-square signal amplitude
mponents of interest (I–X) are superimposed on an anatomical background. In all cross-
g a maximum intensity projection. In each panel, three perpendicular views on the left
ncluding continuously as well as sparsely acquired volumes, both during rest as well as
f the components that were extracted from the various types of runs separately. These
er rest (top row) or task (bottom row) paradigms. Each component was present in
bution and strength of various components, in particular for components I, II, and III.
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models, and the resulting coefficients and significance levels are
summarized in Figs. 5 b–d. In addition, the mean spectra of all ten
reported components are overlaid in Fig. 6, providing a more direct
summary comparison of the four different types of runs.

For the rest runs, all time courses were essentially random due to
the lack of a shared source of activation. A deficit in spectral power
existed at frequencies below ~4 cycles/run (~0.005 Hz). This was
attributed to low-frequency drift removal during preprocessing, and
was therefore not judged meaningful (Smith et al., 1999). A more
gradual decline towards higher frequencies was observed. Almost
invariably, the magnitude of the decline was strongest and most
significant for the rest runs (see Figs. 5d and 6). The slope in the sparse
runs was typically less pronounced than in the continuous runs, but
still stronger than in both types of task runs.

In the task runs, several components showed pronounced sound-
evoked responses. These were visible in the form of distinct periodic
signal drops in the time courses whenever sound stimuli were absent
(at trials #3,8,13,…,78; see also Fig. 5b), and corresponding peaks in
the spectra (at 16 and 32 cycles/run; see also Fig. 5c). This type of
behavior was most prominent in the auditory cortex (I), but also
significant in the thalamus and putamen (III), auditory association
cortex (IV), and to a lesser extent the frontoparietal cortex (V and VI).
In the component that comprised the precuneus and supramarginal
gyrus (II), evoked responses were strong as well, but with opposite
sign. Sound-evoked effects were typically smaller and less significant
during continuous acquisitions than during sparse acquisitions.
Regarding the mentioned components, interaction effects between
acquisition method and behavioral paradigm were significant in the
auditory cortex (I) and precuneus and supramarginal gyrus (II).
Effective connectivity analysis (ECA)

In an effort to gain insight into interactions between the involved
brain areas and distinguish between direct and indirect functional
connections, an effective connectivity analysis based on partial
correlation coefficients (Marrelec et al., 2006) was carried out.
Eighteen ROIs were defined that appeared prominently in the various
independent components (Table 1). In Fig. 7b, for each of the four
types of runs, ROIs for which the effective connectivity level was
significantly larger than zero are connected by means of a solid line.

Auditory cortex (AUD) connected to the superior temporal sulcus
(STS) in the task runs, but not in the rest runs. The precuneus (PRE)
and middle frontal gyrus (MFG) were always connected, in accor-
dance with the fact that they were grouped into the same
independent component. Similarly, insula (INS) and anterior cingu-
late cortex (ACC) were always connected. INS connected to STS and
supramarginal gyrus (SMG) in all runs except the sparse task one. The
left and right parietal and frontal areas (PAL, FRL, PAR, and FRR)
showed a very strong ‘horseshoe-shaped’ connectivity pattern of the
form FRL-PAL-PAR-FRR; no direct interhemispheric connections
between the frontal areas were revealed, except for a relatively
weak connection in the continuous rest run. The effective connectivity
level between posterior cingulate cortex (PCC) and angular gyrus
(ANG) was significant in all runs except the sparse task one. The
medial (MED) and pericentral (CEN) sensorimotor areas connected
very strongly in all types of runs. The orbitofrontal cortex (OFC)
connected inconsistently to few other areas. The visual system in the
Fig. 4. Independent component time courses and power spectra. The time courses of ten
partitioned according to the four different types of runs (continuous or sparse acquisitions, a
left (S, in arbitrary units [a.u.]), and the corresponding power spectra on the right (I, in decibe
across subjects. For the task runs, the timing of the sound presentations is indicated by mea
periodicity (i.e.: one silent period in every five fragments) and its second harmonic are indica
linear fits to baseline (solid) and evoked (dashed) activity. Even though the rest runs did no
terms) were used for all runs. Fitted coefficients are reported in Fig. 5.
inferior occipital lobe (VIS) and superior thalamus (THA) typically
occurred in strict isolation.

For six pairs of ROIs, Fig. 7c plots the cumulative partial correlation
as a function of frequency. For the connections AUD-STS and CEN-
MED, the achieved effective connectivity levels in the task runs
diverged substantially from those in the rest runs. For the connection
between AUD and STS, this was primarily driven by the periodicity of
the task paradigm (most notably present as a ‘staircase’ behavior in
the sparse runs). For the connection between CEN and MED,
correlations diverged most notably at high frequencies (15 cycles/
run and above). For all other runs, differences between the four types
of runs were small in comparison, unsystematic, and judged
insignificant. For PAR-PAL, correlations remained comparable up to
30 cycles/run, and subsequently diverged weakly. For the connections
INS-ACC and PCC-ANG, cumulative correlations remained closely
clustered, although the continuous task runs resulted in higher partial
correlations; in contrast, for the connection MFG-PRE the sparse task
run deviated upward from the other three.

For each of the ROIs we also constructed functional connectivity
maps, containing Pearson correlation coefficients between the ROI
time course and the time courses of each of the individual voxels in
the brain. These are included in the Supplementary Materials. Most
notably, the functional connectivity within the auditory cortices was
higher in the task runs than in the rest runs on the basis of the AUD
maps. A similar but weaker trendwas visible in themaps derived from
STS and OFC, and to a lesser degree in PRE, MFG, ACC, MED and CEN.
The acquisition method had hardly any influence on the functional
connectivity results for any of the ROIs, including AUD. In other words,
sparse and continuous acquisitions always resulted in indistinguish-
able functional connectivity outcomes.
Comparison of GLM, ICA, and ECA outcomes

Regardless that the GLM, ICA, and ECA methods extract functional
measures with completely different interpretations, we made a
comparison of the effects of ASN on their primary outcomes. For the
GLM, the percentage signal change β in the significantly activated
voxels was considered (see Fig. 2). For the ICA, the RMS amplitude A in
the set of voxels that exceeded the imposed threshold in the aggregate
data was included (see Fig. 3). For the ECA, the effective connectivity
level ρ between all pairs of ROIs was taken, regardless of significance
(see Fig. 7). The results from the sparse runs in the absence of ASN are
plotted as a function of the equivalent results from the continuous
runs in the presence of ASN in Fig. 8.

For both the GLM and ECA analyses, results correlated strongly
(R=+0.89 and R=+0.83, respectively). The correlation of the ICA
results was lower (R=+0.59), partly due to the fact that all ten
components were included these data (including some components
that were significantly affected by ASN, like the auditory component,
and other components that were not). More relevant than the
correlation coefficients, the ratios between results from runs with and
without interference from ASN were determined on the basis of the
principal component axes of these data. Whereas the presence of ASN
diminished the magnitude of detectable sound-evoked responses by a
factor of 2.27 in the GLM, the outcomes of the ICA were less affected
and differed by a factor of 1.21 only. The ECA connectivity levels
diverged less still, and differed merely by a factor of 1.07.
neural independent components from the aggregate data (I–X; see also Fig. 3) were
nd rest or task paradigms). In each panel, the extracted time courses are shown on the
l [dB] relative to an arbitrary reference). Error bars indicate themean and standard error
ns of background shading in the time courses. The repetition rate of the corresponding
ted by means of vertical dotted lines in the spectra. Straight lines show the outcomes of
t include sound presentations, the same regression models (including evoked response
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Discussion

The advantages of sparse imaging over continuous acquisitions in
the context of an auditory task are demonstrated by the outcomes of
our conventional linear regression analyses. Extensive sound-evoked
or task-related activation was detected by the GLM. The activity in
bilateral primary and secondary auditory cortex and auditory
association cortex reflects sensory processing related to sound
perception. The observed frontal activation reflects cognitive pro-
cesses related to executive control in relation to the memory task. In
agreement with previous findings (Gaab et al., 2007; Scarff et al.,
2004; Langers et al., 2005b; Tomasi et al., 2005), the interference from
ASN during the continuous runs resulted in a substantial decrease of
the detectable activation level and extent in all of these areas.
Moreover, various task clusters were revealed in the sparse runs that
could not be detected at all in the continuous runs. These comprised
activation in sub-cortical auditory nuclei (Langers et al., 2005a), as
well as deactivation in the default mode network (Gaab et al., 2008).
Clearly, in experiments that aim to detect neural activation during
acoustic tasks, sparse sampling provides the largest response
amplitude, the highest sensitivity, and the best discriminatory power.

We attribute the observed differences in activation between
continuous and sparse runs to interference from the MR-scanner. At
least three mechanisms can be distinguished that may have caused
the detected brain regions to respond differently. First, interactions
occurred at the perceptual level, in the form of a direct masking of
presented auditory stimuli by simultaneous ASN. This is supported by
the fact that subjects performed significantly worse in memorizing
sound fragments in the presence of ASN. Second, even when auditory
stimuli and ASN do not coincide exactly, brain responses that are
evoked by the perception of ASN may elevate baseline activity as
detected by fMRI. Given the limited dynamic range of hemodynamic
responses in the capillary bed, saturation will occur, and detectable
responses to additional presented stimuli can be reduced. Third, the
gradient switches or radio-frequency excitations that are associated
with the acquisition of functional MRI volumes have been reported to
influence brain function directly (Robertson et al., 2010; Rohan et al.,
2004). The interaction between strong electromagnetic fields and
brain activity is the basis for transcranial magnetic stimulation (TMS),
a potential therapeutic means to alleviate various neural disorders,
including some related to sound processing, like auditory hallucina-
tions and tinnitus (López-Ibor et al., 2008). However, for the particular
EPI acquisitions that are commonly employed in fMRI, evidence for
direct electromagnetic effects is weak. We therefore suspect that
electromagnetic effects are negligible in comparison with the
aforementioned perceptual and hemodynamic interactions.

ICA succeeded in reliably extracting a multitude of components
that corresponded with brain systems of interest. Components with a
highly similar spatial distribution were identified across all types of
runs, in spite of the notable differences in paradigm (an auditory
memory task vs. resting state) and acquisition method (sparse vs.
continuous scanning). A comprehensive ‘task-positive’ network was
observed, consisting of at least the components I, III, and IV. In
addition, a ‘task-negative’ network was detected, consisting of
component II. Their putative involvement will be discussed in more
detail.

Component I comprised primary and secondary areas of auditory
cortex. These are the targets of the classical auditory pathway, and
form the highest level of unimodal processing of acoustic input (Ehret,
1997;Winer and Lee, 2007; King and Schnupp, 2007). In the context of
the task, they are involved in sound perception. Although the areas
that were observed in this component were also revealed by the
regression analysis, interference from ASN in the ICAwas smaller than
in the GLM. Activity levels were still affected, both in terms of overall
component amplitude and stimulus-evoked signal contrast, but the
activation extent hardly changed at all. This suggests that even though
the auditory cortex is less predictably driven by acoustic input during
continuous scanning, it still maintains widespread coherent signal
fluctuations. In the rest runs an opposite trend was observed: the
auditory component was stronger and more extensive in the
continuous runs than in the sparse runs. This suggests that stimulation
by ASN drives or at least facilitates coherent fluctuations in the
auditory system, for instance by enhancing neural synchrony across
the auditory cortex.

Component II had a spatial distribution consistent with the default
mode network (Raichle and Snyder, 2007). This network is considered
to be involved in introspective andself-referential thought that occurs in
the absence of goal-orientedmental activity. Its primary characteristic is
that it is generally deactivated by task performance. Indeed, this
component was the only one that displayed significant negative
responses to the sound presentations, consistent with this interpreta-
tion.Moreover, this component's powerwas larger in the rest runs than
in the task runs, similarly pointing to engagement of these areas when
noexplicit task is performed. Inaccordancewithaprevious report (Gaab
et al., 2008), the magnitude of the task-induced deactivation (or task-
inhibited activation) in the task runs decreased in the presence of ASN.
Contrariwise, in the rest runs this component appeared stronger in the
presence ofASN. Like for theauditory component, this suggests thatASN
reduces evoked responses to other sound stimuli, but at the same time
induces coherent fluctuations in brain activity itself.

Component III comprised the superior thalamus and putamen, and
roughly represents the basal ganglia. Although the dorsal striatal area
is classically regarded to be involved in the regulation of movement, it
has also been more generally associated with motivated behavior,
including processes related to emotion, reward, and learning
(Graybiel, 2005; Hikosaka et al., 2008; Haber and Calzavara, 2009;
Pennartz et al., 2009). It has been shown to receive direct corticofugal
projections from the auditory cortex (Winer, 2005), and it can be
activated by sound (Mitterschiffthaler et al., 2007; Grahn and Rowe,
2009). Together with the thalamic gateways, it is presumably
involved in the attentional gating of salient sound stimuli (Campbell
et al., 2007). The activity of this component was strongly dependent
on task performance, but it was hardly affected by ASN. This suggests
that, regardless of stimulus audibility and background ASN, similar
attentional resources were recruited and devoted to the task.
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Component IV primarily comprised the region of the superior
temporal sulcus, including the lower bank of the superior temporal
gyrus and the upper bank of the middle temporal gyrus. Various roles
are attributed to this part of the brain, including social functions like
the processing of faces and speech, and theory of mind (Hein and
Knight, 2008). In the context of sensory processing, it is commonly
regarded as a site of auditory association and multimodal integration
(Calvert, 2001). It also forms a likely anatomical substrate of the
putative ‘what’ pathway, which is related to the identification of
auditory objects in the subject's environment on the basis of their
acoustic features (Griffiths and Warren, 2004; Rauschecker and Tian,
2000). This pathway is thought to project to frontal cortex, and
involvement of lateral frontal areas was also present. This component
responded to the sound stimuli, but its activity was not detrimentally
affected by the presence of ASN. This is consistent with a role in
higher-order auditory processing, in which case the neural activity
would be less directly related to the acoustic attributes of perceived
stimuli per se, but may encode a more abstract representation of a
sound source (Engel et al., 2009; Carlyon, 2004). In the brain areas
that comprise component IV, ASNmay already have been identified as
a separate stream of irrelevant acoustic content, the further proces-
sing of which may be suppressed in the context of the task.

Weaker and less significant sound- or task-evoked activation was
observed in left and right frontal and parietal areas, as well as cingulate
and insular cortex (V–VII). These areas have repeatedly been observed
to co-activate, and have been grouped into a frontoparietal executive
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control network and a paralimbic saliencenetwork, respectively (Seeley
et al., 2007; Dosenbach et al., 2007; Spreng et al., 2010; Menon and
Uddin, 2010). Their precise role in the context of the present task can
only be speculated on, but may for instance be related to switching
between internal and external attention, executive control in relation to
the task, emotional associations induced by the sound fragments,
memory consolidation, or spatial localization and auditory scene
analysis (Bamiou et al., 2003; Tomasi et al., 2005; Sander et al., 2007;
Sridharan et al., 2008; Diekhof et al., 2009). Activation levels were too
small to confidently assess the effects of acquisition method and
interference of ASN in these areas.

Some independent components seemed unaffected by the task.
These included the sensorimotor and visual systems (IX–X), which
did not play any obvious role in the auditory memory task that was
employed. Another example comprised the angular gyrus and
posterior cingulate cortex (VIII), which have also been implicated in
the default mode network. We did not observe any task-related
deactivation in the time course of this component, nor did its power
depend upon the presence of a task. This is consistent with a recent
report that implicit memory tasks do not disrupt default mode
network activity (Yang et al., 2010). Yet, this behavior strongly
differed from that of component II, which we consider to be more
characteristic for the default mode network. The existence of multiple
default mode networks has been coined before (Long et al., 2008; Fox
et al., 2005), and the diverging dynamic behavior of the two
components in our study does suggest that the dissociation is
functionally meaningful. We tentatively hypothesize that the default
mode network of component II is involved in ‘conscious’ internalized
mental activity (‘thought’) that can be suppressed by diverting
attentional resources e.g. to a task, whereas the brain areas in
component VIII correspond with ‘subconscious’ internalized mental
activity (‘awareness’) that persists even when performing other tasks.

In addition to stimulus-evoked responses in some of the
component time courses, without exception a decrease occurred in
spectral power as a function of frequency. In more than half of the
components and runs, this spectral decline reached statistical
significance. These observations concur with previous reports that
resting state connectivity, as measured by BOLD fMRI, is driven by
slow oscillations (Cordes et al., 2001; Fransson, 2005; Auer, 2008).We
found that the spectral decline was typically stronger in the rest runs
than in the task runs. This shows that the dominance of low-frequency
fluctuations is not likely caused by processes related to the
measurement process itself, but seems to be tied to brain activity.
Also, it seems rather specific for resting state.

Interestingly, our results also newly revealed a consistent trend that
this spectral decline was stronger in the continuous runs than in the
sparse runs. Before we can attribute this finding to differences in neural
dynamics, a number of confounding artifacts should be excluded. First,
the two sets of fMRI images differ in tissue contrast due to the unequal
TR. Although signals were expressed in relative units of percentage
signal change, sensitivity to the BOLDcontrastmay still deviate between
the two acquisition types. This conceivably leads to differences in
response signal magnitude, and therefore overall spectral power. Such
effects would render an absolute comparison of the vertical offsets in
Fig. 6 meaningless. However, they would not affect the shape of the
spectral profile, including the spectral slope. Second, we did not include
any retrospective corrections for e.g. slice timing or physiological signal
contributions (i.e., cardiac and respiratory effects) in our processing
pipeline. Although such corrections are common and would have been
useful for the continuously acquired data, the poor temporal resolution
in the sparse runs precludes the required interpolation or filtering of
signal time courses. To avoid introducing confounds, we employed
identical preprocessing for all data, and also omitted the aforemen-
tioned steps in the analysis of the continuously acquired data. This may
have led to an elevated noise floor, rendering any effects of interest less
detectable, but in our opinion it cannot explain the observed differences
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in spectra. Third, one could argue that the spectrum for the sparse
acquisitions is flat because of the low sampling rate in the sparse
acquisitions. As a result, all signal power at (unobservable) high
frequencies is aliased across the (observable) low frequencies. However,
because we sub-sampled the continuous data to the same temporal
resolution before the spectrawere determined, the samewould hold for
the continuous data. Therefore, aliasing cannot explain the different
slopes of the sparse and continuous spectra either. Finally,we argue that
it is difficult to conceive how methodological mechanisms related to
MR-physics or preprocessing would specifically arise in components
that represent various brain systems. Therefore, we conclude that the
diverging independent component spectra arise as a result of
differences in the underlying neural dynamics.

Given that in 8 out of 10 components of interest the spectral decline
was stronger in the continuous than in the sparse runs, our findings
suggest that ASN influences the neurodynamics of widespread brain
networks. In particular, this influence is not limited to nominally
auditory brain regions. The relative importance of slow oscillations that
have repeatedly been shown to drive resting state networks is larger
during continuous scanning than in thepresence of interspersedperiods
of scanner silence. Either the presence of ongoing ASN contributes to
induce slow fluctuations during continuous scanning, or the presence of
intermittent ASN decreases spontaneous slow fluctuations during
resting state when sparse acquisitions are employed.

So why would slow BOLD signal fluctuations be more salient in the
sparse resting state runs than in the continuous runs? It is our
experience that the regular ongoing sound that accompanies continu-
ous scanningmay eventually achieve a tranquil soothing quality. In fact,
in spite of loud ASN, subjects have been known to fall asleep in theMR-
scanner when no participation in a taskwas required. In sharp contrast,
and in spite of its periodical nature, the intermittent noise that
accompanies sparsely acquired scans retains an alarming and startling
effect due to its sudden onsets. We presume that this difference may
actually result in subjects being more aroused, wakeful, alert and
vigilant during sparse scanning, whereas remaining calm, drowsy,
sedate and serene during continuous scanning. This mechanism can
explainwhy the slow fluctuations in spontaneous brain activity that are
characteristic of resting state are more pronounced during continuous
scanning than during sparse scanning (Boly et al., 2008; He and Raichle,
2009). It would also explain why a low-frequency dominance is absent
in task-related runs, irrespective of the acquisition method: in such
experiments, subjects remain aroused and wakeful and are required to
be alert and vigilant due to the presence of the task itself, and this likely
overshadows the effects of scanner noise (except of course for direct
interactions with possible acoustic stimuli related to the task).
Interestingly, this mechanism has an analogue in electroencephalo-
graphic recordings, where the prevalence of slow-wave oscillations
(b1 Hz) is associated with non-REM sleep and reduced consciousness
(Crunelli and Hughes, 2010; Coenen, 1998). Yet, although we find an
explanation in terms of alertness and arousal particularly plausible, we
cannot and do not exclude other possible mechanisms.

The interrelations between various regions of interest were
studied further by functional and effective connectivity analyses. In
the ECA, very strong interactions between AUD and STS were shown
in the task runs, but no such interactions existed in the rest runs. This
held irrespective of the use of sparse or continuous acquisitions. The
functional connectivity outcomes agreed with these observations, in
the sense that the connectivity level and extent in the maps related to
AUD and STS were higher in the task runs than in the rest runs, but no
differences were noted between the continuous and sparse runs. The
spectral decompositions of the partial correlation coefficients also
showed that differences related to the paradigm were much more
influential than differences related to the acquisition method. A task-
dependence in the mentioned connectivity patterns is not surprising,
since these regions are involved in sound perception and are therefore
strongly engaged by the employed task. However, less obvious, the
outcomes of the employed connectivity measures were remarkably
insensitive to the presence of ASN.

The auditory network (AUD and STS) effectively connected to the
salience network (INS and ACC) and, partly via that, to the default
mode network (SMG, PRE and MFG). Our results are consistent with a
role for the INS in switching attentional resources back and forth
between (task-related) external stimulus input and (resting state)
internal mental processes (Sridharan et al., 2008). These networks
were quite similarly connected in the rest and task continuous runs. In
the sparse runs, some of these connections (like SMG-PRE) proved
insignificant. Still, overall, the mentioned collection of ROIs (AUD, STS,
INS, ACC, SMG, PRE, and MFG) appeared to form a comprehensive
‘core network’. The corresponding functional connectivity maps also
revealed only weak dependence upon task performance, and no
dependence upon acquisition method was observed. These findings
again suggest that network interactions are not necessarily more
reliably or sensitively detected in the absence of ASN than in its
presence.

Various other sub-networkswere apparent, like the pairMED–CEN
that was always strongly connected, or similarly the pair PCC–ANG. A
chain of ROIs FRR–PAR–PAL–FRL formed a robust executive control
network (Seeley et al., 2007; Spreng et al., 2010). The remaining ROIs
(THA, OFC, and VIS) typically appeared in isolation, and should
perhaps be regarded as sub-networks on their own. Connections
among these various sub-networks were incidental. In particular,
none of these connections appeared in more than one run.

Finally, a direct comparisonwasmade between the effects of ASN on
the outcomes of the GLM, ICA, and ECA. Activation levels according to
the GLM were strongly dependent on the presence of ASN. Detectable
responses in individual activated voxels proved to be reduced
approximately twofold. In contrast, the power of ICA components was
much less influenced by ASN. A small number of components was
affected by the presence of ASN, but many were not. Overall, only a
moderate reduction in average component power remained. The ECA
connectivity levels were even less sensitive to ASN. With the exception
of one pair of ROIs (AUD and STS), none of the connections could be
demonstrated to be consistently affected by ASN. Although we do not
wish to claim that ASN does not affect network-related brain
connectivity methods in any way, our results certainly indicate that
effects of ASN are much weaker than for traditional task-related brain
activation methods.

Of course, in some applications the presence of ASN might still
affect resting state activity in a much more direct fashion. For
example, tinnitus patients chronically perceive sound in the absence
of any external sound sources (Møller, 2007), and patients that suffer
from psychotic disorders like schizophrenia may spontaneously
perceive auditory hallucinations (Dierks et al., 1999). Similar percepts
can also be induced in healthy subjects following e.g. sleep
deprivation or prolonged periods of stress (Asaad and Shapiro,
1986). Furthermore, people may routinely engage in sound-related
mental processing during rest, like imagery of sound, memory
retrieval of music, or rehearsal of speech (Zatorre, 2007). And finally,
a noisy environment may also intrude on other mental processes,
especially in subjects with phonophobia, hyperacusis, or information
processing disorders like autism (Nieto Del Rincón, 2008). For these
examples, the influence of ASN might be larger than we observed in
our study. Therefore, ASN should remain an experimental design
consideration for particular applications of resting state fMRI.

In summary, we conclude that the use of sparse acquisitions remains
strongly advisable for the detection of sound-evoked brain activity by
means of conventional regression models. When using blind signal
detection methods like ICA as well as functional connectivity measures,
sparse acquisitions only provide a moderate advantage, mostly limited
to the detection of brain areas directly involved in sound processing. For
the extraction of effective connectivity in the brain, any potential
advantages of the use of sparse scanning appear negligible. For that
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purpose, continuous scanning should mostly be preferred due to its
superior temporal resolution. This finding contrasts with our original
hypothesis that ASN would affect functional and effective connectivity
measures in similar fashion as conventional evoked responsemeasures.
However,wedidfind that low-frequencyfluctuations in theBOLDsignal
aremore pronounced in resting state than in stimulated acquisition, and
during continuous scanning than during sparse scanning. This suggests
that thesefluctuations are related to a state of rest or inactivity, and that
the ASN froma sparse scanning sequence ismore disturbing to this state
than noise from a continuous scanning sequence. Thus, ASN forms a
pervasive confound in the assessment of brain dynamics during rest.
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