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Abstract

We prove that for all 1�p�∞, p �= 2, the Lp spaces associated to two von Neumann
algebrasM, N are isometrically isomorphic if and only ifM andN are Jordan *-isomorphic.
This follows from a noncommutativeLp Banach–Stone theorem: a specific decomposition for
surjective isometries of noncommutativeLp spaces.
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1. Introduction

In this paper we prove the following theorem.

Theorem 1.1. Let M and N be von Neumann algebras, and 1�p�∞, p �= 2. The
following are equivalent:
(1) M andN are Jordan *-isomorphic;
(2) Lp(M) and Lp(N ) are isometrically isomorphic as Banach spaces.
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L∞(M) is to be understood asM itself, so forp = ∞ the statement follows from
the classic article of Kadison[14] (see Theorems2.1 and 2.2 below). One may view
this paper as anLp version of Kadison’s results.
The implication (1)→ (2) is a direct application of modular theory and interpolation,

only requiring us to go a little further down well-traveled paths. The more interesting
part is to show that (2)→ (1). In case the surjective isometry is *-preserving and
the algebras are�-finite, this was proved by Watanabe[32]. When both algebras are
semifinite, this follows from a structure theorem forLp isometries (even non-surjective)
due to Yeadon[37,28]; recently Yeadon’s theorem was extended in[13] to classify
isometries for which only the initial algebra is assumed semifinite. In common with
these papers, our proof relies crucially on the equality condition in the noncommutative
Clarkson inequality. But we do not make use of any of these papers’ results, and type
considerations play no role in our argument (although abelian summands require a
little extra care). We actually determine the structure of the surjective isometry, as
follows.

Theorem 1.2 (NoncommutativeLp Banach–Stone theorem). Let T : Lp(M)→Lp(N )

be a surjective isometry, whereM andN are von Neumann algebras and1< p <∞,
p �= 2. Then there are a surjective Jordan *-isomorphismJ :M→ N and a unitary
w ∈ N such that

T (�1/p) = w(� ◦ J−1)1/p, ∀� ∈M+∗ . (1.1)

Here�1/p is the generic positive element ofLp(M); we will explain this notation.
Since anyLp element is a linear combination of four positive ones, (1.1) completely
determinesT. The extensions to 0< p�1 of Theorems1.1 and 1.2 are true but not
proved in this paper—see Remark 2 of Section5, and [26].
A version of Theorem1.2 was shown by Watanabe[35] under the assumptions thatT

is *-preserving andM has a certain extension property. Our method here is different:
we focus on the subspacesq1Lp(M)q2, where q1, q2 are projections inM. These
subspaces, called corners, are a sort of “two-dimensional” analogue of the projection
bands in classicalLp spaces. It turns out thatT takes corners to corners, preserving
both orthogonality (in the sense defined below) and the semi-inner product. From this
we deduce the existence of an orthoisomorphism between the projection lattices of
M andN . Extending the orthoisomorphism produces a Jordan *-isomorphism, and an
intertwining relation finally implies thatT has form (1.1).
Theorem1.2 evidently suggests the larger challenge of classifying allLp isometries.

While this is still open in general, we mention that the author has recently written
an article[25] which obtains several new results, including a solution which is valid
under a mild (perhaps vacuous?) hypothesis on the initial algebra. Also the paper[13]
completely determines the structure of 2-isometries betweenLp spaces. Although there
is some overlap in the setup of these problems, we believe that the surjective case
merits a separate exposition, being of independent interest and admitting a distinct
technique and solution. There is no overlap at all—in fact, an interesting contrast—
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with the investigation[9] into nonisometric embeddings between noncommutativeLp

spaces.

2. Background

We start with some notation. The only algebras (denotedM, N ) under consideration
in this paper are von Neumann algebras. We will useZ for “center of” andP for
“projections of”, so for exampleP(Z(M)) is the set of central projections ofM. With
� ∈ M∗, x ∈ M, x� (resp.�x) means the functional�(· x) (resp.�(x ·)). We use
s�, sr to mean “left/right support of”, for operators, functionals, orLp vectors. Often
we simply writeLp to indicate a generic noncommutativeLp space.
A Jordan homomorphismbetween von Neumann algebras is a linear map which

preserves the Jordan operator product(x, y) �→ (1/2)(xy + yx). Possible adjectives
include normal, *-preserving, injective, surjective... a Jordan homomorphism which is
all of these is asurjective Jordan *-isomorphism. (Normality is a consequence[10,
Paragraph 4.5.6].) That being said, all of the Jordan theory that the reader needs for
this paper is contained in Kadison’s

Theorem 2.1 ([14, Theorem 10]). A surjective Jordan *-isomorphism between
von Neumann algebras is the direct sum of a *-isomorphism and a *-antiisomorphism.

Up to multiplication by a unitary, these are all the surjective isometries between von
Neumann algebras.

Theorem 2.2 ([14, Theorem 7]). Let T be a surjective isometry between the von Neu-
mann algebrasM and N . Then there are a surjective Jordan *-isomorphism J from
M to N and a unitaryw ∈ N such thatT (x) = wJ(x) for all x ∈M.

Actually Kadison proved Theorem2.2 for all unital C*-algebras. Since isometries
of abelian unital C*-algebras are described by the Banach–Stone theorem, Theorem
2.2 is considered a noncommutative Banach–Stone theorem. The reader will note its
similarity with Theorem1.2. But Kadison’s proof of Theorem2.2, and others offered
later, rely on the geometry (i.e. extreme points, faces) of the unit ball. It does not seem
that they can be adapted to work in theLp context.
We will assume a basic familiarity with noncommutativeLp spaces. Still, it seems

wise to review briefly the specific constructions and concepts that we need. We pro-
vide selective, but hopefully sufficient, references to the literature. The reader desiring
more overview might consult[22], which focuses on Banach space properties and also
includes a rich bibliography.
In keeping with the motto “von Neumann algebras are noncommutativeL∞ spaces”,

one thinks of von Neumann preduals as noncommutativeL1 spaces and can consider
how to construct theirLp cousins. WhenM is a semifinite algebra with faithful
normal semifinite tracial weight�, one may simply employ� as an integral. That is,
Lp(M, �) is the closure of{T ∈ M | ‖T ‖p��(|T |p)1/p < ∞} in the norm‖ · ‖p.
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This construction goes back to Segal[24] and has a pleasing interpretation as a set of
(possibly unbounded) operators. See[20].
But it does not work for all von Neumann algebras. The first general construction

is due to Haagerup[8], who saw thatM∗ could be identified, as an ordered vector
space, with a class of unbounded operators affiliated with the core ofM. Since these
are operators, one can takepth roots on the positive cone, and the norm can be imported
from M∗. To be specific,Lp(M) is the set of�-measurable operators affiliated with
(M��R, �) which satisfy �s(T ) = e−s/pT . Here � is a modular action,� is the
canonical trace, and� is the dual action. Notice that the product of anLp operator
and anLq operator is anLr operator, where1

p
+ 1

q
= 1

r
. See[30].

In this construction, any positive element inLp(M) is the pth root of an operator
which corresponds to some� ∈ M+∗ . We will refer to this element as�1/p. Notice
that ‖�1/p‖ = [�(1)]1/p. This notation frequently proves expedient and is discussed
specifically in [36, 3, Section V.B.�; 27].
The polar decomposition andM −M bimodule structure forL1(M) agree with

those ofM∗. In particular, the partial isometry and support projections are inM, and
all support projections are necessarily�-finite. This second statement remains true for
Lp(M), but the bimodule structure is less obvious. See[30,12].
Another construction ofLp(M) is by complex interpolation, pioneered by Kosaki

[16]. Assume thatM is �-finite, and consider the left embedding ofM in M∗ arising
from a fixed faithful state� ∈ M∗: x �→ x�. Then Haagerup’s spaceLp(M) is
isometric to the interpolated Banach space at 1/p [16, Theorem 9.1]. More precisely,
we have

Lp(M) � [M,M∗]1/p = Lp(M)�1/q, 1/p + 1/q = 1. (2.1)

Here the equality is meant assets, while the isomorphism is an isometric identification
of Banach spaces. Right embeddings of the formx �→ �x (and even others) work
equally well.
Evaluation at 1 (i.e.,� �→ �(1)) is a distinguished linear functional onM∗ �

L1(M). It is called theHaagerup trace, and denoted Tr, because it implements the
duality betweenLp andLq (1/p + 1/q = 1) in a trace-like way:

< �, � >= Tr(��) = Tr(��), � ∈ Lp(M), � ∈ Lq(M).

Under this pairing each ofLp(M) and Lq(M) can be isometrically identified with
the dual space of the other, and of courseL∞(M) =M is the dual space ofL1(M)

[30].
The most importantLp result for this paper is the noncommutative Clarkson inequal-

ity, or more accurately the condition characterizing when it is an equality. Yeadon[37]
showed this for semifinite von Neumann algebras; a few years later Kosaki[17] proved
it for arbitrary von Neumann algebras with 2< p < ∞; and only recently Raynaud
and Xu [23] obtained a general version (relying on Kosaki’s work).
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Theorem 2.3 (Equality condition for noncommutative Clarkson inequality). For �, � ∈
Lp, 0< p <∞, p �= 2,

‖�+ �‖p + ‖�− �‖p = 2(‖�‖p + ‖�‖p) ⇐⇒ ��∗ = �∗� = 0. (2.2)

The second condition is equivalent to requiringsr (�)sr (�) = s�(�)s�(�) = 0. Because
of this, we call pairs ofLp vectors satisfying (2.2) orthogonal. Since the first condition
of (2.2) is preserved by isometries, orthogonality is preserved too. (For classicalLp

spaces, this says that isometries preserve disjointness of support. Banach made this
observation in the very first investigation ofLp isometries[1].) To keep things clear,
this is the only usage of the term “orthogonal” in this paper, except where we refer
specifically to orthogonality of projections. We do not use “orthogonal” to describe pairs
of vectors with semi-inner product zero. So for a setS ⊂ Lp, the orthocomplement
S⊥ means the set of elements orthogonal (in this sense) to every element inS.
Some authors use “disjoint” in place of “orthogonal”. We reserve this term for another

use: two subspaces are calleddisjoint if their intersection is{0}.

3. Corners and semi-inner products

It will be helpful to introduce somead hoc terminology: a subspace ofLp is a
corner if it is of the form q1L

pq2 for some projectionsq1, q2. Corners withq1 = 1
(resp. q2 = 1) will be called columns(resp. rows). Note that a corner has a unique
representation in whichq1, q2 have equal central support; by the central support of a
corner we mean the central support of the projections in such a representation. We also
refer to eitherMz or Lp(M)z as acentral summandwhen z ∈ P(Z(M)).

Lemma 3.1. (1) If T is a surjective isometry betweenLp spaces( 1�p <∞, p �= 2)
and S is a subset of the domain, then T (S⊥) = T (S)⊥.
(2) The intersection of any collection of corners is a corner.
(3) For any setS ⊂ Lp, S⊥ is a corner.

Proof. T and T −1 preserve orthogonality, proving the first statement. For the second,
let {p�}, {q�} be sets of projections; then

⋂
p�L

pq� = (∧p�)L
p(∧q�).

The third follows from noting that{�}⊥ = (1− s�(�))Lp(1− sr (�)) and applying the
second to the expression

S⊥ =
⋂
�∈S
{�}⊥. �
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The other notion we need is that of asemi-inner product, first defined for general
Banach spaces by Lumer[19]. We will specialize our discussion toLp spaces, 1<
p < ∞. A nice development of the relationship between isometries and semi-inner
products can be found in[7, Section 1.4].
For � ∈ Lp, define�� to be the unique functional in(Lp)∗ with ‖��‖ = ‖�‖ and

��(�) = ‖�‖2. The assignment� �→ �� is known as aduality map; uniqueness of the
duality map is expressed by saying thatLp is a smoothBanach space. We have that
�0 = 0 and otherwise

��(·) =
Tr(· |�|p−1v∗)
‖�‖p−2 , (3.1)

where � has polar decompositionv|�|. The semi-inner product is the function on
Lp × Lp defined by

[�, �]���(�), �, � ∈ Lp. (3.2)

In general the semi-inner product is not additive in the second variable.

We prepare two lemmas for later use. The first is a small variation of well-known
results and surely appears in the literature somewhere. See[15] for the historical
predecessor or[13, Lemma 4.2]for a similar application.

Lemma 3.2. If T is an isometry betweenLp spaces( 1 < p < ∞), then T preserves
the semi-inner product.

Proof. Note that we are not assuming thatT is surjective, so thatT ∗ is only contractive.
We first take anyLp vector � and calculate

T ∗(�T �)(�) = �T �(T �) = [T �, T �] = ‖T �‖2 = ‖�T �‖‖�‖�‖T ∗(�T �)‖‖�‖,

so by smoothnessT ∗(�T �) = ��. Now we apply this to any twoLp vectors�, �:

[T �, T �] = �T �(T �) = T ∗(�T �)(�) = ��(�) = [�, �]. �

Lemma 3.3. Let 1< p <∞, and letp1Lpp2 and q1Lpq2 be corners such that

[�, �] = 0, � ∈ p1Lpp2, � ∈ q1Lpq2. (3.3)

Thenp1q1 and p2q2 are centrally orthogonal.
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Proof. Using (3.1), (3.3) is equivalent to

Tr(p1�p2q2�q1) = 0, � ∈ Lp, � ∈ Lq, 1/p + 1/q = 1.

By duality we may conclude thatq1p1�p2q2 = 0 for any � ∈ Lp. Since the central
supports ofq1p1 and (q1p1)∗ = p1q1 are equal, this implies the lemma.�

4. Proof of Theorems1.1 and 1.2

Let us start with the implication (1)→ (2) of Theorem1.1. The casep = ∞ is
automatic; Theorem2.1 shows that a surjective Jordan *-isomorphism is isometric. The
casep = 1 follows by considering the preadjoint of the (normal) surjective Jordan
*-isomorphism. We now assume 1< p <∞, p �= 2, and the existence of a surjective
Jordan *-isomorphismJ :M→ N .
By Theorem2.1, there is a central projectionz ∈M such thatxz �→ J (x)J (z) is

a surjective *-isomorphism fromzM to J (z)N , and x(1− z) �→ J (x)J (1− z) is a
surjective *-antiisomorphism from(1−z)M to J (1−z)N . SinceLp(M) is isometric to
Lp(zM)⊕p Lp((1−z)M) (and similarly forN ), it suffices to show that *-isomorphic
or *-antiisomorphic von Neumann algebras have isometricLp spaces.
At least the *-isomorphic case is known. In fact the core of a von Neumann algebra,

so also itsLp spaces, can be constructedfunctorially (see, for example,[6, Theorem
3.5]). Here we cover the *-antiisomorphic case only; the reader will have no trouble
making the necessary changes for a *-isomorphism. A related discussion is in[33,
Section 3], although some statements were later corrected in[34, Section 3].
So let� :M→ N be a surjective *-antiisomorphism. (This does not imply that there

exists a surjective *-isomorphism, by a paper of Connes[2].) We want to construct a
surjective isometry fromLp(M) to Lp(N ).
Temporarily assume that the algebras are�-finite, and fix a faithful state� ∈M+∗ .

We know thatLp(M) � [M,M∗]1/p and Lp(N ) � [N ,N∗]1/p, where we use the
embeddings

M � x 	1�→ x� ∈M∗, N � y 	2�→(� ◦ �−1)y ∈ N∗.

Then the following diagram commutes, and the horizontal arrows are isometric linear
isomorphisms.

M �−−−−→ N
	1

�
�	2

M∗ −−−−→
(�−1)∗

N∗
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It follows that the interpolated spaces are isometrically isomorphic, and the�-finite
case is settled. One might handle the non-�-finite case by interpolating with a faithful
(normal semifinite)weight. The first Lp construction along these lines is[31]; the
article [11] marshals even more technical machinery to recover the analogues of the
left and right embeddings above. We will go in a different direction.
If we look at equality (2.1), we see thatx�1/p ∈ Lp(M) is being identified in

M∗ with x�. This corresponds to(� ◦ �−1)�(x) ∈ N∗, which gives theLp element
(� ◦ �−1)1/p�(x). So the isometry is densely defined by

x�1/p �→ (� ◦ �−1)1/p�(x), x ∈M.

Actually, this map is independent of the choice of�. We have that

x�1/p = y
1/p ⇒ (� ◦ �−1)1/p�(x) = (
 ◦ �−1)1/p�(y), (4.1)

using the cocycle identity

(D(
 ◦ �−1) : D(� ◦ �−1))t = �((D� : D
)−t ). (4.2)

Equations (4.1) and (4.2) are checked explicitly in[25, Section 6], based on[29,
Corollary VIII.1.4 and Theorem VIII.3.3]. But this is not yet enough to conclude that
the isometries associated to� and 
 are equal, as the subspaceM�1/p ∩M
1/p

may not be dense inLp(M). (See[18] for a discussion of nondensity whenp = 2.)
However, given faithful states�,
 ∈ M∗, we may use functional calculus to define
the auxiliary state

L1(M) � � = (�2/p + 
2/p)p/2

‖(�2/p + 
2/p)p/2‖1
.

From the�-measurable operator inequality�2/p�C�2/p, it follows that�1/p = x�1/p

for somex ∈ M. This means thatM�1/p ∩M�1/p = M�1/p, which is dense in
Lp(M). Then (4.1) shows that� and � generate the same isometry. But
 and �
generate the same isometry too, so in the end we can identify the isometries from�
and
. Some of the details of this argument are given in[12, Section 1; 27], and also
generalized in[25, Section 6].
Let us call thisLp isometry�p. The independence of�p from any choice of func-

tional implies that

�p(�1/p) = (� ◦ �−1)1/p, � ∈M∗. (4.3)

This can actually be taken as a definition for�p, since every element inLp(M)

is a linear combination of four positive ones. Notice also that�p(x�) = �p(�)�(x).
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Equation (4.3) tells us that�p is positive (thus *-preserving), so we can improve this
to

�p(x�y) = �(y)�p(�)�(x), � ∈ Lp(M), x, y ∈M. (4.4)

Now for any �-finite q ∈ P(M), we can construct a surjective isometry from
qLp(M)q to �(q)Lp(N )�(q) as above. Every finite set of vectors inLp(M) be-
longs to some suchqLp(M)q, as the left and right supports of each vector belong to
the lattice of�-finite projections. Furthermore, these isometries can be defined by (4.3),
so they agree on common domains. It follows that (4.3) defines a globalLp isometry
in the non-�-finite case as well.
This ends the proof of (1)→ (2). More discussion ofLp isometries constructed

by interpolation, involving conditional expectations or more general projections, can be
found in [25, Sections 6 and 7].

We now turn to the implication (2)→ (1) of Theorem1.1. When p = ∞, this
follows from Theorem2.2. In casep = 1, the adjoint of a surjective isometry is again
a surjective isometry, and we may appeal to the preceding statement. The implication for
the remaining values ofp is an obvious consequence of Theorem1.2, which we prove
in the remainder of this section. Assume thatT : Lp(M) → Lp(N ) is a surjective
isometry of Banach spaces, with 1< p <∞, p �= 2.

Lemma 4.1. If z ∈ P(Z(M)), then

T (zLp(M)) = z′Lp(N ) for somez′ ∈ P(Z(N )). (4.5)

The mapz �→ z′ induces a surjective *-isomorphism fromZ(M) to Z(N ).

Proof. The cornerszLp(M) and (1− z)Lp(M) are orthocomplements of each other,
so by Lemma3.1(1) their images are orthocomplements of each other. Then Lemma
3.1(3) tells us there areq, r, s, t ∈ P(N ) with

T (zLp(M)) = qLp(N )r, T ((1− z)Lp(M)) = sLp(N )t. (4.6)

We may assume that the central supports ofq and r are equal, and ofs and t are equal.
From (4.6) it follows that each vector inLp(N ) can be uniquely written as the sum of
two orthogonal vectors, one from each ofqLp(N )r and sLp(N )t . As projections,q, s
are orthogonal, andr, t are orthogonal. Conclusion (4.5) will follow if we can show
that q and t are centrally orthogonal projections, for then the spanning property just
mentioned implies that all four projections are central.
If q and t are not centrally orthogonal, we can find 0�= � ∈ qLp(N )t . Write the

decomposition as� = �1 + �2, and note that neither of�1, �2 can be zero. Now the
left support of a sum of orthogonal vectors is the sum of the left supports, just as it
is for operators. Sos�(�)�q, which is a contradiction.
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SinceT −1 also satisfies (4.5), the correspondencez↔ z′ is bijective. It is additive
on orthogonal elements and so induces a surjective *-isomorphism.�
Lemma4.1 is related to[12, Proposition 7.3]. In the sequel we use the apostrophe

to indicate the correspondencez↔ z′ without further mention.

Lemma 4.2. Let a ∈ P(Z(M)) be such thataM is the abelian summand ofM. Then
a′N is the abelian summand ofN .

Proof. We first argue thata′N is abelian. If if is not, letq be a noncentral projection
in a′N . Since qLp(N )q = [(1 − q)Lp(N )(1 − q)]⊥, we have by Lemma3.1 that
T −1(qLp(N )q) is a corner ofLp(M). But T −1(qLp(N )q) is contained inaLp(M),
so being a corner it must be a central summand. Using Lemma4.1 we conclude that
qLp(N )q = T [T −1(qLp(N )q)] is a central summand, which is a contradiction.
Combined with a symmetric argument forT −1, this proves the lemma.�

Lemma 4.3. (1) The image of any corner under T is again a corner.
(2) If q ∈ P(M) is strictly between0 and 1 on all central summands, then

T (Lp(M)q) = Lp(N )q1z
′ + q2Lp(N )(1− z′) (4.7)

for someq1, q2 ∈ P(N ), z′ ∈ P(Z(N )), with q1z′ + q2(1− z′) strictly between0 and
1 on every central summand.

Proof. For the first statement, letp1Lp(M)p2 be an arbitrary corner. Then there are
central projectionsy1, y2, y3, y4 with sum 1, such that

• p1, p2 are strictly between 0 and 1 on every central subsummand ofMy1;
• p1Lp(M)p2y2 is a column which contains no central summand and has central
supporty2;
• p1Lp(M)p2y3 is a row which contains no central summand and has central support
y3;
• p1Lp(M)p2y4 is a central summand.

By Lemma 4.1, T preserves central sums and takes central summands to central
summands. Therefore we may treat each of the cases separately, and the fourth case is
clear. For the first case,p1Lp(M)p2y1 and (1− p1)Lp(M)(1− p2)y1 are orthocom-
plements inLp(My1), so by Lemma3.1 their images are corners. The second case
(and symmetrically, the third) will follow from the second statement of the theorem,
as the right-hand side of (4.7) is a corner.
The proof of the second statement requires some juggling with projections, so we

pause here to sketch the idea. First, if we specialize to the case whereM and N
are factors, (4.7) says that the image of a column is either a column or a row. For
nonfactors and columns as described, the image is a central sum of a column and row,
with z′ demarcating the two pieces.
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The proof is effected by using the projectionq to divide Lp(M) into four cor-
ners, each of which is an orthocomplement. The original column is divided into two
corners,A and B, and we show that the “checkerboard” array is preserved byT.
Visually,

Lp(M)q = (
A 0
B 0

) ; Lp(M) =
(
A B⊥
B A⊥

)
.

When the algebras are factors, there are only two (schematic) possibilities forT:

T :
(
A B⊥
B A⊥

)
�→

(
T (A) T (B)⊥
T (B) T (A)⊥

)
and T :

(
A B⊥
B A⊥

)
�→

(
T (A) T (B)

T (B)⊥ T (A)⊥
)
.

To show this we need to look hard at the pairs of projections definingT (A) and
T (B). We will see that either the left projections agree and the right projections are
orthogonal with sum 1, or vice versa. To make the bookkeeping a little more confusing,
on nonfactors the two possibilities can each happen on a central summand.
So we now assume the hypotheses of the second statement, and setA = qLp(M)q,

B = (1−q)Lp(M)q. As argued in the fourth case above,T (A) andT (B) are corners,
say r1Lp(N )r2 and s1Lp(N )s2. SinceA and B neither contain nor are disjoint from
any central summand, the same is true forT (A) andT (B). It follows that r1, r2, s1, s2
are strictly between 0 and 1 on all central summands.
Substituting into (3.1),

� ∈ A, � ∈ B ⇒ [�, �] = 0.

By Lemma3.2, any pair of vectors fromT (A) and T (B) also has semi-inner product
zero. Lemma3.3 then tells us that the central supportsx1 of r1s1 and x2 of r2s2 are
orthogonal.
Notice thatT (B⊥) = T (B)⊥ = (1− s1)Lp(N )(1− s2), and similarly forT (A⊥).

Now we apply the reasoning of the previous two paragraphs to the pairA,B⊥, showing
that the central supportsw1 of r1(1− s1) and w2 of r2(1− s2) are orthogonal. But
w1�1− x1, since

r1(1− s1)(1− x1) = (r1− r1s1)(1− x1) = r1(1− x1).

(The central support of the left-hand side is�w1, of the right-hand side is 1− x1.)
Similarly w2�1− x2. Since x1, x2 and w1, w2 are orthogonal pairs, we must have
w1 = x2, w2 = x1, andx1+ x2 = 1.
The preceding argument uses the pairs(A,B) and (A,B⊥). If we make the same

argument for(A,B) and (A⊥, B), then for (A,B⊥) and (A⊥, B⊥), we may conclude
that x1 is the central support of each ofr1s1, r2(1−s2), (1−r2)s2, (1−r1)(1−s1), while
x2 = 1−x1 is the central support of each ofr2s2, r1(1− s1), (1− r1)s1, (1− r2)(1− s2).
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We write out two implications:

r2s2x1 = 0= (1− r2)(1− s2)x1 = (1− r2− s2+ r2s2)x1 ⇒ x1 = (r2+ s2)x1.

(r1− r1s1)x1 = r1(1− s1)x1 = 0= (1− r1)s1x1 = (s1− r1s1)x1⇒ r1x1 = s1x1.

Symmetricallyx2 = (r1+ s1)x2 and r2x2 = s2x2.
Based on these last conclusions, we calculate

T (Lp(M)q)= T (A)+ T (B)
= r1Lp(N )r2+ s1Lp(N )s2

= (r1Lp(N )r2+ s1Lp(N )s2)x2+ (r1Lp(N )r2+ s1Lp(M)s2)x1

=Lp(N )r2x2+ r1Lp(N )(1− x2),

which verifies (4.7) by taking q1 = r2, q2 = r1, and z′ = x2. �
Note that the projectionsq1z′, q2(1− z′), z′ of Lemma4.3(2) are all uniquely deter-

mined byq. Even more is true.

Lemma 4.4. Assume thatM has no abelian summand. The central projectionz′, de-
fined in Lemma4.3(2), does not depend on the choice of q.

Proof. Of course, all choices are still assumed to be strictly between 0 and 1 on all
central summands. For projections other thanq we will use obvious variants of (4.7).
First observe thatz′ does not change if we replaceq by a smaller projectioṅq. Just

write

Lp(N )q1z
′ + q2Lp(N )(1− z′)= T (Lp(M)q)

⊇ T (Lp(M)q̇)

=Lp(N )q̇1ż
′ + q̇2Lp(N )(1− ż′).

Since columns which contain no central summands never contain nonzero rows (and
vice versa), we must havez′ = ż′.
We also claim thatz′ does not change if we replaceq by a projection q̈ with

q ∧ q̈ = 0. In this case we get the disjointness of

T (Lp(M)q) = Lp(N )q1z
′ + q2Lp(N )(1− z′)

and

T (Lp(M)q̈) = Lp(N )q̈1z̈
′ + q̈2Lp(N )(1− z̈′).
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A row and a column with overlapping central support always have nonzero intersection,
so necessarilyz′ = z̈′.
Finally, given any other projectionr, let y be the central support ofq ∧ r. We may

considerT restricted toLp(M)y; by Lemma4.1 this is still an Lp isometry. The
second paragraph shows that the (now restricted) projectionz′ does not change if we
go fromq to q∧r to r. Similarly, for T restricted toLp(M)(1−y), the third paragraph
allows us to pass fromq to r without altering the restriction ofz′. �

Lemma 4.5. Assume thatM has no abelian summand, let z′ be as in Lemma4.4,
and let z be the corresponding central projection inM. Then onLp(M)z, T takes
columns to columns, while onLp(M)(1− z), T takes columns to rows.

Proof. Let Lp(M)r ⊂ Lp(M)z be a column containing no central summand, and let
z0�z be the central support ofr. Find a projectionṙ with central support(1− z0) so
that Lp(M)(r + ṙ) still contains no central summands. Applying Lemma4.3 for the
projectionq = r + ṙ,

T (Lp(M)r)= T (Lp(M)(r + ṙ)z0) = [T (Lp(M)(r + ṙ))]z′0
=[Lp(N )q1z

′ + q2Lp(N )(1− z′)]z′0 = Lp(N )q1z
′
0.

An arbitrary column inLp(M)z is a central sum of a central summand and a
column containing no central summands. By Lemma4.1 and the preceding paragraph,
its image underT is a central sum of columns, which is again a column. The argument
for Lp(M)(1− z) is similar. �
Now we return to generalM,N and look to divide our problem into two pieces.

With aM the abelian summand ofM, we apply Lemma4.5 to the restrictionT :
Lp(M)(1− a) ∼→Lp(N )(1− a′). This gives us a central projectionz�1− a such that
for any central projectiony with z�y�z+ a, the restrictionT : Lp(M)y

∼→Lp(N )y′
takes columns to columns, whileT : Lp(M)(1− y) ∼→Lp(N )(1− y′) takes columns
to rows. (OnLp(M)a and Lp(N )a′, there is no difference between columns, rows,
and corners, as all are central summands.) For now we focus on one piece, renaming
Lp(M)y asLp(M), Lp(N )y′ asLp(N ), and the restriction ofT asT. We have that

T (Lp(M)q) = Lp(N )�r (q) (4.8)

for a well-defined increasing map�r between projection lattices.
It follows from Lemma4.3(2) that whenq is strictly between 0 and 1 on every

central summand which contains no abelian summand,�r (q) is as well. So if we apply
Lemmas4.3–4.5 to T −1, we see thatT −1 also takes columns to columns, and both
T and T −1 take rows to rows. More importantly,�r is bijective. Now equation (4.8)
implies that sr (T (�))��r (sr (�)) for any � ∈ Lp(M). Since we can make the same
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argument forT −1, we must actually have that

sr (T (�)) = �r (sr (�)), � ∈ Lp(M). (4.9)

We claim that�r preserves orthogonality of projections. Indeed, ife ⊥ f in P(M),
then any� ∈ Lp(M)e and � ∈ Lp(M)f have semi-inner product zero. Combining
Lemmas3.2, 3.3, and equation (4.8) gives �r (e) ⊥ �r (f ).
Let � ∈ Lp(M) andp ∈ P(M). Using (4.9) and properties of�r ,

T (�p) = T (�p)�r (p) = T (�p)�r (p)+ T (�(1− p))�r (p) = T (�)�r (p). (4.10)

Now we extend�r in a standard way: first by linearity to real linear combinations of
orthogonal projections, then by continuity to self-adjoint elements, then by the equation

�r (x + iy) = �r (x)+ i�r (y), x, y ∈Msa,

to all of M. To see that�r is linear, note that by construction we have

T (�x) = T (�)�r (x), � ∈ Lp(M), x ∈M. (4.11)

So for anyx, y ∈M, � ∈ Lp(M),

T (�)(�r (x)+ �r (y)) = T (�x)+ T (�y) = T (�(x + y)) = T (�)�r (x + y),

which implies �r (x) + �r (y) = �r (x + y). By construction�r is *-preserving and
bijective. Finally, takex, y ∈M, � ∈ Lp(M), and calculate

T (�)�r (xy) = T (�xy) = T (�x)�r (y) = T (�)�r (x)�r (y). (4.12)

Apparently�r :M→ N is also multiplicative.
Being a surjective *-isomorphism,�r induces a surjective isometry fromLp(M)

to Lp(N ) as discussed earlier in this section. We will denote this map by�: key
properties are

�(x�y) = �r (x)�(�)�r (y), �(�1/p) = (� ◦ �−1r )1/p

for x, y ∈M, � ∈ Lp(M), � ∈M+∗ .
Now we consider the surjective isometryT ◦�−1 : Lp(N )→ Lp(N ). This is actually

a right module map:

T ◦ �−1(�x) = T (�−1(�)�−1r (x)) = T ◦ �−1(�)x, x ∈ N , � ∈ Lp(N ).
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It is known that the left and right module actions ofN on Lp(N ) are commutants of
each other. (This was first shown in[30, Proposition 35], or see[12, Theorem 2.5]for
a stronger result.) ThusT ◦ �−1 is given by left multiplication by an element ofN ,
and by[12, Lemma 2.1]the element has norm equal to‖T ‖ = 1. The same is true for
[T ◦ �−1]−1, so the element is unitary—call itu. Then for all� ∈M+∗ ,

T (�1/p) = T ◦ �−1 ◦ �(�1/p) = u�(�1/p) = u(� ◦ �−1r )1/p, (4.13)

which was to be shown.
What about the case whereT takes columns to rows and vice versa? Equation (4.9)

becomessr (T (�)) = �r (s�(�)), (4.11) becomesT (x�) = T (�)�r (x), and a calculation
parallel to (4.12) shows that�r is antimultiplicative. Associating theLp isometry� to
�r as before, we still have thatT ◦ �−1 is a right module map, and conclusion (4.13)
follows. So in the general case with both summands present, we may take the sum of
the two partial isometries as the unitaryw, and the sum of the *-homomorphism and
*-antihomomorphism as the surjective Jordan *-isomorphismJ. The proof of Theorem
1.2 is complete.

5. Remarks on the proof

1. We chose to work with columns inLp(N ) because of the desired polar de-
composition. In the multiplicative case handled first, one can also find a surjective *-
isomorphism�� :M→ N such that equation (4.11) becomesT (y�x) = ��(y)T (�)�r (x).
Moreover we have��(y) = u�r (y)u∗. Obvious variants hold for the antimultiplicative
and general cases.
2. It is possible to obtain the main results of this paper without using semi-inner

products. There is an alternate route to Lemma4.3 which is essentially simpler, but
unfortunately it does not apply to algebras with finite type I summands. So in order to
build a complete proof in this way, one must also isolate the finite type I summands
by methods similar to Lemma4.2, and apply there a known result (like[37, Theorem
2]). We found it preferable to give a unified proof, with no dependence on type or
previous isometry results.
However, the alternate proof has the significant advantage of applying equally well to

0< p�1. (For 0< p < 1, Lp(M) is a p-Banach space.) Since this may be of interest
to some readers, the argument is featured in[26], where the casep = 1 is carried out
explicitly and used to give a new proof of the noncommutative Banach–Stone theorem.
(By this we mean the nonunital C*-algebra version of Theorem2.2, which was first
stated by Paterson and Sinclair[21] in 1972.) Therefore Theorems1.1 and1.2 are also
true for 0< p�1. The only other amendment to their proofs is that equations (4.3)
and (4.4) must be justified directly, as interpolation cannot be used.
3. Equation (4.9) is already enough to settle the implication (2)→ (1) in Theorem

1.1. A bijective map between projection lattices which preserves orthogonality is called
an orthoisomorphism; Dye [4] showed that such a map is the restriction of a surjective
Jordan *-isomorphism off of the type I2 summand. Since�−1r is also an orthoiso-
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morphism, it follows thatT maps the I2 summands to each other. ButT induces an
isomorphism of centers, so the I2 summands have isomorphic centers and are therefore
also *-isomorphic.
4. One can use Lemma4.3(1) to define the following map:

(q1, q2) �→ (S�(q1, q2), Sr(q1, q2)), q1, q2 ∈ P(M), (5.1)

whereS�(q1, q2) and Sr(q1, q2) are the unique projections inN with identical central
support satisfying

T (q1L
p(M)q2) = S�(q1, q2)L

p(N )Sr(q1, q2).

BecauseT preserves orthogonality, (5.1) is almost an orthoisomorphism fromM⊕M
to N ⊕ N . The deficit has to do with central support; if one requires that the two
inputs have identical central support, (5.1) “densely defines” an orthoisomorphism. In
fact it is possible to show the strong continuity of this map and in this way construct
an actual orthoisomorphism, at least whenM has no type I summand.
Edwards and Rüttimann[5] specifically studiedCP(M), the complete *-lattice of

pairs of projections with equal central support. Just as we have suggested this as a tool
for studyingLp corners, they use an equivalence with the set ofL∞ cornersq1Mq2.
This, in turn, is naturally equivalent to the lattice of structural projections and the lattice
of weak*-closed inner ideals, both defined in terms of the Jordan triple structure of
M. Their paper actually formalizes, in the language of lattice theory and Jordan triple
systems, some of our manipulations of corners.
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