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Short telomeres are preferentially elongated by telomerase in human cells
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Short telomeres have been shown to be preferentially elongated in both yeast and mouse models.
We examined this in human cells, by utilising cells with large allelic telomere length differentials
and observing the relative rates of elongation following the expression of hTERT. We observed that
short telomeres are gradually elongated in the first 26 PDs of growth, whereas the longer telomeres
displayed limited elongation in this period. Telomeres coalesced at similar lengths irrespective of
their length prior to the expression of hTERT. These data indicate that short telomeres are marked
for gradual elongation to a cell strain specific length threshold.

� 2009 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

In the absence of telomerase, telomere length determines the
replicative capacity of many cell types. The repression of telome-
rase in human somatic cells coupled with a limiting telomere
length, is considered to confer a stringent tumour suppressive
mechanism in long lived species such as humans [1]. Telomerase
is expressed in stem cell populations; this is considered to slow,
but not prevent, the rate of erosion and provides for additional rep-
licative capacity to maintain tissue homeostasis [2]. Telomerase is
also expressed in majority of cancers thereby circumventing the
telomere driven tumour suppressive mechanism. Thus from the
standpoints of both ageing and cancer biology there is a require-
ment to understand the mode of action of telomerase.

The original biochemical characterisation of telomerase activity
in vitro indicated that human telomerase is comparatively proces-
sive, synthesising up to 390–420 nt (65–70 repeats) [3]. However,
in vitro processivity is not directly related to telomeric extension
in vivo [4]. Telomerase mediated lengthening has been most exten-
sively studied in yeast where it has been shown that telomere
elongation is inversely proportional to telomere length [5]. Telo-
merase is less processive on telomeres greater than 125 bp, with
a 2–3 times increase in the processivity on telomeres <125 bp in
length. This represents an increase in the rate of extension from
on behalf of the Federation of Euro
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44 nt to over 100 nts, a significant proportion of the overall length
of the telomere [4,5], indeed some telomeres may be extended by
several multiples of their original length. These observations are
consistent with data from mouse models that indicate that the
shortest telomeres in a cell are preferentially elongated [6]. Studies
of telomerase mediated lengthening in human cells indicate that
telomerase levels must be limiting in order to maintain a telomere
length homeostasis [7]. In these studies when the catalytic subunit
of telomerase (hTERT) was expressed alone in telomerase negative
fibroblast cells telomeres were elongated at a rate of 62 bp/PD,
however if both hTERT and the telomerase RNA component (hTR)
are expressed together the rate of elongation increases dramati-
cally to 783 bp/PD [7]. The preferential elongation of short telo-
meres has not been demonstrated in human cells and indeed the
rate of telomeric elongation as a function of the telomeric length
is also unclear in human cells. Here we describe a simple experi-
ment whereby we utilised a clonal fibroblast population that dis-
plays large allelic telomere length differentials, and we observed
the relative rates of telomere elongation of individual alleles
following the ectopic expression of hTERT. We observed that short
telomeres are elongated at a rate of up to 544 bp/PD, whereas at a
longer telomere no significant elongation was observed in the first
14 PDs growth. Elongation was accompanied by a commensurate
increase in the heterogeneity of the telomere length profiles.
These telomere dynamics resulted in a loss of the allelic and
chromosome-specific telomere length differentials. We also ob-
served that the telomere of 17p in a subset of cells was refractory
to lengthening. These data are consistent with the presence of
pean Biochemical Societies.
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Fig. 1. Cell growth data of telomerase expressing MRC5 cells (filled markers) and
empty vector control cells (unfilled markers). Population doublings and time are
taken from the point of hTERT transfection.
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cis-acting determinants that regulate telomeric elongation in
human cells.

2. Materials and methods

2.1. Cells

MRC5 cells were obtained from the Coriell Cell Repository and
cultured at 37 �C in a low oxygen (3%) environment created using
an oxygen sensor, regulator and nitrogen source. The cells were
cultured in four parts Dulbecco’s modified Eagle’s medium to one
part Medium 199 supplemented with 15% (v/v) foetal calf serum
(Imperial Laboratories, London) as described previously [8]. Clones
were taken from the parental culture using cloning rings.

2.2. Retroviral gene transfer

The catalytic subunit of telomerase, hTERT cloned into pBABE
puro, was transduced into MRC5 cells using amphotropic retroviral
vectors as previously described [8,9], and the empty vector used as
a control. For infection, near senescent MRC5 clone 1 PD 23 were
plated in 60 mm dishes at a density of 105 cells/dish and the
following day exposed to retrovirus-containing medium from
near-confluent producer cells, containing Polybrene at a concen-
tration of 8 lg/ml. Two days later cells were passaged and main-
tained in medium containing puromycin at 2.5 lg/ml. Following
puromycin selection the parental clonal cell culture was main-
tained for over 80 PDs. Clones were also picked from the parental
hTERT culture.

2.3. DNA extraction and telomere length analysis

DNA extractions and STELA reactions at the 17p and XpYp
telomeres were carried out as previously described [10]. DNA
was extracted using standard proteinase K, RNase A, phenol/chlo-
roform protocols, solubilized by digestion with EcoRI, and quanti-
fied it in triplicate by Hoechst 33258 fluorometry (Bio-Rad). The
genomic DNA was diluted to 10 ng/ll in 10 mM Tris–HCl, pH
7.5. Ten nanograms of DNA was further diluted to 250 pg/ll in
a volume of 40 ll containing 1 lM Telorette2 linker and 1 mM
Tris–HCl, pH 7.5. Multiple PCRs (typically 6 reactions per sample)
were carried out for each test DNA in 10 ll volumes containing
250 pg of diluted DNA, 0.5 lM of the telomere-adjacent and Tel-
tail primers, 75 mM Tris–HCl, pH 8.8, 20 mM (NH4)2SO4, 0.01%
Tween-20, 1.5 mM MgCl2, and 0.5 U of a 10:1 mixture of Taq (AB-
Gene) and Pwo polymerase (Roche). The reactions were cycled
with an MJ PTC-225 thermocycler (MJ research) as described pre-
viously [10] with an extension at 68 �C for 10 mins. The DNA frag-
ments were resolved by 0.5% TAE agarose gel electrophoresis, and
detected by two separate Southern hybridizations with a random-
primed a-33P labeled (GE Healthcare) telomere repeat containing
probe and telomere-adjacent probe together with a probe to de-
tect the 1 kb (Stratagene) and 2.5 kb (Bio-Rad) molecular weight
markers. The hybridized fragments were detected by phosphor
imaging with a Molecular Dynamics Storm 860 phosphorimager
(GE Healthcare). The molecular weights of the DNA fragments
were calculated using the Phoretix 1D quantifier (Nonlinear
Dynamics).

2.4. TRAP assay

For the TRAP assay, protein extracts were prepared from tryp-
sinized cells and diluted to 5000 cell equivalents/reaction, where
an oligonucleotide substrate was extended by telomerase, ampli-
fied by PCR, and products separated on 10% polyacrylamide gels
as described previously [11].
3. Results

We choose to study telomerase mediated telomere elongation
in MRC5 cells because this telomerase negative primary fibroblast
strain displays a specific telomere length profile that is conducive
for this work. The XpYp telomere-adjacent DNA of MRC5 contains
multiple heterozygous single nucleotide polymorphic positions,
these can be utilised to undertake allele-specific single telomere
length analysis (STELA), which has the key advantage of being able
to detect very short telomeres which are not represented in other
assays [12]; in MRC5 the two XpYp telomeric alleles are widely
divergent in length with a difference of over 5 kb [13]. The 17p
telomeric sequence used for STELA is only present on one of the
17p alleles in MRC5, thus a single 17p telomeric allele can be ana-
lysed in isolation [14]. Telomere length of parental primary cell
strains can be very heterogeneous which can confound the inter-
pretation of telomere dynamics. We therefore picked single cell
clones of MRC5 that exhibit homogeneous telomere length distri-
butions, thus providing a more precise definition of the telomere
length prior to the introduction of hTERT. We chose one clone that
displayed the following telomere length profile at PD 23, 10 PD
prior to the onset of senescence; 17p 1.52 kb ± 0.23 kb
(mean ± S.D.), XpYp short allele 2.37 kb ± 0.39 kb and XpYp long al-
lele 7.67 kb ± 0.52 kb).

We transfected the MRC5 clone at PD23 with either hTERT or
an empty vector control, following puromycin selection the con-
trol culture underwent senescence 10.7 PDs after transfection,
whereas the hTERT expressing culture continued to proliferate
for a further 80 PDs until the experiment was discontinued
(Fig. 1), telomerase activity was confirmed using the TRAP assay
(data not shown).

We tracked telomere elongation at the short 17p allele, and the
XpYp long and short alleles. Both the short alleles were rapidly
elongated; during the first 26 PDs the rate of extension was 305
and 274 bp/PD for the 17p and XpYp short alleles, respectively
(Fig. 2a and b). In contrast the long XpYp allele was not elongated
during the first 14 PDs (Fig. 2a and b). Following this point there
was a gradual increase in the mean telomere length at both XpYp
alleles which was associated with an increase in the heterogeneity
of the telomere length distribution (Fig. 2c).

In order to remove the confounding effects of the multiple dif-
ferent hTERT expressing cells in the bulk population we examined
the telomere dynamics of a clonal population picked following
transfection with hTERT. The earliest PD point that provided suffi-
cient cells for analysis was PD 19, by this point all the telomeric al-
leles had been elongated to almost identical lengths irrespective of
the starting telomere length, 11.6 kb ± 0.23 (mean ± S.D., Fig. 3a
and b). As expected the telomere length heterogeneity was less
in the clonal population (mean S.D. = 2.95 kb) compared to the
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Fig. 2. STELA of a clonal population of MRC5 cells transfected with hTERT (a) 17p and XpYp allele-specific STELA gel. The number of population doublings (PD) from the point
of hTERT transfection is detailed above each set of six STELA reactions with the mean and S.D. displayed below. (b) Mean 17p or XpYp data plotted as a function of PD, for the
telomeric alleles as detailed at the top of the figure, rates of telomeric elongation calculated from the slop of the regression lines are detailed. (c) Displaying telomere length
heterogeneity as S.D., plotted as a function of PD, rate of change in S.D. calculated from the slope of the regression lines are detailed.
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bulk population (mean S.D. = 5.09). In both the bulk and clonal cell
populations elongation was coupled with an increase in the heter-
ogeneity of the telomere length distribution in the bulk population
(Figs. 2c and 3c). This increase appeared to stabilise once the telo-
meres had been fully lengthened.

In addition, whilst the bulk of telomeres at 17p were rapidly
elongated, in both the parental and clonal populations there was
a subset of 17p of telomeres that were not elongated, this repre-
sented an estimated 15% of the 17p telomeres (PD 14 in Fig. 2a
and PD 19 in Fig. 3a).
4. Discussion

By taking advantage of telomeric alleles with a large length dif-
ferential, here we provide clear evidence of the preferential elonga-
tion of short telomeres compared to longer telomeres in human
cells. This phenomenon has been demonstrated in both yeast and
mouse models [5,6,15] but not directly in human cells. Data con-
cerning the kinetics of telomere elongation in yeast indicate that
in a single extension reaction telomere length can be extended
by several times the length of the originating telomere, indeed a
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Fig. 3. STELA of a clone derived from a clonal population of MRC5 cells transfected with hTERT. (a) 17p and XpYp allele-specific STELA gel. The number of population
doublings (PD) from the point of hTERT transfection is detailed above each set of six STELA reactions with the mean and S.D. displayed below. �denotes the mean telomere of
the clonal population from which the telomerase expressing clone was derived. (b) Mean 17p or XpYp data plotted as a function of PD, for alleles as detailed in the legend. (c)
Displaying telomere length heterogeneity as S.D., plotted as a function of PD, rate of change in S.D. calculated from the slope of the regression lines are detailed.
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short telomere can be restored to the length of the longest telo-
mere in cell. In contrast our data from human cells indicate that
telomere elongation is gradual; we saw no evidence that, in a sin-
gle cell division, telomeres could be extended by multiples of their
own length or elongated to the maximum length; instead we ob-
served a gradual increase in the mean and S.D. of the distributions.
These data are consistent with the view that telomerase in human
cells adds a regulated amount of telomere repeats every cell divi-
sion. The maximum rate of elongation was observed at the shortest
telomeric allele at 17p (305 bp/PD). In the absence of telomerase
we have previously determined a rate of erosion of 75 bp/PD at
17p in MRC5 cells [14]; thus taking to account erosion rates telo-
merase can elongate telomeres at rates of up to 380 bp/PD. Our
data from the clonal population indicate that there is a telomere
length at which all the alleles coalesce, irrespective of their length
prior to the expression of hTERT. This was not so apparent in the
parental culture that contained multiple different telomerase
expressing clones and thus displayed considerable telomere length
heterogeneity. The gradual elongation, together with a length
threshold indicates that the shorter telomeres are marked epige-
netically for elongation; they are then extended until they reach
the specific length threshold.

In both the parental and clonal populations, subsets of cells
were observed at PD 14 that displayed no elongation at the 17p
telomere, whereas the short XpYp allele was elongated. These cells
were not detected in the subsequent PD points and thus it is not
clear whether these cells underwent senescence, or immortalisa-
tion following 17p elongation. This implies that these cells are
competent for telomeric elongation and express telomerase, but
some specific aspect of the 17p telomeric structure in these cells
prevented immediate elongation. During first 14 PDs following
the transduction of hTERT, the shorter telomeric alleles were
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elongated, whereas the longer allele at XpYp displayed no evidence
of elongation, instead the length of this allele was maintained, indi-
cating that telomerase was counteracting end-replication losses.
Together these dynamics appear to be consistent with the view
that telomeres can exist in two states, one extendable and one
not [5], and this is dependent upon the length of the telomere to
be elongated.
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