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Abstract

We consider solutions to the Helmholtz equation in two and three dimensions. Based o
potential techniques we provide for such solutions a rigorous systematic derivation of co
asymptotic expansions of perturbations resulting from the presence of diametrically small inhomo
geneities with constitutive parameters different from those of thebackground medium. It is expecte
that our results will find important applications for developing effective algorithms for reconstru
small dielectric inhomogeneities from boundary measurements.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω be a bounded domain inRd , d = 2 or 3, with a connected Lipschitz boun
ary ∂Ω . Let ν denote the unit outward normal to∂Ω . Suppose thatΩ contains a smal
inhomogeneityD of the formD = z + δB, whereB is a bounded Lipschitz domain inRd
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containing the origin andδ is the order of magnitude of the diameter of the inhomoge
ity. We assume that the domainD is separated apart from the boundary, i.e., there exi
constantc0 > 0 such that dist(z, ∂Ω) � c0 > 0. Let u denote the solution to the Helmhol
equation

∇ ·
(

1

µδ

∇u

)
+ ω2εδu = 0 in Ω, (1.1)

with the boundary conditionu = f on∂Ω , whereω > 0 is a given frequency. Hereµδ and
εδ denote the constitutive parameters of the inhomogeneity defined by

µδ(x) =
{

µ0, x ∈ Ω \ D̄,

µ, x ∈ D,
(1.2)

εδ(x) =
{

ε0, x ∈ Ω \ D̄,

ε, x ∈ D,
(1.3)

whereµ,µ0, ε, andε0 are positive constants. If we allow the degenerate caseδ = 0, then
the functionsµδ(x) andεδ(x) equal the constantsµ0 andε0. Problem (1.1) can be writte
as 



(∆ + ω2ε0µ0)u = 0 in Ω \ D̄,

(∆ + ω2εµ)u = 0 in D,
1
µ

∂u
∂ν

|− − 1
µ0

∂u
∂ν

|+ = 0 on∂D,

u|− − u|+ = 0 on∂D,

u = f on∂Ω.

(1.4)

Here the subscripts+ and− indicate the limit from outside and from insideD, respec-
tively. In order to insure well-posedness (also for theδ-dependent case forδ sufficiently
small [15]) we shall assume thatω2ε0µ0 is not an eigenvalue for the operator−∆ in L2(Ω)

with the Dirichlet boundary conditions.
The main achievement of this paper is a rigorous derivation, based on layer po

techniques, of a complete asymptotic expansion of∂u
∂ν

|∂Ω asδ → 0 for d = 2,3. The lead-
ing order term in this asymptotic formula has been derived by Vogelius and Volkov
see also [5,10] for previous results on the conductivity problem and [4] where the s
order term in the asymptotic expansions of solutions to the Helmholtz equation is obt

The proof of our asymptotic expansion is radically different from the variational
in [4,15]. It is based on layer potential techniques and a new decomposition form
the solution to the Helmholtz equation. Our decomposition formula generalizes tha
to Kang and Seo [12] for the conductivity problem. In that case the steady-state v
potential is decomposed into a harmonic part and a refraction part.

It is expected that our results will find important applications for developing effe
algorithms for reconstructing small dielectric inhomogeneities from boundary measu
ments which can be applied in medical imagining, breast cancer, tumor, and land mi
use of higher-order terms in the asymptoticexpansions of the boundary perturbations d
to the presence of the dielectric inhomogeneities the reconstruction technique described
[2] could be carried out to recuperate the locations of the inhomogeneities with a high
resolution and capture further properties of their geometries (namely, their generalized p
larization tensors defined in [1]).
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In our recent paper [2] we have used the leading order term in the expansion deriv
in this paper for efficiently determining the locations and/or shapes of the small diel
inhomogeneities from boundary measurementsat a fixed frequency by reducing the r
construction problem of the small inhomogeneities to the calculation of an inverse Four
transform. Our algorithm uses plane wave sources for identifying the small electroma
inhomogeneities. A different approach based on projections on three planes was propo
and successfully tested by Volkov in [16].

The extension of the techniques used in [4,15] to construct complete asymptotic e
sions seems to be laborious. The present work represents a natural completion of [
organized as follows. In Section 2 we prove one preliminary result on the unique solva
of a system of two integral equations. In Section 3 we give slightly different represent
of the solution of (1.4). In Section 4 we provide a rigorous derivation of high-order t
in its asymptotic expansion. Our derivations are valid for inhomogeneities with Lipsch
boundaries.

2. Preliminary result

Let k0 := ω
√

ε0µ0 andk := ω
√

εµ. Let Φk(x) be the fundamental solution for∆ + k2,
that is forx �= 0,

Φk(x) =
{− i

4H 1
0 (k|x − y|), d = 2,

− eik|x−y|
4π |x−y| , d = 3,

whereH 1
0 is the Hankel function of the first kind of order 0 [7]. We have,

− i

4
H 1

0

(
k|x − y|) = 1

2π
log|x − y| + τ +

+∞∑
n=1

(
bn logk|x − y| + cn

)(
k|x − y|)2n

,

(2.1)

where the constantτ = (1/2π) logk + γ − i/4, γ is the Euler constant. Let forx �= 0,

Φ(x) = Φ0(x) =
{ 1

2π
log|x − y|, d = 2,

1
4π |x−y| , d = 3.

For a bounded domainD in R
d andk > 0 letSk

D andDk
D be the single and double lay

potentials defined byΦk , that is,

Sk
Dϕ(x) =

∫
∂D

Φk(x − y)ϕ(y) dσ(y), x ∈ R
d ,

Dk
Dϕ(x) =

∫
∂D

∂Φk(x − y)

∂ν(y)
ϕ(y) dσ(y), x ∈ R

d \ ∂D.

It is well known, see [7, Theorem 3.1], that
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∂(Sk
Dϕ)

∂ν

∣∣∣∣±(x) =
(

±1

2
I + (

Kk
D

)∗)
ϕ(x), a.e.x ∈ ∂D, (2.2)

(
Dk

Dϕ
)∣∣± =

(
∓1

2
I +Kk

D

)
ϕ(x), a.e.x ∈ ∂D, (2.3)

for ϕ ∈ L2(∂Ω), whereKk
D is the operator defined by

Kk
Dϕ(x) = p.v.

∫
∂D

∂Φk(x, y)

∂ν(y)
ϕ(y) dσ(y), (2.4)

and (Kk
D)∗ is the L2-adjoint of Kk

D . The operatorKk
D is known to be bounded o

L2(∂D) [6].

Theorem 2.1. Suppose thatk2
0 is not a Dirichlet eigenvalue for−∆ on D. For each

(F,G) ∈ H 1(∂D) × L2(∂D), there exists a unique solution(f, g) ∈ L2(∂D) × L2(∂D)

to the integral equation

Sk

Df − Sk0
D g = F,

1
µ

∂(Sk
Df )

∂ν

∣∣− − 1
µ0

∂(Sk0
D g)

∂ν

∣∣+ = G,
on∂D. (2.5)

There exists a constantC independent ofF andG such that

‖f ‖L2(∂D) + ‖g‖L2(∂D) � C
(‖F‖H1(∂D) + ‖G‖L2(∂D)

)
. (2.6)

Proof. We only give the proof forµ0 �= µ leaving the modification of the argumen
presented here in the general case to the reader. LetX := L2(∂D) × L2(∂D) andY :=
H 1(∂D) × L2(∂D), and define an operatorT : X → Y by

T (f,g) :=
(
Sk

Df − Sk0
D g,

1

µ

∂(Sk
Df )

∂ν

∣∣∣∣− − 1

µ0

∂(Sk0
D g)

∂ν

∣∣∣∣+
)

.

We also defineT0 by

T0(f, g) :=
(
S0

Df − S0
Dg,

1

µ

∂(S0
Df )

∂ν

∣∣∣∣− − 1

µ0

∂(S0
Dg)

∂ν

∣∣∣∣+
)

.

One can easily see thatSk0
D − S0

D : L2(∂D) → H 1(∂D) is a compact operator, and so
∂
∂ν
Sk0

D |± − ∂
∂ν
S0

D|± : L2(∂D) → L2(∂D). Therefore,T − T0 is a compact operator from
X into Y . If µ0 �= µ, then it is proved in [9] thatT0 : X → Y is invertible (see also [13])
Thus by the Fredholm alternatives, it is enough to prove thatT is injective.

Suppose thatT (f,g) = 0. Then the functionu defined by

u(x) :=
{
Sk0

D g(x), if x ∈ R
d \ D,

Sk f (x), if x ∈ D,
D
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

(∆ + ω2ε0µ0)u = 0 in R
d \ D̄,

(∆ + ω2εµ)u = 0 in D,
1
µ

∂u
∂ν

|− − 1
µ0

∂u
∂ν

|+ = 0 on∂D,

u|− − u|+ = 0 on∂D,

subject to the radiation condition

x

|x| · ∇u(x) − ik0u(x) = O
(|x|−(d+1)/2), |x| → ∞. (2.7)

By the uniqueness of a solution to the interface problem for the Helmholtz equatio
for instance [7], we conclude thatf = g = 0. This completes the proof of solvability o
(2.5). The estimate (2.6) is a consequence of solvability and the closed graph theore�

Note that in the three-dimensional case, using classical results on the low wave n
asymptotics for the Helmholtz equation and single layer potential [14], it can eas
proved thatf andg have limits inL2(∂D) ask0 andk go to zero, and thus the consta
C in (2.6) can be chosen independently ofk0 andk. This remark will be of use to us i
establishing Proposition 4.1 in the three-dimensional case.

3. Representation of solutions

In this section we present two representations of the solution of (1.4). A similar
resentation formula for the transmission problem for the harmonic equation was fo
[12,13].

Theorem 3.1. Suppose thatk2
0 is not a Dirichlet eigenvalue for−∆ on D. Let u be the

solution of (1.4)andg := ∂u
∂ν

|∂Ω . Define

H(x) := −Sk0
Ω (g)(x) +Dk0

Ω (f )(x), x ∈ R
d \ ∂Ω, (3.1)

and(ϕ,ψ) ∈ L2(∂D) × L2(∂D) be the unique solution of

Sk

Dϕ − Sk0
D ψ = H

1
µ

∂(Sk
Dϕ)

∂ν

∣∣− − 1
µ0

∂(Sk0
D ψ)

∂ν

∣∣+ = 1
µ0

∂H
∂ν

on∂D. (3.2)

Thenu can be represented as

u(x) =
{

H(x) + Sk0
D ψ(x), x ∈ Ω \ D̄,

Sk
Dϕ(x), x ∈ D.

(3.3)

Moreover, there existsC > 0 independent ofH such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) � C
(‖H‖L2(∂D) + ‖∇H‖L2(∂D)

)
. (3.4)
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Proof. Note thatu defined by (3.3) satisfies the differential equations and the transmi
condition on∂D in (1.4). Thus in order to prove (3.3), it suffices to prove∂u

∂ν
= g on ∂Ω .

Let f := u|∂Ω and consider the following two phase transmission problem:


(∆ + k2
0)v = 0 in (Ω \ D̄) ∪ (Rd \ Ω̄),

(∆ + k2)v = 0 in D,

v|− − v|+ = 0, 1
µ

∂v
∂ν

∣∣− − 1
µ0

∂v
∂ν

∣∣+ = 0 on∂D,

v|− − v|+ = f, ∂v
∂ν

∣∣− − ∂v
∂ν

∣∣+ = g on∂Ω,

x
|x| · ∇v(x) − ik0v(x) = O(|x|−(d+1)/2), |x| → ∞.

(3.5)

We claim that (3.5) has a unique solution. In fact, iff = g = 0, then one can show a
before thatv = 0 in R

d \ D̄. Thusv = ∂v
∂ν

|− = 0 on ∂D. By the unique continuation fo
the operator∆ + k2, we havev = 0 in D, and hencev ≡ 0 in R

d . Note thatvj , j = 1,2,
defined by

v1(x) =
{

u(x), x ∈ Ω,

0, x ∈ R
d \ Ω̄,

v2(x) =
{

H(x) + Sk0
D ψ(x), x ∈ Ω \ D̄,

Sk
Dϕ(x), x ∈ D,

are two solutions of (3.5), and hencev1 ≡ v2. This completes the proof.�
Proposition 3.2. For each integern there existsCn independent ofD such that

‖H‖Cn(D̄) � Cn‖f ‖H1/2(∂Ω). (3.6)

Proof. Let g := ∂u
∂ν

|∂Ω . By the definition (3.1), it is easy to see that

‖H‖Cn(D̄) � C
(‖g‖H−1/2(∂Ω) + ‖f ‖H1/2(∂Ω)

)
,

whereC depends only onn and dist(D, ∂Ω). Therefore, it is enough to show that

‖g‖H−1/2(∂Ω) � C‖f ‖H1/2(∂Ω)

for someC independent ofD.
Let ϕ be aC∞ function which is 0 in a neighborhood ofD and 1 in a neighborhoo

of ∂Ω . Let v ∈ H 1/2(∂Ω) and definẽv ∈ H 1(Ω) to be the unique solution to∆ṽ = 0 in
Ω andṽ = v on∂Ω . Let 〈 , 〉 denoteH−1/2 − H 1/2 pairing on∂Ω . Then

〈g, v〉 =
∫
Ω

∆(ϕu)ṽ dx +
∫
Ω

∇(ϕu) · ∇ṽ dx

=
∫
Ω

∆ϕuṽ dx + 2
∫
Ω

∇ϕ · ∇uṽ dx − k2
0

∫
Ω

ϕuṽ dx +
∫
Ω

∇(ϕu) · ∇ṽ dx.

Therefore, it follows from theCauchy–Schwartz inequality that∣∣〈g, v〉∣∣ � C‖u‖H1(Ω\D̄)‖ṽ‖H1(Ω) � C‖u‖H1(Ω\D̄)‖v‖H1/2(∂Ω).

Sincev ∈ H 1/2(∂Ω) is arbitrary, we get



196 H. Ammari, H. Kang / J. Math. Anal. Appl. 296 (2004) 190–208

n and

if
‖g‖H−1/2(∂Ω) � C‖u‖H1(Ω\D̄). (3.7)

Note that the constantC depends only on dist(D, ∂Ω). On the other hand, sinceω2 is not
a Dirichlet eigenvalue for the Helmholtz equation (1.4) inΩ , we can prove that

‖u‖H1(Ω) � C‖f ‖H1/2(∂Ω),

whereC depends only onµ0,µ, ε0, andε. It then follows from (3.7) that

‖g‖H−1/2(∂Ω) � C‖f ‖H1/2(∂Ω).

This completes the proof.�
We now transform the representation (3.3) into the one using the Green functio

the background solution. The background solutionu0 is the solution of{
(∆ + k2

0)u0 = 0 in Ω,

u0 = f on∂Ω.
(3.8)

Let G(x,y) be the Dirichlet Green function for∆ + k2
0 in Ω , i.e., for eachy ∈ Ω , G is the

solution of{
(∆ + k2

0)G(x, y) = δy(x), x ∈ Ω,

G(x, y) = 0, x ∈ ∂Ω.

Then,

u0(x) =
∫

∂Ω

∂G

∂νy

(x, y)f (y) dσ(y), x ∈ Ω.

Define one more notation: For a Lipschitz domainD ⊂ Ω andϕ ∈ L2(∂D), we define

GDϕ(x) :=
∫
∂D

G(x, y)ϕ(y) dσ(y), x ∈ Ω̄.

Our second representation is the following theorem.

Theorem 3.3. Letψ be the function defined in(3.2). Then

∂u

∂ν
(x) = ∂u0

∂ν
(x) + ∂(GDψ)

∂ν
(x), x ∈ ∂Ω. (3.9)

We need a few facts to prove Theorem 3.3. We first observe an easy identity:x ∈
R

d \ Ω andz ∈ Ω ,∫
∂Ω

Φk0(x − y)
∂G(z, y)

∂ν(y)

∣∣∣∣
∂Ω

dσ(y) = Φk0(x, z), x ∈ R
d \ Ω, z ∈ Ω. (3.10)

As a consequence of (3.10), we have(
1

2
I + (

Kk0
Ω

)∗)(
∂G(·, y)

∂ν(y)

∣∣∣∣
∂Ω

)
(x) = ∂Φk0(x, y)

∂ν(x)
, x ∈ ∂Ω. (3.11)
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e

Lemma 3.4. If k2
0 is not a Dirichlet eigenvalue for−∆ on Ω , then 1

2I + (Kk0
Ω)∗ :

L2(∂Ω) → L2(∂Ω) is injective.

Proof. Suppose thatϕ ∈ L2(∂Ω) and(1
2I + (Kk0

Ω)∗)ϕ = 0. Defineu(x) := Sk0
Ω ϕ(x), x ∈

R
d \ Ω̄ . Thenu is a radiating solution of(∆ + k2

0)u = 0 in R
d \ Ω̄ , and satisfies∂u

∂ν
|∂Ω =

(1
2I + (Kk0

Ω)∗)ϕ = 0. Therefore, by the uniqueness for the exterior Neumann problem

we obtainSk0
Ω ϕ(x) = 0, x ∈ R

d \ Ω̄ . Sincek2
0 is not a Dirichlet eigenvalue for−∆ on Ω ,

we can prove thatϕ = 0 in the same way as before. This completes the proof.�
We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let g := ∂u
∂ν

|∂Ω andg0 := ∂u0
∂ν

for convenience. By the divergenc
theorem, we get

u0(x) = −Sk0
Ω (g0)(x) +Dk0

Ω(f )(x), x ∈ Ω.

It then follows from (3.1) that

H(x) = −Sk0
Ω (g)(x) + Sk0

Ω (g0)(x) + u0(x), x ∈ Ω.

By substituting (3.3) into above equation, we obtain

H(x) = −Sk0
Ω

(
∂H

∂ν

∣∣∣∣
∂Ω

+ ∂(Sk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)
(x) + Sk0

Ω (g0)(x) + u0(x), x ∈ Ω.

(3.12)

We then get from (2.2),

∂H

∂ν
= −

(
−1

2
I + (

Kk0
Ω

)∗
)(

∂H

∂ν

∣∣∣∣
∂Ω

+ ∂(Sk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)
+

(
1

2
I + (

Kk0
Ω

)∗
)

(g0)

on∂Ω. (3.13)

By (3.11), we get forx ∈ ∂Ω ,

∂(Sk0
D ψ)

∂ν
(x) =

∫
∂D

∂Φk0(x, y)

∂ν(x)
ψ(y) dσ(y) =

(
1

2
I + (

Kk0
Ω

)∗
)(

∂(GDψ)

∂ν

∣∣∣∣
∂Ω

)
(x).

(3.14)

Thus we obtain(
−1

2
I + (

Kk0
Ω

)∗
)(

∂(Sk0
D ψ)

∂ν

∣∣∣∣
∂Ω

)

=
(

1

2
I + (

Kk0
Ω

)∗)((
−1

2
I + (

Kk0
Ω

)∗
)(

∂(GDψ)

∂ν

∣∣∣∣
∂Ω

))
on∂Ω.

It then follows from (3.13) that



198 H. Ammari, H. Kang / J. Math. Anal. Appl. 296 (2004) 190–208

.
ansion
(
1

2
I + (

Kk0
Ω

)∗)(
∂H

∂ν

∣∣∣∣
∂Ω

+
(

−1

2
I + (

Kk0
Ω

)∗
)(

∂(GDψ)

∂ν

∣∣∣∣
∂Ω

)
− g0

)
= 0

on∂Ω,

and hence, by Lemma 3.4, we obtain

∂H

∂ν

∣∣∣∣
∂Ω

+
(

−1

2
I + (

Kk0
Ω

)∗)(
∂(GDψ)

∂ν

∣∣∣∣
∂Ω

)
− g0 = 0 on∂Ω. (3.15)

By substituting this equation into (3.3), we get

∂u

∂ν
= ∂u0

∂ν
−

(
−1

2
I + (

Kk0
Ω

)∗
)(

∂(GDψ)

∂ν

∣∣∣∣
∂Ω

)
+ ∂(Sk0

D ψ)

∂ν
on∂Ω.

By (3.14), we have (3.9) and the proof is complete.�
Observe that, by (2.2), (3.15) is equivalent to

∂

∂ν

(
H + Sk0

Ω

(
∂(GDψ)

∂ν

∣∣∣∣
∂Ω

)
− u0

)∣∣∣∣− = 0 on∂Ω.

On the other hand, by (3.10),Sk0
Ω (

∂(GDψ)
∂ν

|∂Ω)(x) = Sk0
Ω ψ(x), x ∈ ∂Ω . Thus, by (3.3), we

obtain

H(x) + Sk0
Ω

(
∂(GDψ)

∂ν

∣∣∣∣
∂Ω

)
(x) − u0(x) = 0, x ∈ ∂Ω.

Then, by the unique continuation for∆ + k2
0, we obtain the following lemma.

Lemma 3.5.

H(x) = u0(x) − Sk0
Ω

(
∂(GDψ)

∂ν

∣∣∣∣
∂Ω

)
(x), x ∈ Ω. (3.16)

4. Derivation of asymptotic formula

Suppose that the domainD is of the formD = δB + z, and letu be the solution of (1.4)
u0 is the background solution as before. In this section we derive an asymptotic exp
of ∂u

∂ν
|∂Ω asδ → 0 in terms ofu0.

We first derive an estimate of the form (3.4) with the constantC independent ofδ.

Proposition 4.1. Let D = δB + z and(ϕ,ψ) ∈ L2(∂D) × L2(∂D) be the unique solution
of (3.2). There existsδ0 such that for allδ � δ0, there existsC independent ofδ such that

‖ϕ‖L2(∂D) + ‖ψ‖L2(∂D) � C
(
δ−1‖H‖L2(∂D) + ‖∇H‖L2(∂D)

)
. (4.1)

Proof. After the scalingx = z + δy, (3.2) takes the form ford = 2,3,

Skδ

B ϕδ − Sk0δ
B ψδ = 1

δ
Hδ,

1 ∂(Skδ
B ϕδ)

∣∣ − 1 ∂(Sk0δ

B ψδ)
∣∣ = 1 ∂Hδ ,

on∂B, (4.2)
µ ∂ν − µ0 ∂ν + δµ0 ∂ν
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whereϕδ(y) = ϕ(z + δy), y ∈ ∂B, etc., and the single layer potentialsSkδ
B andSk0δ

B are
defined by fundamental solutionsΦkδ andΦk0δ, respectively. Ifd = 3, it then follows from
Theorem 2.1 and the remark just after that forδ small enough the following estimate hold

‖ϕδ‖L2(∂B) + ‖ψδ‖L2(∂B) � Cδ−1‖Hδ‖H1(∂B), (4.3)

for someC independent ofδ (but depending onB). By scaling back, we obtain (4.1
This argument cannot be applied to the two-dimensional case because of the fact that
fundamental solutionsΦkδ andΦk0δ do not converge toΦ0 asδ goes to zero.

In the two-dimensional case, we further consider the system of integral equations

S0

Bϕ̃δ + τ
∫
∂B

ϕ̃δ − S0
Bψ̃δ − τ

∫
∂B

ψ̃δ = 1
δ
Hδ,

1
µ

∂(S0
Bϕ̃δ)

∂ν

∣∣− − 1
µ0

∂(S0
Bψ̃δ)

∂ν

∣∣+ = 1
δµ0

∂Hδ

∂ν
,

on∂B. (4.4)

Here the constantτ is defined in (2.1). Recall that according to [11] the integral equation

S0
Bh + τ

∫
∂B

h = g

has a unique solutionh ∈ L2(∂B) for anyg ∈ H 1(∂B). Moreover, there exists a consta
C independent ofδ such that∥∥∥∥Skδ

B h − S0
Bh − τ

∫
∂B

h

∥∥∥∥
H1(∂B)

� C
(
δ2| logδ|)‖h‖L2(∂B).

Applying the results of [11], we can immediately prove that(ϕ̃δ − ϕδ)/‖ϕδ‖L2(∂B) and

(ψ̃δ − ψδ)/‖ψδ‖L2(∂B) converge to zero asδ goes to zero. But

‖ϕ̃δ‖L2(∂B) + ‖ψ̃δ‖L2(∂B) � Cδ−1‖Hδ‖H1(∂B),

for some constantC independent ofδ and thus, after scaling back, (4.1) holds.�
Let H be the function defined in (3.1). Fix an integern and define

Hn(x) =
n∑

|α|=0

∂αH(z)

α! (x − z)α,

and let(ϕn,ψn) be the unique solution of

Sk

Dϕn − Sk0
D ψn = Hn+1,

1
µ

∂(Sk
Dϕn)

∂ν

∣∣− − 1
µ0

∂(Sk0
D ψn)

∂ν

∣∣+ = 1
µ0

∂Hn+1
∂ν

,
on∂D. (4.5)

Then(ϕ − ϕn,ψ − ψn) is the unique solution of (4.5) with the right-hand sides defined
H − Hn+1. Therefore, by (4.1), we get

‖ϕ − ϕn‖L2(∂D) + ‖ψ − ψn‖L2(∂D)

� C
(
δ−1‖H − Hn+1‖L2(∂D) + ‖∇(H − Hn+1)‖L2(∂D)

)
. (4.6)
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By the definition ofHn+1, we have

‖H − Hn+1‖L2(∂D) � C|∂D|1/2‖H − Hn+1‖L∞(∂D) � C|∂D|1/2δn+2‖H‖Cn+2(D̄),

and ∥∥∇(H − Hn+1)
∥∥

L2(∂D)
� C|∂D|1/2δn+1‖H‖Cn+1(D̄).

It then follows from (4.6) and Proposition 3.2 that

‖ϕ − ϕn‖L2(∂D) + ‖ψ − ψn‖L2(∂D) � C|∂D|1/2δn+1. (4.7)

By (3.9), we obtain

∂u

∂ν
(x) = ∂u0

∂ν
(x) + ∂(GDψn)

∂ν
(x) + ∂(GD(ψ − ψn))

∂ν
(x), x ∈ ∂Ω. (4.8)

Since dist(D, ∂Ω) � c0, supx∈∂Ω,y∈∂D | ∂G
∂ν

(x, y)| � C for someC. Hence, for each
x ∈ ∂Ω , we have from (4.7),∣∣∣∣∂(GD(ψ − ψn))

∂ν
(x)

∣∣∣∣ �
[ ∫

∂D

∣∣∣∣∂G(x, y)

∂ν(x)

∣∣∣∣
2

dσ(y)

]1/2

‖ψ − ψn‖L2(∂D)

� C|∂D|1/2|∂D|1/2δn+1 � C′δn+d ,

whereC andC′ are independent ofx ∈ ∂Ω andδ. Thus we conclude that

∂u

∂ν
(x) = ∂u0

∂ν
(x) + ∂(GDψn)

∂ν
(x) + O

(
δn+d

)
, uniformly in x ∈ ∂Ω. (4.9)

For each multi-indexα, define(ϕα,ψα) to be the unique solution to

Skδ

B ϕα − Sk0δ
B ψα = xα,

1
µ

∂(Skδ
B ϕα)

∂ν

∣∣− − 1
µ0

∂(Sk0δ

B ψα)

∂ν

∣∣+ = 1
µ0

∂xα

∂ν
,

on∂B. (4.10)

Then, we claim that

ϕn(x) =
n+1∑
|α|=0

δ|α|−1∂αH(z)

α! ϕα

(
δ−1(x − z)

)
,

ψn(x) =
n+1∑
|α|=0

δ|α|−1∂αH(z)

α! ψα

(
δ−1(x − z)

)
.

In fact, they follow from the uniqueness of the solution to the integral equation (2.5
the relation

Sk0
D

(
n+1∑
|α|=0

δ|α|−1∂αH(z)

α! ϕα

(
δ−1(· − z)

))
(x)

=
n+1∑

δ|α| ∂αH(z)

α!
(
Sk0δ

B ϕα

)(
δ−1(x − z)

)
,

|α|=0
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for x ∈ ∂D. It then follows from (4.9) that

∂u

∂ν
(x) = ∂u0

∂ν
(x) +

n+1∑
|α|=0

δ|α|−1∂αH(z)

α!
∂

∂ν
GD

(
ψα

(
δ−1(· − z)

))
(x) + O

(
δn+d

)
,

(4.11)

uniformly in x ∈ ∂Ω . Note that

GD

(
ψα

(
δ−1(· − z)

))
(x) =

∫
∂D

G(x, y)ψα

(
δ−1(y − z)

)
dσ(y)

= δd−1
∫
∂B

G(x, δw + z)ψα(w)dσ(w).

Moreover, forx near∂Ω , z ∈ Ω , w ∈ ∂B, and sufficiently smallδ, we have

G(x, δw + z) =
∞∑

|β|=0

δ|β|

β! ∂β
z G(x, z)wβ.

Therefore, we get

GD

(
ψα

(
δ−1(· − z)

))
(x) =

∞∑
|β|=0

δ|β|+d−1

β! ∂β
z G(x, z)

∫
∂B

wβψα(w)dσ(w).

Define, for multi-indicesα andβ in N
d ,

Wαβ :=
∫
∂B

wβψα(w)dσ(w). (4.12)

Then we obtain the following theorem from (4.11).

Theorem 4.2. The following pointwise asymptotic expansion on∂Ω holds ford = 2,3:

∂u

∂ν
(x) = ∂u0

∂ν
(x) + δd−2

n+1∑
|β|=0

n−|β|+1∑
|α|=0

δ|α|+|β|

α!β! ∂αH(z)
∂∂

β
z G(x, z)

∂ν(x)
Wαβ + O

(
δn+d

)
,

(4.13)

where the remainderO(δd+n) is dominated byCδd+n‖f ‖H1/2(∂Ω) for someC indepen-
dent ofx ∈ ∂Ω .

In view of (3.9), we obtain the following expansion:

∂(GDψ)

∂ν
(x) = δd−2

n+1∑
|β|=0

n−|β|+1∑
|α|=0

δ|α|+|β|

α!β! ∂αH(z)
∂∂

β
z G(x, z)

∂ν(x)
Wαβ + O

(
δn+d

)
.

(4.14)
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Observe thatψα , and henceWαβ depends onδ, and so doesH . Thus the formula (4.13
is not a genuine asymptotic formula. However, since it is simple and has some po
applicability in solving the inverse problem for Helmholtz equation, we made a reco
it as a theorem.

Observe that by the definition (4.10) ofψα , ‖ψα‖L2(∂B) is bounded, and hence

|Wαβ | � Cαβ, ∀α,β, (4.15)

whereCαβ is independent ofδ. Sinceδ is small, one can derive an asymptotic expans
of (ϕα,ψα) using their definition (4.10). Let us briefly explain this. Let us for simplic
assume thatd = 3. Let

Tδ

[
f

g

]
:=


 Skδ

B f − Sk0δ
B g

1
µ

∂(Skδ
B f )

∂ν

∣∣− − 1
µ0

∂(Sk0δ

B g)

∂ν

∣∣+

 ,

and letT0 be the operator whenδ = 0. Then the solution(ϕα,ψα) of the integral equation
(4.10) is given by[

ϕα

ψα

]
= [

I + T −1
0 (Tδ − T0)

]−1
T −1

0

[
xα

1
µ0

∂xα

∂ν

]
. (4.16)

By expandingTδ −T0 in a power series ofδ, one can derive the expansions ofψα andWαβ .
Let, for α,β ∈ N

d , (ϕ̂α, ψ̂α) be the leading term of the expansion of(ϕα,ψα). Then
(ϕ̂α, ψ̂α) is solution of the integral equation


S0

Bϕ̂α − S0
Bψ̂α = xα,

1
µ

∂(S0
Bϕ̂α)

∂ν

∣∣− − 1
µ0

∂(S0
Bψ̂α)

∂ν

∣∣+ = 1
µ0

∂xα

∂ν
,

on∂B. (4.17)

As a simplest case, let us now taken = 1 in (4.13) to find the leading order term
the asymptotic expansion of∂u

∂ν
|∂Ω asδ → 0. We first investigate the dependence ofWαβ

on δ for |α| � 1 and|β| � 1. If |α| � 1, then both sides of the first equation in (4.17
harmonic inB, and hence

S0
Bϕ̂α − S0

Bψ̂α = xα in B.

Therefore we get

∂(S0
Bϕ̂α)

∂ν

∣∣∣∣− − ∂(S0
Bψ̂α)

∂ν

∣∣∣∣− = ∂xα

∂ν
on∂B.

This identity together with the second equation in (4.17) yields

µ

µ0

∂(S0
Bψ̂α)

∂ν

∣∣∣∣+ − ∂(S0
Bψ̂α)

∂ν

∣∣∣∣− =
(

1− µ

µ0

)
∂xα

∂ν
.

In view of the relation (2.2), we have

µ

µ0

(
1

2
I +K∗

B

)
ψ̂α −

(
−1

2
I +K∗

B

)
ψ̂α =

(
1− µ

µ0

)
∂xα

∂ν
,

whereK∗ is the operator defined in (2.4) whenk = 0. Therefore, we have
B
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ψ̂α = (λI −K∗
B)−1

(
∂xα

∂ν

∣∣∣∣
∂B

)
, λ := µ/µ0 + 1

2(1− µ/µ0)
= µ0/µ + 1

2(µ0/µ − 1)
, (4.18)

where invertibility of the operatorλI −K∗
B is proved in [8]. Observe that if|α| = 0, then

ψ̂α = 0 and S0
Bϕ̂α = 1. (4.19)

Hence we obtainψα = O(δ) andSkδ
B ϕα = 1+ O(δ). Moreover, sinceSkδ

B ϕα depends onδ
analytically and(∆ + k2δ2)Skδ

B ϕα = 0 in B, we conclude that

ψα = O(δ) and Skδ
B ϕα = 1+ O

(
δ2), |α| = 0. (4.20)

It also follows from (4.18) that if|α| = |β| = 1, then

Wαβ =
∫
∂B

xβ
(
λI −K∗

B

)−1
(

∂xα

∂ν

∣∣∣∣
∂B

)
(x) dσ + O(δ). (4.21)

According to [1], the first quantity in the right-hand side of (4.18) is the polarization te
defined byM = M(µ/µ0) := (mαβ(µ/µ0)) where

mαβ

(
µ

µ0

)
=

(
1− µ

µ0

)(
δαβ |B| +

(
µ

µ0
− 1

)∫
∂B

yβ ∂θα

∂ν

∣∣∣∣+(y) dσ(y)

)
, (4.22)

andθα is the unique solution of the following transmission problem:


∆θα(x) = 0, x ∈ B ∪ R
d \ B̄,

θα|+ − θα|− = 0 on∂B,
∂θα

∂ν

∣∣+ − µ
µ0

∂θα

∂ν

∣∣− = να on∂B,

θα(x) → 0 as|x| → ∞.

Hereνα = ν · α is theα-component of the normal vectorν. In summary, we obtained tha

Wαβ = mαβ

(
µ

µ0

)
+ O(δ), |α| = |β| = 1. (4.23)

Suppose that eitherα = 0 orβ = 0. By (2.2) and (4.10), we have

ψα = ∂(Sk0δ
B ψα)

∂ν

∣∣∣∣+ − ∂(Sk0δ
B ψα)

∂ν

∣∣∣∣− = µ0

µ

∂(Skδ
B ϕα)

∂ν

∣∣∣∣− − ∂xα

∂ν
− ∂(Sk0δ

B ψα)

∂ν

∣∣∣∣−.

(4.24)

It then follows from divergence theorem that∫
∂B

xβψα dσ = −k2δ2µ0

µ

∫
B

xβSkδ
B ϕα dx + k2

0δ
2
∫
B

xβSk0δ
B ψα dx

+ µ0

µ

∫
∂B

∂xβ

∂ν
Skδ

B ϕα dσ −
∫
∂B

∂xβ

∂ν
Sk0δ

B ψα dσ. (4.25)

From (4.25), we can observe the following:
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Wαβ = −k2δ2µ0

µ
|B| + O

(
δ3) = −δ2ω2εµ0|B| + O

(
δ3), |α| = |β| = 0, (4.26)

Wαβ = O
(
δ2), |α| = 1, |β| = 0, (4.27)

Wαβ = O
(
δ2), |α| = 0, |β| = 1. (4.28)

In fact, (4.26) and (4.28) follows from (4.20) and (4.25), and (4.27) immediately fol
from (4.25). As a consequence of (4.27), (4.28), and (4.14), we obtain

∂(GDψ)

∂ν
(x) = O

(
δd

)
, uniformly onx ∈ ∂Ω.

Since the centerz is apart from∂Ω , it follows from (3.16) that∣∣H(z) − u0(z)
∣∣ + ∣∣∇H(z) − ∇u0(z)

∣∣ = O
(
δd

)
. (4.29)

We now consider the case|α| = 2 and|β| = 0. In this case, one can show using (4.2
that ∫

∂B

ψα dσ = −
∫
B

∆xα dx + O
(
δ2).

Therefore, if|β| = 0, then

∑
|α|=2

1

α!β!∂
αH(z)Wαβ = −∆H(z)|B| + O

(
δ2) = k2

0H(z)|B| + O
(
δ2). (4.30)

So (4.13) together with (4.23)–(4.30) yields the following expansion formula: ford = 3
and for anyx ∈ ∂Ω ,

∂u

∂ν
(x) = ∂u0

∂ν
(x) + δd

(
∇u0(z)M

(
µ

µ0

)
∂∇zG(x, z)

∂ν(x)

+ ω2µ0(ε − ε0)|B|u0(z)
∂G(x, z)

∂ν(x)

)
+ O

(
δd+1), (4.31)

whereM = (mαβ) is the polarization tensor defined in (4.22).
Before returning to (4.13) let us make the following important remark. In [1] new

cepts of higher order polarization tensors are introduced. These concepts generalize
classical Pólya-Szegö polarization tensors. These generalized polarization tensors (GPT
appear naturally in higher order asymptotics of the steady-state voltage potentials un
perturbation of conductor by dielectric inhomogeneities of small diameter. They seem
carry out significant information on the small dielectric inhomogeneities [3]. In this pape
the tensorsWαβ play similar role. As defined in [1] the GPT’s are given forα,β ∈ N

d by

Mαβ :=
∫
∂B

wβψ̂α(w)dσ(w),

whereψ̂α is defined by (4.17). The following result makes the connection betweenWαβ

andMαβ . Its proof is immediate.
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Lemma 4.3. Suppose thataα are constants such that
∑

α aαwα is a harmonic polynomial
Then∑

α

aαWαβ →
∑
α

aαMαβ asδ → 0.

We also note that in the two-dimensional case we should replace the operatorTδ by

T̃δ

[
f

g

]
:=


 Skδ

B f + τ
∫
∂B

f − Sk0δ
B g − τ

∫
∂B

g

1
µ

∂(Skδ
B f )

∂ν

∣∣− − 1
µ0

∂(Sk0δ

B g)

∂ν

∣∣+

 ,

andT0 by T̃0 (the T̃δ operator whenδ = 0). The results of [11] allow us again to hand
the problem in the two-dimensional case. Instead of equationS0

Bϕ̂α = 1 for |α| = 0 in
(4.19) we deal in this case with the well-posed equationS0

Bϕ̂α − τ
∫
∂B ϕ̂α = 1. The zero

mean-value property of̂ψα for |α| = 1 can also be easily be deduced from the system
integral equations satisfied by(ϕ̂α, ψ̂α) using the fact thatxα is harmonic for|α| = 1. So, in
the two-dimensional case, we obtain the following expansion formula of Vogelius–Vo
[15]: for anyx ∈ ∂Ω ,

∂u

∂ν
(x) = ∂u0

∂ν
(x) + δ2

(
∇u0(z)M

(
µ

µ0

)
∂∇zG(x, z)

∂ν(x)

+ ω2µ0(ε − ε0)|B|u0(z)
∂G(x, z)

∂ν(x)

)
+ o

(
δ2), (4.32)

whereM = (mαβ) is the polarization tensor defined in (4.22). In fact, in [15], the form
is expressed in terms of ‘free space’ Green functionΦk instead of the Green functionG.
However, those two formula are the same as one can see using the relation (3.11).

Observing now that the formula (4.13) still contains∂αH factors, the remaining task
to convert (4.13) to a formula given solely byu0 and its derivatives. Substitution of (4.1
into (3.16) yields that, for anyx ∈ Ω ,

H(x) = u0(x) − δd−2
n+1∑
|β|=0

n+1−|β|∑
|α|=0

δ|α|+|β|

α!β! ∂αH(z)S
k0
Ω

(
∂∂

β
z G(x, z)

∂ν(x)

)
Wαβ

+ O
(
δn+d

)
. (4.33)

In (4.33) the remainderO(δn+d ) is uniform in theCn norm on any compact subset ofΩ

for anyn and therefore

(
∂γ H

)
(z) + δd−2

n+1∑
|β|=0

n+1−|β|∑
|α|=0

δ|α|+|β|∂αH(z)Pαβγ = (
∂γ u0

)
(z) + O

(
δd+n

)
,

(4.34)

for all γ ∈ N
d with |γ | � n + 1 where

Pαβγ = 1

α!β!Wαβ∂γ S
k0
Ω

(
∂∂

β
z G(·, z)
∂ν(x)

)∣∣∣∣ . (4.35)

x=z
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Following [1], define the operatorPδ by

Pδ : (wγ )γ∈Nd , |γ |�n �→
(

wγ + δd−2
n+1∑
|β|=0

n+1−|β|∑
|α|=0

δ|α|+|β|wαPαβγ

)
γ∈Nd, |γ |�n

.

Observe from (4.16) thatPδ can be written as

Pδ = I + δdP1 + · · · + δn+d−1Pn−1 + O
(
δn+d

)
.

Defining as in [1]Qp, p = 1, . . . , n − 1, by

(
I + δdP1 + · · · + δn+d−1Pn−1

)−1 = I + δdQ1 + · · · + δn+d−1Qn−1

+ O
(
δn+d

)
, (4.36)

we finally obtain that

((
∂αH

)
(z)

)
α∈Nd , |α|�n+1 =

(
I +

n∑
p=1

δd+p−1Qp

)((
∂αu0

)
(z)

)
α∈Nd , |α|�n+1

+ O
(
δd+n

)
, (4.37)

which yields the main result of this paper.

Theorem 4.4. The following pointwise asymptotic expansion on∂Ω holds ford = 2,3:

∂u

∂ν
(x) = ∂u0

∂ν
(x) + δd−2

n+1∑
|β|=0

n+1−|β|∑
|α|=0

δ|α|+|β|

α!β!

×
[((

I +
n+2−|α|−|β|−d∑

p=1

δd+p−1Qp

)(
∂γ u0(z)

))
α

∂∂
β
z G(x, z)

∂ν(x)
Wαβ

]

+ O
(
δn+d

)
, (4.38)

where the remainderO(δd+n) is dominated byCδd+n‖f ‖H1/2(∂Ω) for someC independen
of x ∈ ∂Ω .

Whenn = d , we have a simpler formula

∂u

∂ν
(x) = ∂u0

∂ν
(x) + δd−2

d+1∑
|β|=0

d+1−|β|∑
|α|=0

δ|α|+|β|

α!β! ∂αu0(z)
∂∂

β
z G(x, z)

∂ν(x)
Wαβ

+ O
(
δ2d

)
. (4.39)

Let us now consider the case when there are several well-separated inclusion
inhomogeneityD takes the form

⋃m
s=1(δBs + zs). The magnetic permeability and elect

permittivity of the inclusionδBs + zs areµs andεs , s = 1, . . . ,m. By iterating the formula
(4.39), we can derive the following theorem.
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Theorem 4.5. The following pointwise asymptotic expansion on∂Ω holds ford = 2,3:

∂u

∂ν
(x) = ∂u0

∂ν
(x) + δd−2

m∑
s=1

d+1∑
|β|=0

d+1−|β|∑
|α|=0

δ|α|+|β|

α!β! ∂αu0(z)
∂∂

β
z G(x, z)

∂ν(x)
Ws

αβ

+ O
(
δ2d

)
. (4.40)

HereWs
αβ is defined by(4.12)with B,µ, ε replaced byBs,µs, εs .

We conclude this paper by making one final remark. In this paper, we only derive t
ymptotic formula for the solution to the Dirichlet problem. However, by the same me
one can derive an asymptotic formula for the Neumann problem as well.
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