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1. INTRODUCTION 

For a real analytic function 8 which satisfies certain conditions, Watson [6] 
derived a series in p which expresses the asymptotic behavior of the integral 

s b 

0 e- 
psre(x) dx 

asp + co. The terms of that series depend on the coefficients in the Maclaurin 
expansion of 8. 

This paper extends Watson’s work, under certain additional conditions 
on 8, to the integral 

s b 

0 e- 
p~~eyx) dx. 

An immediate consequence of the new result is an asymptotic series for the 
pth power of the Lp norm of an analytic function. As an application, this 
series is used to extend the formula for the asymptotic behavior of the pth 
power integrals of sine and of cosine to noninteger values of p. 

Finally, some results are presented to describe the nature of the occurrences 
of a given Taylor series coefficient of an analytic function in the asymptotic 
expansion for the pth power of that function’s Lg norm. These theorems are 
useful in developing a characterization af the strict approximation of 
Descloux [4] (cf. [I], for which the present paper corrects a computational 
error). 
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2. THE EXTENDED WATSON LEMMA 

In 1918, Watson proved the following result. 

THEOREM 1. Let e(t) be an analytic function oft, regular in a neighborhood 
of the origin and let 

e(t) = f a,P 
?TkO 

be its Taylor series. Also let 

I O(t)/ < KeBtr, O<t<b, 

where K, /I, and r are positive numbers independent oft. Then 

s 

b 

e-st’O(t) dt N (I/r) f a,J((m + 1)/r) z-(“+~)/~ 
0 ?ll=O 

as 1 z 1 -+ 00 in a closed sector excluding the negative real axis. 

A proof of Watson’s lemma can be found in [2] or [3]. It follows the 
original proof which appeared in [6]. 

We now prove an extension of Theorem 1 under some special hypotheses. 

THEOREM 2. Suppose e(x) is an analytic function for 1 x 1 < a + 6 where 
a > 0, 6 > 0. Let e(x) have the TayIor series 

ecx) = 1 + f a,x” (k 2 1). 
rn=k 

Suppose one can pick A < a and b > A such that, on [0, A], I e(x) - 1 1 < 3 
and on [A, b] 

1 B(x)1 G Keoxr, 

where K, p, and r are positive and independent of x. Write 

f@(x) = 1 + f b,x”. 
n=k 

Then, if r < k, if a! 3 B for b finite and ol > i3 for b infinite and if In K < 
(CX - /3) A’, then 

s 

b 

e-“e2’8+) dx 
0 

- ; I’ ($) (CXP)-‘l’ + $ $k b,l-’ t+) (q)-(“fl)” 

as p --f co through positive reals. 
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The proof of Theorem 2 depends on the following four lemmas. 

LEMMA 1. Some- poxrxm dx = (l/r) F((m + l)/r)(up)-(“+‘)l’. 

Proof. This useful result is easily proved by the change of variables 
t = pcIIxv. 

LEMMA 2. With A, K, p, and r as in the statement of Theorem 2, 

prr*W(x) dx --f 0 

faster than any power of l/p asp -+ 00. 

Proof. 

II 
b 

A e- 
per’&‘(x) dx 

I 
b 

< 
4 e- 

P~~x’KP~P!%? dx 

s 

b-A 
z K” e-~W3)(~+AY dy 

3 where 
0 

s 
b-A 

< KPe-PC”-B)d e-~(o--4b’ dy 

0 

< KP~-P~--B)~’ ; r (+) (a _ fi)-“‘p-‘/’ 

b-A=coifb=co, 

if b = cc (Lemma l), 

if b < co. 

In either case, as p -+ cc, the expression approaches 0 faster than any power 
of l/p because 0 < K/e+8ja’ < 1. 

LEMMA 3. On [0, A] where I e(x) - 1 I < 4, 

LeP(x) = 1 

with y = e(x) - 1 and 
p-+ 00. 

+[~p(p-l)***(p-iii) 
i! Y” -t R, 

i=l 

$ e-Porx’Rz, dx I + 0 faster than any power of l/p as 

Proof. Write @(x) = (1 + y)” and use Taylor’s theorem with remainder 
to show R, = 0 if p is an integer. Otherwise 

, R, , = P(P - ‘) “’ (P - [PI) 
([PI + I>! 

< 1 [pl+12[Pl+1-P2-[P]-l = zpp, 
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[p,p+-l ‘- j < 1 (0 G i G [PI) and 

Furthermore, 

IS 
A 

0 e- 
Pax”Rn dx / < A 1 R, j 

which approaches 0 in the desired fashion. 

IZI < IYI cf. 

<. A23, 

LEMMA 4. Fix M a positive integer. Then, for all integers i such that 
W(k - r) 6 i < P, 

p(p- l)...(p-ii 1) A 
i! s 

e-paz’yi dx = o(p-Ml’). o 

Proof. Since y = akXk + ak+#+’ -t “’ and A 6 a, there exists c such 
that / y j < cxk on [0, A]. Then 

p(p- I)...(p-i+ 1) 
i! 

fmxTyi dx 

-(ik+l)/rP-i(k--7)/r-l Jr 

= o(p-“l’) for i(k - r) 3 M. 

Proof of Theorem 2. To complete the proof of Theorem 2, we need only 
examine the integrals of the terms in 

1+ 
[“‘(ffl)l-l p(p - 1) .s. (p - i + 1) yi 

i=l i! 

First we write the product 

p(p - 1) ... (p - i + 1) = i aipj,$pj, 
j=l 

where gvti is the vth elementary symmetric function on -1, -2,..., 1 - i. 
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Let (JJ”)~ be the polynomial of largest degree less than M + jr which 
agrees with the sum of the leading terms of the power series expansion of yi. 
On [0, A], we can find ci,? with 

/ yi - (y”)j I < Cf,jX”+j’. 

Then, 

g CLiPi joA e- paevyi dx = ,il oi-j,ipi joA e-pez”(yi)j dx + Ti, 

where 

i 1 
< 1 oi-j,&,j ; r ( 

M+jr ___ OI-(M+jr+l)/lj7j--(Mtj~+l)/r 

j=l 
r 1 

= o(p-““). 

The final result now follows by applying Theorem 1 to just those terms of 

@J(x) = 1 + f b,xm 
m=l; 

of the form Bpjx” for which m -jr < M. For such terms, 

Bpj joA e-~cdxm dx - Bpi jaw e-~a~‘Xna dx 

= (B/r) r((m + 1)/r) cr-(m+l)lrp-(m+l-jr)/l.. 

This final expression has an exponent of l/p, namely, (m + 1 -jr)/,, which 
is no greater than M/r. 

3. THE pth POWER INTEGRAL 

An important application of Theorem 2 yields an asymptotic expansion 
for the pth power of the Lp norm of an analytic function. 

THEOREM 3. Let t/(x) be a nonnegative function, analytic for 0 < x < a. 
Denote the Chebyshev norm of # by II $ II. Assume # attains that norm at x = 0 
only. Then 4 = #/II I/I /I has the Taylor series 

d(x) = I - o(XT + f a,xm 
m=r+1 
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with (Y > 0 and r 2 1. Define 0(x) = eaxr~(x). Let Q(#) be the asymptotic 
expansion Theorem 2 yields for St eeax’&(x) dx. Then fi *p(x) dx N 11 $ I/p Q(4) 
asp -+ Go. 

Proof. Since II C$ II = 1 and g5 attains that norm at x = 0 only, 4(x) < 1 
for all x > 0. Thus the Taylor series for 4 has the form claimed. 

By a simple computation, the Taylor series for 8 has the form 

e(x) = 1 + f a,x”. 
m=r+1 

Pick A & a such that e(x) > 8 on [0, A]. Let K = sup{+(x) 1 x E [A, a]}. 
Trivially, K < 1; i.e., In K < 0 and I &x)1 < Keax’ for A < x < a. Thus, 
by Theorem 2 with 01 = /3, k = r + 1, 

COROLLARY. Let $(x) be analytic for 0 < x < a. Since $ has onlyjinitely 
many zeros and extrema on [0, a], one can write [0, a] as the union of closed 
intervals I, ,..., I,, with disjoint interiors such that 4 does not change sign on 
any Ij and such that the only place 

achieves its norm 11 #j ]I is at one of the endpoints Of Ij . Suppose, for j = l,..., S, 
that 11 #j 11 = II $ /I. After an appropriate change of variables, I & 1 satisfies the 
conditions of Theorem 3. Let q$ be this transformed & . Define 

Then 

J- o= I +>I” dx = II 1cI IP Q(4). 

Proof For j = s + I,..., n, (11 #i II/II $11)” + 0 faster than any power of 
l/p, asp + co. Write 

and the result follows. 
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4. AN APPLICATION 

The well-known formula of Wallis [5] states that for p > 2, 

1.3.5...(p- 1) 7T 

s 
*I2 77112 if p is even, 

sin’ x dx = s co@ x dx = 
2-4.6...p y 

0 0 2.4.6 . ..(p - 1) 
3*5*7*..p 

if p is odd, 

= (+~)““{l - (1/4p) + (1/32p2) + o(l/p3)} 

when p is a large positive integer [2, p. 621. Theorem 3, however, allows us 
to compute as many terms of the asymptotic expansion as we like and to 
remove the restriction that p be an integer. 

Let d(x) = cos x on [0, 7~/2]. Then I = 2 and a: = $. The Taylor series 
for I3 is 

19 e(x) = 1 - ; x4 - -& x6 - & x* - - 56,00 xl0 - *** 

and for tP is 

BP(~) = 1 - p (A ~4 - & x-5 - & x6 - --.!!- 56700 xl0 - *** 

+P2-P 
2 ( & 9 + & xl0 + &&-xl2 + -j 

+ P3 - 3P2 + 2P 1 
--x12 

1 
- -x14 - *.. 

6 1728 2160 
+ p4-6p3f lip”-6p 

( 
1 

24 20736 
x16 + . . . 

1 
+ . . . 

Hence 

s 

n/2 
cos” x dx 

0 

N ; Ir (;)(g-‘” - (&j r(;)(+)-“‘” - (6) r&g-“’ 

- gL& r (;)(+,“‘” - p!& r (!i)($‘2 - . . . 

+ $&r(;j(+)-13’2 + . . . 

_ P3 - 3P2 
6 

& r (y)(q3’2 
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P3 1 --__ 
6 2160 

r (L2)(q5’2 - . . . 

This result can also be obtained by noting that 

s 

ml2 
COP x dx = ; B 

( 
p+l 1 

0 
2’3 = ) 

TKP - 1)/2) m> 
W(P + 2M 

and writing asymptotic power series for F(( p + 1)/2) and T((p + 2)/2). 
(B, here, is the standard Beta function.) 

5. THE COEFFICIENTS IN Q 

Although it is virtually impossible to display the coefficient of p-” in Q(#) 
as a function of the Taylor series coefficients of 4, we can say something about 
the nature of the first occurrences of various powers of those Taylor series 
coefficients. 

THEOREM 4. Forjxedpositive integers m and s, &,Jirst appears in Q(#) 
in the coeficient of p-” where u = (sm + 1)/r. 

Proof. Write 

e(x) = 1 -t y i ar+mxT+mearxr, 

where y = a,+lxr+l + ... but does not fnvolve a,+, . Then 

en(x) = (1 + y)” t f P(P - 1) ... (p - i + l)(l + y)P-i 
i=l 

= f (pi + “I+lpi-1 + ... + %-,+1p)(l + yy 
i=l 

x aZf+m~i(r+m)(l + iocxc + *..) + (1 + y)” + R, 

where ~~,~-r is the jth elementary symmetric function of the numbers - 1, 
-2,..., -(i - 1). 
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When (1 + ~)fl-~ is written as a polynomial plus remainder, it is apparent 
that the first term involving OL;+~~, i.e., that term with the lowest power of x, 
is 

(P” + %s-1p 
s-l + . . . 

+ ~s-l,s~lp) q+nps(T+w'). 

This contributes 

;(Ps + %,r-1P s-1 + ... + Q.&P) 
sr + sm + 1 a;+mr ( r j (rq)-(S~+Sm+l)l+ 

to the asymptotic expansion Q(#). When the powers of p are collected, the 
first occurrence of a:+, ; i.e., the term with the smallest power of l/p, is 

1 
- Gn 

sr + sm + 1 
r 

r ( r j OI-("T+sm+l)/rp-(Sm+l,/~~ 

COROLLARY. For jixed m, a:+, first appears in Q(#) as Bc$+,,, ~-(~~~+l)l~, 
where B > 0 depends only on 01, r and m. 

THEOREM 5. For fixed m, the only occurrences of a++, in Q(#) before the 
first appearence of CL& are all of the form co~,+,p-~, where (m + 1)/r < 
u < (2m + 1)/r. Furthermore, c depends only on LX, r, m, and some of the u,+~ 
whose squares have already appeared. 

Proof. That u lies between (m + 1)/r and (2m + 1)/r is a trivial conse- 
quence of Theorem 4. Furthermore, if c depends on CY:+, for s > 2, Theorem 4 
also implies that olf+n has already appeared in a term with a smaller power of 
l/p. Thus, it remains to examine the nature of the occurrences of c++~o++~ 
in Q(#). We emulate the proof of the last theorem. Write 

O(x) = I + 2 + (aT+,xr+n + CL~+~XT+~) ems’, 

where z is a power series which does not involve a,+, or oi,+, . Then 

O*(x) = f (p” + ... + o,-,&,p)(l + z),-i 
i=l 

The expression OL,+,CY,+, occurs when i = 2 and j = 1. It is found in 

(p” - p)(l + z),-2 2c++,ac,+,x2T+n+m(l + 2olx* + . ..). 

The smallest, nonzero exponent of x in 1 + z is no less than r + 1. Thus, 
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when (1 + z)*-~ is written as a polynomial plus remainder, its terms have 
the form p”-Wyx”(r+l)+C, where u = 0, l,..., p, w = 0, l,..., V, E > 0, and y is 
some combination of the coefficients. There are several terms with CY,+,OI,+, 
but they all have the form 

where 8 = 0, I and I = 0, 1, 2 ,... . They contribute to thep-u term in Q(#) 
when 

24 = -(2 - 6 + v - w) + ((2 + u + t)r + 2, + E + II + m + 1)/r) 

= 6 + w + t + Ku + 4/r> + ((n + m + 1)/r). 

Since we are interested in u < (2m + 1)/r we need examine only the situation 

6 + w + t + ((0 + 4/r) + (n/r> < m/r. 
But this implies )2 < m which yields 

24 > S + w + t + ((0 + 4/r> + ((73 + 1)/r) 3 (2n + 1)/r. 

Thus, c& has already occurred in a term of Q(#) with a lower exponent of 
l/p than U. 

6. CONCLUSION 

The corollary to Theorem 3 shows some promise of answering the question 
of the convergence, asp ---f co, of the path of best L” approximates in a linear 
space of functions to some given function outside that space. Descloux [4] 
has conjectured that, when the functions involved are continuous, piecewise 
analytic, the path does converge and to an element he named “the strict 
approximation.” 

However, in order to show the best L* approximates converge to the strict 
approximation it is necessary to prove that the coefficients of Q in the 
corollary are uniformly bounded in a ball centered at a best approximation. 
The difficulty in this is that the subintervals Zi of the corollary to Theorem 3 
may change from point to point within the ball. 
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