Extremal graphs for the list-coloring version of a theorem of Nordhaus and Gaddum

Simone Dantasa, Sylvain Gravierb, Frédéric Maffraya

aUniversidade Federal do Rio de Janeiro, COPPE, Brazil
bCNRS, Laboratoire Leibniz, 46 Avenue Félix Viallet, 38031 Grenoble Cédex, France

Received 9 July 2001; received in revised form 20 January 2003; accepted 22 March 2003

Abstract

We characterize the graphs G such that $Ch(G) + Ch(\bar{G}) = n + 1$, where $Ch(G)$ is the choice number (list-chromatic number) of G and n is its number of vertices.

Keywords: Graph coloring; List coloring

1. Introduction

We consider undirected, finite, simple graphs. A coloring of a graph $G = (V, E)$ is a mapping $c : V \to \{1, 2, \ldots\}$ such that $c(u) \neq c(v)$ for every edge $uv \in E$. A coloring which uses at most k colors is called a k-coloring. The chromatic number $\chi(G)$ is the smallest integer k such that G admits a k-coloring. A graph is called k-colorable if it admits a k-coloring. Deciding whether a graph admits a k-coloring is an NP-complete problem [4] for any fixed $k \geq 3$.

Vizing [12], as well as Erdős et al. [2] introduced a variant of the coloring problem as follows. Suppose that each vertex v is assigned a list $L(v)$ of allowed colors; we then want to find a vertex-coloring c such that $c(v) \in L(v)$ for all $v \in V$. In the case where such a c exists we will say that the graph G is L-colorable; we may also say that c is an L-coloring of G. Graph G is k-choosable if G is L-colorable for every assignment L that satisfies $|L(v)| \geq k$ for all $v \in V$. The choice number or list-chromatic number $Ch(G)$ of G is the smallest k such that G is k-choosable. It is easy to see from...
this definition that every graph G satisfies $Ch(G) \geq \chi(G)$. A well-known theorem of Nordhaus and Gaddum [10] states that $\chi(G) + \chi(\widehat{G}) \leq n + 1$ holds for every graph G on n vertices. As shown in [2] this inequality can be extended to the choice number:

Theorem 1 (Erdős et al. [2]). Every graph G on n vertices satisfies $Ch(G) + Ch(\widehat{G}) \leq n + 1$.

For a short proof, see [5,11]. The graphs attaining equality in the Nordhaus–Gaddum theorem were characterized by Finck [3], who proved that there are exactly two types of such graphs, the types (a) and (b) defined as follows.

- A graph $G=(V,E)$ has type (a) if it has a vertex v such that $V \setminus v$ can be partitioned into subsets K and S with the properties that $K \cup \{v\}$ induces a clique of G and $S \cup \{v\}$ induces a stable set of G (adjacency between K and S is arbitrary). Note that if G has type (a) then so does its complementary graph \widehat{G}.
- A graph $G=(V,E)$ has type (b) if it has a subset C of five vertices such that $V \setminus C$ can be partitioned into subsets K and S with the properties that K induces a clique, S induces a stable set, C induces a 5-cycle, and every vertex of C is adjacent to every vertex of K and to no vertex of S (adjacency between K and S is arbitrary). Note that if G has type (b) then so does its complementary graph.

It is easy to see that Finck’s graphs have no induced $2K_2$ and no induced C_4 (see also [1,8]).

The aim of this paper is to characterize the graphs $G=(V,E)$ that satisfy $Ch(G) + Ch(\widehat{G}) = |V| + 1$; this solves Problem 1.11 in [11]. In short we will call such graphs **extremal**. In contrast with Finck’s characterization, we will see that every graph H can be an induced subgraph of an extremal graph G.

Some notions must be introduced before we can state the main result.

The *join of two graphs*: Given two vertex-disjoint graphs G_1, G_2, the graph $G_1 \oplus G_2$ with vertex-set $V(G_1) \cup V(G_2)$ and edge-set $E(G_1) \cup E(G_2) \cup \{xy\mid x \in V(G_1), y \in V(G_2)\}$ is called the join of G_1 and G_2. It is easy to see that $\chi(G_1 \oplus G_2) = \chi(G_1) + \chi(G_2)$. In contrast the choice number does not behave so simply; for instance, if G_1 and G_2 are edgeless graphs on respectively q and q^d vertices, then obviously $Ch(G_1) = Ch(G_2) = 1$, but it is known (see [9]) that $Ch(G_1 \oplus G_2) = q + 1$, i.e., the complete bipartite graph K_{q,q^d} is not q-choosable.

The function $f(G)$: For any graph $G=(V,E)$, let $f(G)$ be the smallest integer k such that $Ch(G \oplus S_k) > |V|$, where S_k denotes the edgeless graph on k vertices. As observed above, the complete bipartite graph K_{q,q^d} is not q-choosable, thus if G is any graph on q vertices and S_{q^d} is the edgeless graph on q^d vertices then $Ch(G \oplus S_{q^d}) > q$ since K_{q,q^d} is a subgraph of $G \oplus S_{q^d}$. This implies that $f(G)$ is a well-defined integer for every graph G.

Since K_{q,q^d} is not q-choosable, and removing any edge from it results in a q-choosable graph (see [9]), we see that $f(S) = q^d$ holds for every edgeless graph S on q vertices. It is easy to see that $f(K) = 1$ for every complete graph K, because $K_a \oplus S_1 = K_{a+1}$ and $Ch(K_a) = n$. On the other hand, if G is not a complete graph and a,b are any two
non-adjacent vertices then \(f(G + ab) \leq f(G) \), where \(G + ab \) is the graph obtained by adding the edge \(ab \). Thus,

For every graph \(G \) on \(q \) vertices, we have \(1 \leq f(G) \leq q^q \). \(\text{(1)} \)

Types \(F_1, \bar{F}_1, \) and \(F_2 \): We define three new types of graphs that will be central to our main result.

- A graph \(G \) is of type \(F_1 \) if its vertex-set can be partitioned into three sets \(S, H, S_f \) such that \(S \cup S_f \) is a stable set of \(G \), every vertex of \(S_f \) is adjacent to every vertex of \(H \) (so \(H \oplus S_f \) is an induced subgraph of \(G \)), \(|S_f| \geq f(H) \), every vertex of \(S \) has at least one non-neighbor in \(H \). Here \(H \) can be any graph. We may write \(G = F_1(S, H, S_f) \).
- A graph \(G \) is of type \(\bar{F}_1 \) if and only if it is the complement \(\bar{G} \) of a graph of type \(F_1 \), and we will write \(G = \bar{F}_1(S, H, S_f) \) whenever \(\bar{G} = F_1(S, H, S_f) \).
- A graph \(G \) is of type \(F_2 \) if and only if its vertex-set can be partitioned into a clique \(K \), a stable set \(S \) and a 5-cycle \(C \) such that every vertex of the 5-cycle is adjacent to every vertex of \(K \) and to no vertex of \(S \). We may write \(G = F_2(S, K, C) \). Observe that the complement of a graph of Type \(F_2 \) is itself of type \(F_2 \).

With our notation, Finck’s graphs are the graphs \(G = F_1(S, K, S_f) \), where \(K \) is a complete graph and \(|S_f| \geq 1 \), and the graphs of type \(F_2 \).

Our main result is:

Theorem 2. A graph \(G \) on \(n \) vertices satisfies \(Ch(G) + Ch(\bar{G}) = n + 1 \) if and only if \(G \) is of type \(F_1, \bar{F}_1 \) or \(F_2 \).

We prove this theorem in Section 2. Note that any graph \(H \) can be used in types \(F_1 \) and \(\bar{F}_1 \); thus every graph can be an induced subgraph of a graph \(G \) that satisfies \(Ch(G) + Ch(\bar{G}) = n + 1 \).

The next lemma summarizes some simple facts about graphs of type \(F_1, \bar{F}_1 \), and \(F_2 \).

Lemma 3.

- Every graph \(G \) of type \(F_1(S, H, S_f) \) satisfies \(Ch(G) = |V(H)| + 1 \).
- Every graph \(G \) of type \(\bar{F}_1(S, H, S_f) \) satisfies \(Ch(G) = |S \cup S_f| \).
- Every graph \(G \) of type \(F_2(S, K, C) \) satisfies \(Ch(G) = |V(K)| + 3 \).

Proof. Let \(G \) be a graph of type \(F_1(S, H, S_f) \). Let \(q = |V(H)| \). By the definition of \(f(H) \), we have \(Ch(G) \geq q + 1 \). Since \(S \cup S_f \) induces a clique in \(\bar{G} \), we have \(Ch(\bar{G}) \geq |S \cup S_f| \). Summing up these two inequalities yields \(Ch(G) + Ch(\bar{G}) \geq n + 1 \), where \(n \) is the number of vertices of \(G \). Comparing with Theorem 1, we obtain that both inequalities are equalities, which proves the first two items of the lemma.

Now let \(G \) be of type \(F_2(S, K, C) \) and \(n \) be its number of vertices. We have \(Ch(G) \geq Ch(K \oplus C_S) \geq \chi(K \oplus C_S) = |K| + 3 \). Likewise, since \(\bar{G} \) is of type \(F_2(S, K, C) \), we have \(Ch(\bar{G}) \geq |S| + 3 \). Therefore \(Ch(G) + Ch(\bar{G}) \geq |S| + 3 + |K| + 3 = n + 1 \).
Comparing with Theorem 1, we obtain that both inequalities are equalities, which proves the third item of the lemma. \(\square\)

The following simple observation from [11] will be very useful for our proofs.

Lemma 4. Let \(G = (V, E)\) be a graph, \(L\) be an assignment of lists of colors on the vertex set of \(G\), and \(v\) be a vertex of \(G\) such that \(d(v) < |L(v)|\). Then \(G\) is \(L\)-colorable if and only if so is \(G \setminus v\). \(\square\)

An extension of this remark can be formulated as a list-coloring version of a well-known theorem of Brooks:

Theorem 5 (Erdős et al. [2] and Vizing [12]). Let \(G\) be a graph with maximum degree \(\Delta\). If \(Ch(G) > \Delta\), then either some connected component of \(G\) is a complete graph \(K_{\Delta+1}\) or \(\Delta = 2\) and some connected component of \(G\) is an odd cycle. \(\square\)

Now we give a property of \(f(H)\).

Lemma 6. If \(H\) is not a complete graph and \(|V(H)| = n\), then \(Ch(H \oplus S_n) \leq n\), in other words \(f(H) > n\).

Proof. Suppose that the lemma is false and let \(H\) be a counterexample of minimal order. Write \(q = |V(H)|\). So \(H \oplus S_q\) is not \(q\)-choosable. Let \(a, b\) be two non-adjacent vertices of \(H\). The graph \(H\) must have at least three vertices, for otherwise \(H = S_2\), thus \(f(H) = 2^2 = 4\), and \(H\) is not a counterexample to the lemma.

Let \(L\) be an assignment of lists of colors on the vertex set of \(H \oplus S_q\) which satisfies \(|L(v)| = q\) for all \(v \in V(H \oplus S_q)\) and such that \(H \oplus S_q\) is not \(L\)-colorable.

First suppose that there exist vertices \(x \in V(H) \setminus \{a, b\}\) and \(y \in S_q\) such that \(L(x) \neq L(y)\). Pick a color \(z\) from \(L(x) \setminus L(y)\). For each vertex \(v \in (V(H) \setminus x) \cup (S_q \setminus y)\), set \(L'(v) = L(v) \setminus \{z\}\). By the minimality of \(H\), and because \(H \setminus x\) is not a complete graph, the graph \((H \setminus x) \oplus (S_q \setminus y)\) admits an \(L'\)-coloring. By Lemma 4, we can extend this coloring by assigning to \(y\) a color from \(L(y)\) different from those assigned to its \(q - 1\) neighbours other than \(x\), and by assigning color \(z\) to \(x\) (recall that \(z \notin L(y)\)). Thus we get an \(L\)-coloring of \(H \oplus S_q\), a contradiction.

Now we may assume that the set \(L(v)\) is the same for every \(v \in (V(H) \setminus \{a, b\}) \cup S_q\), say it is equal to \(\{1, \ldots, q\}\). Assign color 1 to every vertex of \(S_q\), and color the \(q - 2\) vertices of \(H \setminus \{a, b\}\) with colors 2, \ldots, \(q - 1\). Thus we are using \(q - 1\) colors to color \(S_q \cup (H \setminus \{a, b\})\), and we can extend this coloring to \(a\) and \(b\) since \(|L(a)| = |L(b)| = q\) and \(a, b\) are not adjacent; this is a contradiction again. \(\square\)

A direct consequence of this lemma is the following corollary.

Corollary 7. \(f(H) = 1\) if and only if \(H\) is a complete graph.

The next theorem will be also useful.
that is, \(G \) and we must have equality throughout, in particular we have \(Ch \) three cases.

Let \(Corollary 9. \) Let \(G \) be a graph which admits a \(k \)-coloring such that each color class has size at most \(3 \) and there is at most two color classes of size \(3 \). Then \(G \) is \(k \)-choosable.

Proof. The result is clear if \(k = 1 \) and it is a direct consequence of Theorem 8 when \(k \geq 3 \). If \(k = 2 \) then \(G \) is contained in the complete bipartite \(K_{3,2} \) which is \(2 \)-choosable. \(\square \)

2. Proof of Theorem 2

We first observe that every graph \(G=(V,E) \) of type \(F_1, F_2 \) satisfies \(Ch(G) + Ch(\tilde{G}) = |V| + 1 \); this follows directly from Lemma 3.

Now we prove that each graph \(G=(V,E) \) satisfying

\[
Ch(G) + Ch(\tilde{G}) = |V(G)| + 1 \tag{2}
\]

is of type \(F_1, F_2 \). Our proof works by induction on the number \(n = |V| \) of vertices of \(G \). Clearly, the statement is true for \(n \leq 2 \). Let \(G \) be a graph satisfying (2) of order \(n + 1 \geq 3 \), that is

\[
Ch(G) + Ch(\tilde{G}) = n + 2. \tag{3}
\]

Consider an arbitrary vertex \(p \) of \(G \). Clearly we have \(Ch(G) \leq Ch(G \setminus p) + 1 \) and \(Ch(\tilde{G}) \leq Ch(\tilde{G} \setminus p) + 1 \). Let \(r \) be the degree of \(p \) in \(G \); note that \(p \) has degree \(n - r \) in \(\tilde{G} \). We observe that if \(r < Ch(G \setminus p) \) then \(Ch(G) = Ch(G \setminus p) \). Likewise if \(n - r < Ch(\tilde{G} \setminus p) \) then \(Ch(\tilde{G}) = Ch(\tilde{G} \setminus p) \).

Since \(Ch(G \setminus p) + Ch(\tilde{G} \setminus p) \leq n + 1 \) by Theorem 1 applied to \(G \setminus p \), we must have either \(Ch(G \setminus p) \leq r \) or \(Ch(\tilde{G} \setminus p) \leq n - r \). This leads us to distinguishing between three cases.

Case 1: Some vertex \(p \) of \(G \) is such that \(Ch(G \setminus p) \leq r \) and \(Ch(\tilde{G} \setminus p) > n - r \).

Applying Lemma 4 to \(\tilde{G} \) and \(p \), and since \(Ch(\tilde{G} \setminus p) > n - r \), we obtain \(Ch(\tilde{G}) = Ch(\tilde{G} \setminus p) \); thus, and by (3):

\[n + 2 = Ch(G) + Ch(\tilde{G}) \leq Ch(G \setminus p) + 1 + Ch(\tilde{G} \setminus p) \leq n + 2 \]

and we must have equality throughout, in particular we have \(Ch(G) = Ch(G \setminus p) + 1 \), that is, \(G \setminus p \) satisfies (2). So, by the induction hypothesis, \(G \setminus p \) is of type \(F_1, F_2 \), and we consider these three cases separately.

Assume that \(G \setminus p \) is of type \(F_1(S,H,S_f) \). Then \(Ch(G \setminus p) = q + 1 \), where \(q = |V(H)| \), and consequently \(Ch(G) = q + 2 \). Consider the subgraph \(H' \) of \(G \) induced by \(V(H) \cup \{p\} \) and the sets \(S_f' = N(p) \cap S_f \) and \(S = S \cup S_f \setminus S_f' \). We claim that \(G \) is of type \(F_1(S',H',S_f') \).

Indeed, \(S' \cup S_f' = S \cup S_f \) induces a stable set in \(G \). Every vertex \(x \) in \(S' \) either is in \(S \),
and thus has a non-neighbor in H, or is in $S_f \setminus N(p)$, and thus is not adjacent to p. By the construction, G contains $H' \oplus S_f'$. It remains to prove that $|S_f'| \geq f(H')$. Suppose on the contrary that $|S_f'| < f(H')$; we will prove that G is $(q+1)$-list-colorable, which is a contradiction. Let L be an assignment of sets of colors on the vertices of G such that $|L(v)| \geq q + 1$. By the definition of S' every vertex in S' has degree at most q. Thus, and by Lemma 4 applied to each vertex of S', we need only prove that $G \setminus S'$ is L-colorable. However, $G \setminus S' = H' \oplus S_f'$ is indeed L-colorable by the definition of $f(H')$ and because $|S_f'| < f(H')$. Therefore G is of type $F_1(S', H', S_f')$ and we are done.

Now assume that $G \setminus p$ is of type $F_1(S, H, S_f)$. Let $|S| = s$, $|S_f| = g \geq f(H)$ and $|V(H)| = q$. We claim that $Ch(G \setminus p) = s + g$. Indeed, when $f(H) = 1$, Lemma 6 implies that H induces a stable set in G, and so every vertex of H has degree at most s in $G \setminus p$. The graph $(G \setminus p) \setminus H$ is $(s + g)$-choosable as it is a clique of size $s + g$. Hence and by Lemma 4, $G \setminus p$ is $(s + g)$-choosable. On the other hand, when $f(H) > 1$, Lemma 6 implies $g \geq f(H) \geq q + 1$. Moreover every vertex in H has degree at most $s + q - 1 < s + g$ in $G \setminus p$. So we can conclude as above. Thus we obtain that $Ch(G \setminus p) = s + g$ as claimed, and consequently $Ch(G) = s + g + 1$.

Suppose that H is not a complete subgraph of G. By Lemma 6, $g = |S_f| \geq f(H) \geq q + 1$. We claim that vertex p is adjacent to all of $S \cup S_f$ in G. Indeed, in the opposite case, we will prove that G is $(s + g)$-choosable. Since $g \geq q + 1$, every vertex in H has degree at most $s + q < s + g$ in G, and so, by Lemma 4, we need only prove that $G' = G \setminus H$ is $(s + g)$-choosable. Let x be a vertex in $S \cup S_f$ and not adjacent to p. Vertex x has degree $s + g - 1$ in G'. Again by Lemma 4, it is sufficient to see that $G' \setminus x$ is $(s + g)$-choosable; but this is clear because $G' \setminus x$ has precisely $s + g$ vertices.

Thus we obtain that p is adjacent to all of $S \cup S_f$ in G. Now, if $N(p) \cap V(H) = \emptyset$ then G is of type $F_1(S, H, S_f + p)$; else G is of type $F_1(S + p, H, S_f)$.

Assume now that H is a complete subgraph of G. If p is adjacent to all vertices in $S \cup S_f$ then as before G is of type F_1. Else, let x be a vertex of $S \cup S_f$ not adjacent to p. We claim that $g = 1$. Indeed, in the opposite case, we will prove that G is $(s + g)$-choosable. Every vertex in H has degree at most $s + 1 < s + g$ in G and so, by Lemma 4, we need only prove that $G' = G \setminus H$ is $(s + g)$-choosable. Since x has degree $s + g - 1$, it is sufficient to prove that $G' \setminus x$ is $(s + g)$-choosable; but this is true since $G' \setminus x$ has $s + g$ vertices.

Thus we obtain $|S_f| = f(H) = 1$, which implies that $T = H \cup S_f$ is a stable set of G, and $Ch(G) = s + 2$. Let S_f' be the maximal subset of T such that $S \cup \{p\} \cup S_f'$ is an induced subgraph of G. Let H' be the subgraph of G induced by $S \cup \{p\}$. We claim that $|S_f'| \geq f(H')$. Indeed in the opposite case we will prove that $Ch(G) = s + 1$. Note that every vertex in $U = T \setminus S_f'$ has degree at most s, and so, by Lemma 4, we need only prove that $G \setminus U = H' \oplus S_f'$ is $(s + 1)$-choosable; but this is true by the definition of $f(H')$. Therefore we see that G is of type $F_1(U, H', S_f')$ and we are done.

Assume now that $G \setminus p$ is of type $F_2(S, K, C_5)$. Thus $Ch(G \setminus p) = k + 3$, where $k = |K|$, and so $Ch(G) = k + 4$. We claim that p is adjacent to all vertices in $K \cup C_5$. This will imply that G is of type $F_2(S, K + p, C_5)$ as desired. Suppose on the contrary that p is not adjacent to some vertex in $K \cup C_5$. We will prove that $Ch(G) = k + 3$, a contradiction.
If there exists a vertex \(x \in C_5 \) that is not adjacent to \(p \), then the degree of \(x \) in \(G \) is at most \(k+2 \). Thus, by Lemma 4, we need only prove that \(G' = G \setminus x \) is \((k+3)\)-choosable.

Let \(y, z \) be the two neighbors of \(x \) in \(C_5 \). The degree of \(y \) and \(z \) in \(G' \) is at most \(k+2 \). Then, similarly, we need only prove that \(G' \setminus \{y, z\} \) is \((k+3)\)-choosable; but this is obvious because \(G' \setminus \{y, z\} \) has \(k+3 \) vertices.

Suppose now that \(p \) is not adjacent to some vertex \(x \) in \(K \). We will prove again that \(Ch(G) = k + 3 \), a contradiction. Let \(L \) be an assignment of lists of colors to the vertices of \(G \) such that \(|L(v)| \geq k+3 \) for all \(v \in V \).

If \(L(x) \cap L(p) \neq \emptyset \), pick a color \(\alpha \in L(x) \cap L(p) \) and assign it to \(x \) and \(p \). Write \(G' = G \setminus \{x, p\} \). Define an assignment \(L' \) on \(G' \) by \(L'(v) = L(v) \setminus \{\alpha\} \) for all \(v \in V(G') \). The assignment \(L' \) satisfies \(|L'(v)| \geq k + 2 \) for all \(v \in V(G') \). Moreover, the graph \(G' \) is of type \(F_2(S, K \setminus x, C_5) \), thus it is \((k+2)\)-choosable. So \(G' \) admits an \(L' \)-coloring, which extends to an \(L \)-coloring of \(G \).

We may now assume that \(L(p) \cap L(x) = \emptyset \). Consider any \(y \in C_5 \). We may choose a color \(\alpha \in L(x) \cup L(p) \) such that \(|L(y) \setminus \{\alpha\}| \geq k + 3 \). We may assume that \(\alpha \in L(p) \) (if \(\alpha \in L(x) \) the rest of the proof here is identical). Assign color \(\alpha \) to \(p \). Write \(G' = G \setminus p \) and define an assignment \(L' \) on \(G' \) by \(L'(v) = L(v) \setminus \{\alpha\} \) for all \(v \in V(G') \). Observe that \(|L'(v)| \geq k + 2 \) for every vertex of \(G' \), and \(|L'(y)| \geq k + 3 \). Moreover the degree of \(y \) in \(G' \) is \(k + 2 \). So we may conclude as above that \(G' \) is \(L' \)-choosable and consequently that \(G \) is \((k+3)\)-choosable.

Case 2: Some vertex \(p \) of \(G \) is such that \(Ch(G \setminus p) > r \) and \(Ch(\bar{G} \setminus p) \leq n - r \). This case is similar to Case 1 by complementarity.

Case 3: For every vertex \(p \) of \(G \), we have \(Ch(G \setminus p) \leq d_\varnothing(p) \) and \(Ch(\bar{G} \setminus p) \leq d_\bar{\varnothing}(p) \).

Let \(\Delta \) be the maximum degree in \(G \) and \(p \) be a vertex of \(G \) with degree \(\Delta \). Then:

\[
Ch(G \setminus p) \leq \Delta \quad \text{and} \quad Ch(\bar{G} \setminus p) \leq n - \Delta. \tag{4}
\]

Hence \(Ch(G \setminus p) + Ch(\bar{G} \setminus p) \leq k \). From the last inequality and from (3) it follows that \(Ch(G) = Ch(G \setminus p) + 1 \) and \(Ch(\bar{G}) = Ch(\bar{G} \setminus p) + 1 \). These two equalities together with (3) imply \(Ch(G \setminus p) + Ch(\bar{G} \setminus p) = n \). From this and from (4) we obtain \(Ch(G \setminus p) = \Delta \) and \(Ch(\bar{G} \setminus p) = n - \Delta \), i.e.,

\[
Ch(G) = \Delta + 1 \quad \text{and} \quad Ch(\bar{G}) = n - \Delta + 1. \tag{5}
\]

According to Theorem 5 and to the first part of (5), we have either \(\Delta \leq 1 \), or \(\Delta = 2 \) and \(G \) has a connected component that is an odd chordless cycle, or \(\Delta \geq 3 \) and \(G \) has a connected component that is a clique of cardinality \(\Delta + 1 \). We examine the three cases separately.

Assume \(\Delta = 0 \). Graph \(G \) has no edge, so it is of type \(F_1(\emptyset, \emptyset, V) \).

Assume \(\Delta = 1 \). Graph \(G \) consists of \(e \geq 1 \) pairwise disjoint edges and \(n + 1 - 2e \) isolated vertices. If \(G \) has only one edge \(ab \) then \(G = F_1(V \setminus \{a, b\}, \{a\}, \{b\}) \). If \(e \geq 2 \), then \(\bar{G} \) is the join of \(n + 1 - e \) stable sets of size at most two, and by Corollary 9, \(\bar{G} \) is \((n + 1 - e)\)-choosable, which contradicts (5).
Assume \(\Delta = 2 \) and \(G \) has a connected component that is an odd cycle \(C \). Let \(l \) be the length of \(C \). We distinguish between the cases \(l = 3 \), \(l = 5 \), and \(l \geq 7 \).

First assume \(l = 3 \). If \(E(G) = E(C) \) then \(G \) is of type \(F_1(V \setminus C, C \setminus v, v) \) where \(v \) is any vertex of \(C \). If \(E(G) \neq E(C) \), pick an edge \(ab \in E(G) \setminus E(C) \), and call \(G' \) the graph \((V, E(C) \cup \{ab\})\). Then \(G' \) is the join of \(n - 3 \) stable sets of size at most 2 plus one stable set of size 3. By Corollary 9, \(G' \) is \((n - 2)\)-choosable and consequently \(G \) is \((n - 2)\)-choosable, which contradicts (5).

Now assume \(l = 5 \). If \(E(G) = E(C) \) then \(G \) is of type \(F_2(V \setminus C, \emptyset, C) \) and we are done. If \(E(G) \neq E(C) \) we are going to prove that \(G \) is \((n - 2)\)-choosable, which is a contradiction to (5). To prove this, pick an edge \(ab \in E(G) \setminus E(C) \). We have \(|V \setminus (C \cup \{a, b\})| = n - 6 \), so \(G \) is a subgraph of the join of a clique \(K \) of size \(n - 6 \), a stable set \(\{a, b\} \) and \(C \). Let \(L \) be an assignment of lists of colors to the vertices of \(G \) such that \(|L(v)| \geq n - 2 \) for all \(v \in V \). Assign distinct colors from their respective lists to the vertices of \(K \); call \(D \) the set of \(n - 6 \) colors thus used. Define an assignment \(L' \) on \(G \setminus K \) by setting \(L'(v) = L(v) \setminus D \) for each \(v \in V \setminus K \); so \(|L'(v)| \geq 4 \) for each \(v \in V \setminus K \).

We need only prove that \(G \setminus K \) (whose vertex-set is \(C \cup \{a, b\} \)) is \(L'\)-colorable, which we do in details as follows.

Suppose that \(L'(a) \cap L'(b) \neq \emptyset \). Pick a color \(z \in L'(a) \cap L'(b) \) and assign it to \(a \) and \(b \). Let \(L'' \) be the assignment on \(C \) defined by \(L''(v) = L'(v) \setminus \{z\} \). We have \(|L''(v)| \geq 3 \) for all \(v \in C \), so \(C \) is \(L'' \)-colorable, so \(G \setminus K \) is \(L' \)-colorable and so \(G \) is \(L \)-colorable, a contradiction.

Suppose now that \(L'(a) \cap L'(b) = \emptyset \). Let \(x \) be a vertex of \(C \). Since \(L'(a) \cap L'(b) = \emptyset \) there exists a color \(z \in L'(a) \cup L'(b) \) such that \(|L'(x) \setminus \{z\}| \geq 4 \). We may assume that \(z \in L'(a) \). Assign color \(z \) to \(a \). Define an assignment \(L'' \) on \(G \setminus (K \cup \{a\}) \) by setting \(L''(v) = L'(v) \setminus \{z\} \) for all \(v \in V \setminus (K \cup \{a\}) \). Remark that \(|L''(v)| \geq 3 \) for all \(v \in C \cup \{b\} \) and that \(|L''(x)| \geq 4 \). Moreover the degree of \(x \) in \(G \setminus (K \cup \{a\}) \) is 3. So, by Lemma 4, it is sufficient to prove that \(G \setminus (K \cup \{a, x\}) \) is \(L'' \)-colorable. Let \(y, z \) be the two neighbors in \(G \) of \(x \) in \(C \). The degree of \(y \) and \(z \) in \(G \setminus (K \cup \{a, x\}) \) is 2; thus, again by Lemma 4, it is sufficient to prove that \(G \setminus (K \cup \{a, x, y, z\}) \) is \(L'' \)-colorable; but this is true since that last graph has three vertices. So \(G \setminus K \) is \(L' \)-colorable and so \(G \) is \(L \)-colorable, a contradiction.

Now assume \(l \geq 7 \). The graph \(G \) is a subgraph of the join of a clique \(K \) of size \(n + 1 - l \) and \(C \). We claim that \(G \) is \((n - 2)\)-choosable, which is a contradiction to (5). To prove this, let \(L \) be any assignment on \(G \) such that \(|L(v)| \geq n - 2 \) for all \(v \in V \). Assign distinct colors from their respective lists \(L(x) \) to the vertices \(x \) of \(K \), and call \(D \) the set of the \(n + 1 - l \) colors thus used. Define an assignment \(L' \) on \(G \setminus K \) by setting \(L'(v) = L(v) \setminus D \) for all \(v \in V \setminus K \). Note that \(|L'(v)| \geq l - 3 \) for all \(v \in V \setminus K \). By Theorem 5, since \(G \setminus K \) is neither an odd chordless cycle nor a complete graph, \(G \setminus K \) is \(\Delta' \)-choosable, where \(\Delta' \) is the maximum degree in \(G \setminus K \). Actually, we have \(\Delta' = l - 3 \). Thus \(G \setminus K \) is \(L' \)-choosable, and \(G \) is \((n - 2)\)-choosable.

Finally, assume that \(\Delta \geq 3 \) and \(G \) has a connected component \(K \) which is a clique of cardinality \(\Delta + 1 \). Write \(H = G \setminus K \) and \(S_f = K \). By the definition of \(f(H) \) and since \(Ch(G) = n + 1 - \Delta = |H| + 1 \), we have \(|S_f| \geq f(H) \) and thus \(G \) is of type \(F_1(\emptyset, H, S_f) \). This completes the proof. \(\square \)
3. Concluding remarks

We have described the graphs G that satisfy $Ch(G) + Ch(\bar{G}) = |V(G)| + 1$ and shown that they cannot be characterized by forbidden induced subgraphs. In the process we needed to introduce the function $f(G)$. We noted that $f(G) = 1$ if and only if G is a clique, that $f(G) \geq |V(G)| + 1$ if and only if G is not a clique, and that $f(G) = |V(G)|^{\overline{V(G)}}$ if G is edgeless. The behavior of $f(G)$ has been studied later in somewhat more details [7], but it seems very hard to compute the value of $f(G)$ for general graphs or even for restricted classes. One may wonder about the complexity status of the problem of determining whether a graph G has $f(G) \leq k$ for a given integer k; it is not clear to us so far that the problem is in NP.

Acknowledgements

We thank Celina M.H. de Figueiredo for discussions on list colorings and for her careful reading of a previous version of this paper.

References