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Abstract

We consider solutions to the Helmholtz equation in two and three dimensions. Based on layer
potential techniques we provide for such solutions a rigorous systematic derivation of complete
asymptotic expansions of perbations resulting from the presamof diametrically small inhomo-
geneities with constitutive paratees different from those of theackground medium. It is expected
that our results will find important applications for developing effective algorithms for reconstructing
small dielectric inhomogeneitifrom boundary measurements.
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1. Introduction

Let £2 be a bounded domain iR?, 4 = 2 or 3, with a connected Lipschitz bound-
ary 052. Let v denote the unit outward normal &32. Suppose thaf2 contains a small
inhomogeneityD of the formD = z + § B, whereB is a bounded Lipschitz domain &’
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containing the origin and is the order of magnitude of the diameter of the inhomogene-
ity. We assume that the domalnis separated apart from the boundary, i.e., there exists a
constantg > 0 such that digt, 952) > cg > 0. Letu denote the solution to the Helmholtz
equation

1 .
V. <—Vu> +w?esu=0 ing2, (1.1
2

with the boundary condition = f ond$2, wherew > 0 is a given frequency. Heges and
&5 denote the constitutive parameters of the inhomogeneity defined by

_|no. xe\D, 12
H«S(X)—{M’ veD. (1.2)
es(x) = {80’ ¥ €2\D, (1.3)

e, xe€D,

wherepu, 1o, €, andeg are positive constants. If we allow the degenerate 8as@, then
the functionsus (x) andes(x) equal the constanisy andeg. Problem (1.1) can be written
as

(A + &2ecou)u=0 inR2\D,

(A + &2ep)u=0 inD,

Lo — L4, =0 ondD, (1.4)
ul- —ul+=0 onaD,

u=f onos.

Here the subscripts- and — indicate the limit from outside and from inside, respec-
tively. In order to insure well-posedness (also for shdependent case fadr sufficiently
small [15]) we shall assume thatsouq is not an eigenvalue for the operaten in L2($2)
with the Dirichlet boundary conditions.

The main achievement of this paper is a rigorous derivation, based on layer potential
techniques, of a complete asymptotic expansio%lgcbjg asé — 0ford =2, 3. The lead-
ing order term in this asymptotic formula has been derived by Vogelius and Volkov [15],
see also [5,10] for previous results on the conductivity problem and [4] where the second
order term in the asymptotic expansions of solutions to the Helmholtz equation is obtained.

The proof of our asymptotic expansion is radically different from the variational ones
in [4,15]. It is based on layer potential techniques and a new decomposition formula of
the solution to the Helmholtz equation. Our decomposition formula generalizes that due
to Kang and Seo [12] for the conductivity problem. In that case the steady-state voltage
potential is decomposed into a hanic part and a refraction part.

It is expected that our results will find important applications for developing effective
algorithms for reconstructing small dégltric inhomogeneities from boundary measure-
ments which can be applied in medical imagining, breast cancer, tumor, and land mine. By
use of higher-order terms in the asymptaigpansions of the boundary perturbations due
to the presence of the dielectric inhomogensithe reconstruction technique described in
[2] could be carried out to recuperate tlredtions of the inhomogeneities with a higher
resolution and capture further properties ofitlggometries (namely, their generalized po-
larization tensors defined in [1]).
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In our recent paper [2] we have used the legdrder term in the expansion derived
in this paper for efficiently determining the locations and/or shapes of the small dielectric
inhomogeneities from boundary measurementta fixed frequency by reducing the re-
construction problem of the small inhomogéiss to the calculation of an inverse Fourier
transform. Our algorithm uses plane wave sources for identifying the small electromagnetic
inhomogeneities. A different approach basadpoojections on three planes was proposed
and successfully tested by Volkov in [16].

The extension of the techniques used in [4,15] to construct complete asymptotic expan-
sions seems to be laborious. The present work represents a natural completion of [1]. It is
organized as follows. In Section 2 we prove one preliminary result on the unigue solvability
of a system of two integral equations. In Section 3 we give slightly different representations
of the solution of (1.4). In Section 4 we provide a rigorous derivation of high-order terms
in its asymptotic expansion. Our derivatis are valid for inhomogeneities with Lipschitz
boundaries.

2. Preliminary result

Let ko := w./eomo andk := w. /ex. Let @4 (x) be the fundamental solution far + 42,
that is forx #£ 0,

iyl
—4Hy(klx —yl), d=2,
DPp(x) = oiklx=yl
Il d=3,

whereHc} is the Hankel function of the first kind of order O [7]. We have,

+00

] 1
—ZHo (klx = y)) = 5= loglx = ¥l 4+ + Y (bu logklx — ¥l +¢x) (klx = y1)".
n=1
2.1)

where the constant= (1/2x)logk 4+ y — i /4, y is the Euler constant. Let far# 0O,

1

s-loglx —y|, d=2,
D (x) = Po(x) = { )

m, d=3

For a bounded domaip in R? andk > 0 IetS’l‘) andD’,‘) be the single and double layer
potentials defined by, that is,

Si‘)so(x)=/a>k(x—y)qo(y)da(yx xeRY,
oD

oD —
Dhp(x) = f gfj%y)”wmdo(y), x € R4\ aD.
oD

Itis well known, see [7, Theorem 3.1], that
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I(SHe) (x) = (j:}I + (/C]z))*)(p(x), aexedD, (2.2)
av + 2
1
(Dho)ls = (*E’ +/C§>)w(x% aexedb, 23

for g € L2(382), wherelC’,‘) is the operator defined by

C di (x, y)
’Cnfp(x)—p-v-al ) p(y)do(y), (2.4)

and (K%)* is the L?-adjoint of KX . The operatork’% is known to be bounded on
L?(3D) [6].

Theorem 2.1. Suppose thakcz] is not a Dirichlet eigenvalue for-A on D. For each
(F,G) € HY@D) x L?(3D), there exists a unique solutiarf, g) € L?(dD) x L2(dD)
to the integral equation

Shf-Sgg=
onaD. (2.5)

1 B(SDf)| 1 3(3 %9 —G.

+

There exists a constant independent of' and G such that
1f 1120y + 18120y < CIFll3apy + G L2ap))- (2.6)

Proof. We only give the proof forug # n leaving the modification of the arguments
presented here in the general case to the readetX et L2(3 D) x L?(dD) andY :=
HY(3D) x L?(3D), and define an operat@t: X — Y by

18(Skf) 18(8 3(Sp8) )
B n '

T(f,g):= (Si%f — S,

We also defindp by

(0, 0 ga(SOf) 18(8 8)
TO(fvg) = <8Df S ’I/L 9 N .

One can easily see théfg’ - Sg :L2(0D) — HYD) is a compact operator, and so is
ko, 28214 : L2(dD) — L2(dD). Therefore T — Tp is a compact operator from
X into Y. If uo# u, thenitis proved in [9] thafp : X — Y is invertible (see also [13]).
Thus by the Fredholm alternatives, it is enough to proveThigtinjective.
Suppose thal ( f, g) = 0. Then the functiom defined by

Sg’g(x), if xeR?\ D,
u(x):= " )
Spf(x), ifxeD,
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is the unique solution of the transmission problem

(A + o2cou)u=0 inRY\ D,

(A + &2ep)u=0 inD,
1 1¢
ﬁg—ﬁ,—E%H:O OI’]8D,
ul- —ul+=0 onaD,

subject to the radiation condition

ﬁ Vu(x) — ikou(x) = O (Ix|“tD72) | |x] - oo, 2.7)

X

By the uniqueness of a solution to the interface problem for the Helmholtz equation, see
for instance [7], we conclude thgt = g = 0. This completes the proof of solvability of
(2.5). The estimate (2.6) is a consequence of solvability and the closed graph thearem.

Note that in the three-dimensional case, using classical results on the low wave number
asymptotics for the Helmholtz equation and single layer potential [14], it can easily be
proved thatf andg have limits inL2?(3 D) asko andk go to zero, and thus the constant
C in (2.6) can be chosen independentlykgfand k. This remark will be of use to us in
establishing Proposition 4.1 in the three-dimensional case.

3. Representation of solutions

In this section we present two representations of the solution of (1.4). A similar rep-
resentation formula for the transmission problem for the harmonic equation was found in
[12,13].

Theorem 3.1. Suppose thakg is not a Dirichlet eigenvalue for-A on D. Letu be the

solution of (1.4)and g := %“|,,. Define

H(x):=—82(9)(x) + DR(f)(x), xeRI\dg, (3.1)
and (g, ¥) € L2(dD) x L2(3 D) be the unique solution of

Sko -SSPy =H

! onaD. 3.2
;a(Sf,w>| _ia(szox//)‘ _10H (3.2)
mwo9v = po v + 7 mo v

Thenu can be represented as

) _
u(x)Z:H(x)+SD°1ﬁ(x), x e\ D, 33)

S’L‘)go(x), x €D.

Moreover, there exist§ > 0 independent off such that

||(P||L2(aD) + ||W||L2(a[)) < C(||H||L2(aD) + ||VH||L2(aD))- (3.4)
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Proof. Note that« defined by (3.3) satisfies the differential equations and the transmission
condition ond D in (1.4). Thus in order to prove (3.3), it suffices to pr%e: gonos2.
Let f :=ulye and consider the following two phase transmission problem:

(A+kD)v=0 in(2\ D)U R\ 2),
(A+k*v=0 in D,

|- — o]y =0, %g_ﬂi_u_log—zh:o ondD, (3.5)
vl —vle=f Bl -fl=¢ onasz,

Vo) — ikou(x) = O(Ix| @072, [x] - oo,

We claim that (3.5) has a unique solution. In factfi= g = 0, then one can show as
before thatv = 0 in R? \ D. Thusv = ?’—EL = 0 onaD. By the unique continuation for
the operatorA + k2, we havev = 0 in D, and hence = 0 in R?. Note thatv;, j =1,2,
defined by

Cfut), xe@, N H®+SPyE), xe2\D,
vi(x) = {O, xeRI\ 2, v2(¥) = {811‘)<p(x), x€eD,

are two solutions of (3.5), and henee= v;. This completes the proof.O

Proposition 3.2. For each integern there exist<, independent oD such that

||H||Cn(5) < Cn||f||H1/2(a_Q)' (3.6)

Proof. Letg := %bg. By the definition (3.1), it is easy to see that

IHllen 5y < CI8ll a-1202) + 1 f Il 22 2))-
whereC depends only on and distD, 9£2). Therefore, it is enough to show that

gl g-12302) < CIf Il g120)

for someC independent oD.

Let ¢ be aC* function which is 0 in a neighborhood @ and 1 in a neighborhood
of 352. Letv € HY2(352) and definel € H1(£2) to be the unique solution ta# = 0 in
2 and? =v onds. Let(,) denoteH ~Y/2 — H/2 pairing ond 2. Then

(g, v) :/A((pu)ﬁdx+/V((pu)-Vﬁdx

Q2 Q2
=/A(puﬁdx+2/Vg0'Vut7dx—kS/wuﬁdx—i—/V(gou)on)dx.
Q2 Q2 Q2 Q2

Therefore, it follows from th&€auchy—Schwartz inequality that
|(8: U)| < C“u”Hl(Q\D)”ﬁ”Hl(Q) < C”u”Hl(g\D)||U||H1/2(B.Q)'

Sincev € HY?2(32) is arbitrary, we get
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gl -12302) < C||M||H1(_Q\D) (3.7)
Note that the constarit depends only on di&D, 352). On the other hand, sinee? is not
a Dirichlet eigenvalue for the Helmholtz equation (1.4¥nwe can prove that

lull iy < CUF a2,
whereC depends only omg, i, 9, ande. It then follows from (3.7) that

||g||1-171/2(39) < C||f||1-11/2(a_(2)~
This completes the proof.O

We now transform the representation (3.3) into the one using the Green function and
the background solution. The background soluiigrs the solution of

{ (A+kduo=0 ing2,
ug=f onoas.

Let G(x, y) be the Dirichlet Green function fot +k§ in 2, i.e., foreachy € 2, G is the
solution of

(A+kHG(x,y) =8,(x), x€K,
G(x,y)=0, x€082.

(3.8)

Then,

G
uo(x)sz(x,y)f(y)da(y), x €S2.
Y
982

Define one more notation: For a Lipschitz domairc 2 andg € L2(d D), we define

Gpe(x) :=/G(x,y)¢(y)d6(y), xeQ.
aD
Our second representation is the following theorem.

Theorem 3.3. Let ¢ be the function defined i{8.2). Then

0 (G
—< )= 200+ (aj‘”% ) xedg. (3.9)

We need a few facts to prove Theorem 3.3. We first observe an easy identity: if
R4\ 2 andz € £2,

0G(z,y)

/ Dpo(x —y)————
d

i v(y)

As a consequence of (3.10), we have

1‘ ko * 8G(7 y)
<21+(K9) )( v (y)

do(y)=Pry(x,2), xeRI\ 2, zeR. (3.10)
082

)@):M, x€df. (3.11)
90 av(x)
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Lemma 3.4. If k(z) is not a Dirichlet eigenvalue for-A on £2, then %I + (ICI}S)* :
L2(082) — L%(9£2) is injective.

Proof. Suppose thap € L2(352) and(%l + (K'}?)*)w = 0. Defineu(x) := Sg’go(x), X €
R\ 2. Thenu is a radiating solution ofA + k3)u = 0 inR¢ \ 2, and satisfieg" |y =
(%I + (/Cg’)*)(p = 0. Therefore, by the uniqueness for the exterior Neumann problem [7],

we obtainsg’w(x) =0,x e R\ 2. Sincekg is not a Dirichlet eigenvalue for A on £2,
we can prove thap = 0 in the same way as before. This completes the proaf.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Letg := g—’ﬁlan andgg := %LUO for convenience. By the divergence
theorem, we get

uo(x) = ~S2(g0)(x) + DY(/)(x), x € L.
It then follows from (3.1) that
H(x) = =S (8)(x) + S (g0) (x) +uo(x), x € £2.
By substituting (3.3) into above equation, we obtain
ASPY)
+ - =2 =
092 dv

oH

>m+$mmwwm,ma
(3.12)

82

We then get from (2.2),
( D ¥)

oH 1 kovx ) [ OH 1 Kon
— =—|—-ZI+ (K2 — I+ (K2
(o) (5], ) (e e
onoas2. (3.13)
By (3.11), we get for € 942,
>(x).
082

8 SkO (p 8@ X, 1 * 8 G
7( D )(x)- /4](0( y)lﬁ(y)do (y)— (—I+(]Ck0) )( ( Dw)
(3.14)

ov ov(x) ov
aD

Thus we obtain

1 2\ [ 9(S0y)
(-3 +0e) (52),)

- (%1 + (IC’}S)*) ((—%1 + (IC@)*) <8(C;L;I/’)

It then follows from (3.13) that

)) onadas.
0
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G ) (5], -z ) (57, ) =0

onoas2,
and hence, by Lemma 3.4, we obtain

JR — 0 _— — = 2. A
P a:z+( 5 +(KQ) >< - ag) go=0 ond (3.15)

By substituting this equation into (3.3), we get
du  dug 1 3(Gpy)
S e BN
v dv ( 2 +( ) >< v

By (3.14), we have (3.9) and the proof is complete

(Sko
)_,_M onoag.
982

v

Observe that, by (2.2), (3.15) is equivalent to

i(msg(a(%‘”) )_u0>
av 90

av
On the other hand, by (3.1052(292¥) |, 0)(x) = Sy (x), x € 382. Thus, by (3.3), we
obtain

H(x)+8§‘2°<

=0 onds.

3(Gp¥)
av

)(x) —up(x)=0, xe€052.
982

Then, by the unique continuation far+ k2, we obtain the following lemma.

Lemma 3.5.

H(x) =uo(x) — (

d(Gpy)
ov

)(x), x €S2 (3.16)
982

4. Derivation of asymptotic formula

Suppose that the domainis of the formD = § B + z, and letu be the solution of (1.4).
uo is the background solution as before. In this section we derive an asymptotic expansion
of 24|50 ass — 0 in terms ofuo.

We first derive an estimate of the form (3.4) with the constaimdependent of.

Proposition 4.1. Let D = 8 B +z and (¢, ¥) € L2(d D) x L?(d D) be the unique solution
of (3.2). There exist$g such that for alls < §g, there exists” independent of such that

el 2oy + 1V L2y < C(571||H||L2(3D) + ||VH||L2(aD))' (4.1)
Proof. After the scalingr =z + Sy, (3.2) takes the form fod = 2, 3,
S s — 8"0% =1H;,

105§ ¢5)| 1 3(301//5)|
H - Mo +

onodB, 4.2)
— 198
— Spug v
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whereg; (y) = ¢(z + 8y), y € 9B, etc., and the single layer potentid@§’ and Sy are
defined by fundamental solutiods s and®y,s, respectively. Itd = 3, it then follows from
Theorem 2.1 and the remark just after thatfemall enough the following estimate holds:

||§08||L2(33) + v ||L2(BB) < C571||H5 ||H1(33)1 (4.3)

for someC independent of (but depending orB). By scaling back, we obtain (4.1).
This argument cannot be applied to the twadnsional case because of the fact that the
fundamental solution®,s and®y,s do not converge t@g ass goes to zero.

In the two-dimensional case, we further consider the system of integral equations

'52955 +tf33(/~)5 _82&5 _T_/:‘)B &5 = %Hﬁa

;a(sg¢a>| 1 0(S39s) | _ 1 aH;

onodAB. 4.4)
" v o v |+ — Spo v’

Here the constant is defined in (2.1). Recall that aaeting to [11] the integral equation
Sgh +7 / h=g
JaB
has a unique solutioh € L2(3 B) for any g € H1(d B). Moreover, there exists a constant
C independent o8 such that

S5 — 8% — T/h <C(8? logs|) 1211123 5)-

HL(3B)

Applying the results of [11], we can immediately prove thi@ — @s)/ll¢sll 1255, @and
(Vs — Vs)/ Vsl 255y CONVErge to zero asgoes to zero. But

@51l 2oy + 1Wsll L2comy < C8 ™I Hsll yraga sy
for some constant independent o8 and thus, after scaling back, (4.1) holdsa

Let H be the function defined in (3.1). Fix an integeand define

n

0*H
Hyr)= ) — S

!
la|=0

and let(¢g,, ¥,) be the unique solution of

ki
812)9011 - SDOW = Hy41,

onaD. 45
19S50 | 1 9SQU)| _ 1 8Hun (4.5)
w o dv = puo O + 7 po 9v

Then(g — ¢,, ¥ — ¥y is the unique solution of (4.5) with the right-hand sides defined by
H — H, 1. Therefore, by (4.1), we get

le —enllL2p) + 11V — ¥nllL2p)
S C(7YH = Huyall2opy + IV(H = Hyp D)l 123 ) )- (4.6)
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By the definition ofH,, 11, we have
< CIADIY2|H = Hysalli=@p) < C1aDIY28" 2| H | pas2 ).

|H — Hut1ll 290y <

and
C|8D|l/25n+l” H ”C”+1(D)

HV(H Hyy1) ” L2(aD)
It then follows from (4.6) and Proposition 3.2 that
4.7)

le — @nll 250y + 1% — Ynll 23y < ClA D28,

By (3.9), we obtain
d d (G (G —
—u(x)=ﬂ(x)+w(x)+w(x), Y eaf. (4.8)
ov ov ov
< C for someC. Hence, for each

Since distD, 82) > co, SUResq. yeap |28 (x, )
x € 982, we have from (4.7),

d(Gp(¥ — l/fn)) ‘ [/‘ ,
v v (x)

2 1/2
dcr(y)j| 1Y — ¥nll L2y

< C|8D|1/2|31)|1/25"+l <C'ste,

whereC andC’ are independent of € 952 ands. Thus we conclude that

d d d
M= %(x) + W( )+ 0(5"),  uniformlyinx € 952. (4.9)
vV
For each multi-index, define(¢,, ¥4 ) to be the unigue solution to
Sk o — Sy = x°,
10Sp w‘ 1 Ay x//a>| _ 1 0 onds. (4.10)
I - 1o + 7 wo v’
Then, we claim that
n+1
0*H
o= Y 81Ty (57— ),
|a|=0
n+1 9 H(Z)
Yn(x) =Y STy, (7 — ).
la|=0
In fact, they follow from the uniqueness of the solution to the integral equation (2.5) and
the relation
n+1
ko( Z 5|a\ ]_a H(Z) (571(. _ Z)))(x)
|a|=0
n+1

= > gl H“”( 51°00) (57w - ),

lo|=0
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for x € aD. It then follows from (4.9) that

n+1

u wl—10“H(z) 0 "
5( )——(x)‘i‘lazoal = lTa—GD(wa( (_Z)))(x)+0(8 +d):
(4.11)
uniformly in x € 3£2. Note that
Go(ba(67¢ =)0 = [ G367 = ) dar ()
aD
=5d*1/G(x,5w+z)¢a(w)da(w).
B
Moreover, forx neara$2, z € 2, w € 3 B, and sufficiently smals, we have
> sl
Gx.dw+2)= )Y ‘;—'aﬂG(x Dwh.
|B|=0
Therefore, we get
L |Bl+d—1
Gp(Ve (877 —2))x) = Z I PGx, z)/ w’ e (w) do (w).
|B1=0 ' B
Define, for multi-indicesr andg in N¢,
Wop := / wh g (w) do (w). (4.12)

JaB
Then we obtain the following theorem from (4.11).

Theorem 4.2. The following pointwise asymptotic expansionadn holds ford = 2, 3:

n+l n—|pl+1 B
§lal+18] 90°G(x,
=002y Y 0 H (o) G D o (5,
B0 |a=0 alp! av(x)

(4.13)

where the remainde© (5¢1") is dominated b)C8d+”||f||H1/z(a_Q) for someC indepen-
dent ofx € 042.

In view of (3.9), we obtain the following expansion:

nL nlBIFL ol i) . 307 G (x,2)

a(GD"”) =812 3" r D Wep + 0 (8"19).

1B1=0 |a|=0
(4.14)
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Observe thatf,, and hencéV,g depends o, and so doedi. Thus the formula (4.13)
is not a genuine asymptotic formula. However, since it is simple and has some potential
applicability in solving the inverse problem for Helmholtz equation, we made a record of
it as a theorem.

Observe that by the definition (4.10) ¢, [V« [l .2(5 ) IS bounded, and hence

IWOlﬂI g CO(ﬂ? Vas ﬁs (415)

whereCyg is independent od. Sinces is small, one can derive an asymptotic expansion
of (¢, ¥o) using their definition (4.10). Let us briefly explain this. Let us for simplicity
assume thad = 3. Let

Sk(S Sk05
nram /-
Negl| ™ 1a<sk5r>| 16(8 g>| :
1 - H“o +

and letTp be the operator wheh= 0. Then the solutiofig,, ¥, ) of the integral equation
(4.10) is given by

[2‘;“ } = [+ 15 4T — To)] 157t [ 1 e } . (4.16)
3 Ho ov

By expandindls — Tp in a power series af, one can derive the expansions/of andWeg.
Let, for o, B € N¢, (Qq, v,@a) be the leading term of the expansion @, ¥). Then

(Pa, %) is solution of the integral equation
5990 — S = x°.

1 3(38(/)(1)| _ i 3(831//01) _ l Ix%
m _

| B
) + 7 po dv

As a simplest case, let us now take=1 in (4.13) to find the leading order term in
the asymptotic expansion @%Iag asé — 0. We first investigate the dependenceigfs
on s for o] <1 and|g8| < 1. If |a|] < 1, then both sides of the first equation in (4.17) is
harmonic inB, and hence

S%py =SSPy =x* in B.
Therefore we get

IS | (S

av av

This identity together with the second equation in (4.17) yields

wASHP) | ASPY | 1_ O\ oxe

Mo  dv I av o Erh
In view of the relation (2.2), we have

m(L k) L Ve = (- )2
ol +53)ie ( )( o) v

whereK’}, is the operator defined in (2.4) whén= 0. Therefore, we have

onadkB. (4.17)

0x%
=—— o0nosB.
av
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- _qf0x” w/mo+1 mo/m+1
=W =K =] ). = = , 4.18
Ve = ) (av BB) 20— /o)~ 2o -1 Y

where invertibility of the operator/ — K7, is proved in [8]. Observe that j&| = 0, then

Vo =0 and S%¢, =1 (4.19)

Hence we obtainy, = 0(8) andSk g, = 14 0(8). Moreover, sinc&s’ ¢, depends od
analytically and(A + k262)S¥ ¢, = 0 in B, we conclude that

«=0@© and S¥p,=1+0(5%), |a|=0. (4.20)
It also follows from (4.18) that ife| = || = 1, then
ﬁ * -1 8xa
Wap = [ P (A =K3) (5| J@)do+0@). (4.21)
B

aB

According to [1], the first quantity in the right-hand side of (4.18) is the polarization tensor
defined byM = M (1/10) := (mapg(11/100)) Where

36,
maﬂ(i> = (1— i) (8a,3|B| + (i — 1)/)»‘9—0‘
Mo Mo Mo A v

andé, is the unique solution of the following transmission problem:

) do(y)), (4.22)
+

Aby(x) =0, x € BUR?\ B,
Oyl+ — Oyl =0 onoAB,

30y 0| _
Wﬁ»—%w‘i—va OnaB,
Ou(x)— 0 as|x| — oo.

Herevy, = v - « is thea-component of the normal vector In summary, we obtained that

Wap = map( = ) + 0®). lal=|p=1. (4.23)
Mo

Suppose that either=0 or 8 = 0. By (2.2) and (4.10), we have

v — ISE Va)| S V)| _ pod(SEea)| _ 9x%  9(SE V)
* av + av _ av av av _
(4.24)
It then follows from divergence theorem that
/xﬂwa do :-kzgz@/xﬂs,kf(pa dx—i—kgSZ/xﬂSI];OSl/fa dx
B H B B
0] axP ks dxP kod
S D B 429
0B B

From (4.25), we can observe the following:
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Waﬂ:—k252%|8|+0(83)=—82wzeuo|B|+0(83), la|=|B|=0, (4.26)

Wos = 0(8%), lal=1, || =0, (4.27)
Wos = 0(8%), |a|=0, || =1. (4.28)

In fact, (4.26) and (4.28) follows from (4.20) and (4.25), and (4.27) immediately follows
from (4.25). As a consequence of%4), (4.28), and (4.14), we obtain

3(Gp¥)
av

Since the center is apart froma$2, it follows from (3.16) that

(x)=0(8%), uniformly onx € 352.

|H(2) —uo(2)| + |VH (2) — Vuo(z)| = 0(87). (4.29)

We now consider the case| = 2 and|g| = 0. In this case, one can show using (4.24)
that

/%da = —/Ax"‘dx +0(8?).
B B
Therefore, if|8] =0, then

> a%a“ﬂ(z)waﬁ =—AH@)|B|+ 0(8%) =k&H (2)| Bl + 0(5?). (4.30)
lo]=2 """

So (4.13) together with (4.23)—(4.30) yields the following expansion formulat fo13
and for anyx € 352,

u _% d 3 aV,G(x,27)
5()6)— » (x)+46 <Vuo(z)M(M0)7av(x)

0G(x,z)
av(x)

whereM = (mqp) is the polarization tensor defined in (4.22).

Before returning to (4.13) let us make the following important remark. In [1] new con-
cepts of higher order polarization tensors are introduced. These concepts generalize that of
classical Polya-Szeg0 polarization tensotsede generalized polarization tensors (GPT’s)
appear naturally in higher order asymptotics of the steady-state voltage potentials under the
perturbation of conductor byigectric inhomogeneities of small diameter. They seem to
carry out significant information on the smaiktectric inhomogeneities [3]. In this paper,
the tensordV,g play similar role. As defined in [1] the GPT’s are given targ N¢ by

+ w?po(e — €0)| Bluo(z) ) + 0(897), (4.31)

Mg == f wh Yo (w) do (w),

0B

where, is defined by (4.17). The following result makes the connection betWégn
andM,g. Its proof is immediate.
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Lemma 4.3. Suppose thai, are constants such that , a, w® is a harmonic polynomial.
Then

ZaaWaﬁ — ZaaMaﬁ assé — 0.
o

o
We also note that in the two-dimensional case we should replace the of&rator

T|:f] Sk(sf"‘ffagf_sgosg_ffagg
5 =

g 1a(sk5f>| 1 8(8 g>| ’
" - Ho +

andTp by T (the T3 operator whers = 0). The results of [11] allow us again to handle
the problem in the two-dimermnal case. Instead of equaticﬂﬁg@a =1 for|a|=0In
(4.19) we deal in this case with the well-posed equaﬁ@@a — 7 [, %« = 1. The zero
mean-value property of, for |«| = 1 can also be easily be deduced from the system of
integral equations satisfied iy, V) using the fact that® is harmonic fole| = 1. So, in

the two-dimensional case, we obtain the following expansion formula of Vogelius—\Volkov
[15]: for anyx € 942,

—( )—%( )+52(VMO(Z)M( )M
7%} av(x)
+ w?uo(e — eo)lBluo(z)#) +0(5%), (4.32)

whereM = (mqg) is the polarization tensor defined in (4.22). In fact, in [15], the formula
is expressed in terms of ‘free space’ Green functigninstead of the Green functio@.
However, those two formula are the same as one can see using the relation (3.11).
Observing now that the formula (4.13) still contaiitsH factors, the remaining task is
to convert (4.13) to a formula given solely by and its derivatives. Substitution of (4.14)
into (3.16) yields that, for any € £2,
1 A 171BL ojal+iB| p
Hw =0 =512 Y S %((X)Z)) ”
IB/=0 |a/=0 a.p. V(X

+ 0(8"t). (4.33)

a“H(z)S§;<

In (4.33) the remainde® (8"*%) is uniform in theC” norm on any compact subset of
for anyn and therefore

n+1 n+1—|8|
(07H)(2)+872 ) > sHP* H(z) Pugy, = (87 u0) (2) + O(57™"),
IBI=0 e|=0
(4.34)
for all y € N with |y| <n + 1 where
B
1 k aaz G('v Z)
Pugy = — W, ﬂaVS"(i' ) (4.35)
Y Thine 20 v(x) e
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Following [1], define the operatd?;s by

ntl n+1-|B|
Ps: (Wy)yend, |yj<n = <wy +872y N 5“|+ﬂwapaﬂy) .
|8]1=0 |a|=0 yeNd, |y|<n

Observe from (4.16) tha®s can be written as
Ps=1+8PL+--+8T1P,_1 + 0(s").
Definingasin [1]Q,, p=1,...,n—1, by
(I+8Pr4 48P, 1) T =1 +89Q1 + -+ 8710, 4
+0(s"), (4.36)

we finally obtain that

((0"H) (@) ere. (g <nsr = (1 + Z 5d+p_1Qp) ((8"10) (2)) yerve. joj<cnsa

p=1
+0(s%m), (4.37)

which yields the main result of this paper.

Theorem 4.4. The following pointwise asymptotic expansionagn holds ford = 2, 3:

+1 n+1—|B|
)= S0 45472 3 s

|B|1=0 |a|=0 O['ﬂ'
n+2—|e|—|Bl—d )
X[((1+ 2 5d+plQP)(3Vuo(Z))) %W}
p=1 )
P (4.38)

where the remainde® (8¢*") is dominated by §¢+" £ Il 17252 fOr someC independent
ofx €052.

Whenn = d, we have a simpler formula

_( )= %( )+ 892 di%dJrl Pl slal+1l o 83§9G(x,z)
o a0 %P v

+0(8%). (4.39)

Let us now consider the case when there are several well-separated inclusions. The
inhomogeneityD takes the form Ji; (8 B; + z;). The magnetic permeability and electric
permittivity of the inclusior’ By + z; areus andes, s =1, ..., m. By iterating the formula
(4.39), we can derive the following theorem.
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Theorem 4.5. The following pointwise asymptotic expansionad® holds ford = 2, 3:

m d+1 d+1-|8| slel+Bl

B
u 8110 d—2 aaz G(xa Z)
— = — ) E E E 805 WS
v @ v wr s=1|8]=0 |a|=0 alp! o(@) v(x) op

+0(8%). (4.40)
Here Wgﬁ is defined by4.12)with B, u, € replaced byBy, 1y, €.

We conclude this paper by making one final remark. In this paper, we only derive the as-
ymptotic formula for the solution to the Dirichlet problem. However, by the same method,
one can derive an asymptotic formula for the Neumann problem as well.
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