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a  b  s  t  r  a  c  t

Huntington’s  disease  (HD)  is  an  autosomal  dominant  inherited  neurodegenerative  disease  character-
ized  by  symptoms  attributable  to  the  death  of  striatal  and cortical  neurons.  The  molecular  mechanisms
mediating  neuronal  death  in HD  seem  to  be related  to  oxidative  stress,  excitotoxicity  and  misbalance  in
energetic metabolism.  In this  study  we  evaluated  the potential  relationship  between  energetic  impair-
ment,  excitotoxicity  and  oxidative  stress  in rat  striatal  slices  exposed  to quinolinic  acid  (QA;  as  an
excitotoxic  model),  3-nitropropionic  acid  (3-NP; as an  inhibitor  of  mitochondrial  succinate  dehydro-
genase),  as well  as  a  combined  model  produced  by the  co-administration  of  these  two  toxins  at subtoxic
concentrations.  We  took  advantage  of the  direct  antioxidant/scavenger  properties  of  Probucol  in  order  to
investigate  the  role  of reactive  oxygen  species  (ROS)  in  mediating  the toxicity  of  both  compounds  alone
or in  association.  Experiments  with  MK-801  (a  NMDA  type  glutamate  receptor  antagonist)  and  succinate
(an  energy  precursor  agent)  were  also  performed  in an attempt  to better  comprehend  the  mechanisms  of
damage  and  neuroprotection.  QA (1 mM),  3-NP  (1 mM)  and  QA  plus 3-NP  (0.1  mM  of  both)  significantly
induced  mitochondrial  dysfunction  and  produced  an  increase  in ROS  generation,  as  well  as  a significant
increase  in  lipid  peroxidation  in striatal  slices.  Probucol  (10  and  30 �M)  prevented  ROS  formation  and
lipid  peroxidation  in  all used  models,  but  did  not  protect  against  the mitochondrial  dysfunction  induced
by 3-NP  (only  by  QA  or QA  plus  3-NP).  Sodium  succinate  (1 mM)  protected  the  striatal  slices  only  against
3-NP-induced  mitochondrial  dysfunction.  On  the  other  hand,  MK-801  protected  against  mitochondrial
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provided by Elsevier - Publisher C
dysfunction  in all used  models.  Our  data  suggest  that the  two  studied  toxic  models  (QA and  3-NP)  or
the  combined  model  (QA plus  3-NP)  can generate  complex  patterns  of  damage,  which  involve  metabolic
compromise,  ROS  formation,  and  oxidative  stress.  Moreover,  a partial  inhibition  of  SDH  by subtoxic  3-
NP and  moderate  excitotoxicty  by  subtoxic  QA  are  potentiated  when  both  agents  are  associated.  The
toxic  action  of  QA  plus  3-NP  seems  to  be  involved  with  Ca2+ metabolism  and  ROS  formation,  and  can  be

by  an
prevented  or  attenuated  
Abbreviations: DCF, 2′ ,7′-dichlorofluorescein; DCFH-DA, 2′ ,7′-
ichlorofluorescein diacetate; DMEM,  Dulbecco’s modified Eagle’s medium;
MSO, dimethylsulfoxide; HD, Huntington’s disease; HEPES, 4-(2-hydroxyethyl)-
-piperazineethanesulfonic acid; KRB, Krebs–Ringer bicarbonate buffer; LP, lipid
eroxidation; MDA, malonaldehyde-bis-dimethyl acetal; mHtt, mutant huntingtin;
TT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NMDAr,
-methyl d-aspartate receptors; 3-NP, 3-nitropropionic acid; QA, quinolinic
cid; PB, Probucol; RNS, reactive nitrogen species; ROS, reactive oxygen species;
DH, succinate dehydrogenase; TBA, thiobarbituric acid; TBA-RS, thiobarbituric
cid-reactive substances.
∗ Corresponding authors at: Departamento de Bioquímica, Centro de Ciências
iológicas, Campus Universitário, Trindade, Universidade Federal de Santa Catarina,
EP 88040-900, Florianópolis, Santa Catarina, Brazil. Tel.: +55 4837219589;

ax:  +55 4837219672.
E-mail addresses: dirleise@yahoo.com.br (D. Colle), farina@ccb.ufsc.br

M.  Farina).

361-9230     © 2012 Elsevier Inc.  
oi:10.1016/j.brainresbull.2012.01.003
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tioxidant/scavenger  compounds  and  NMDAr  antagonists.
© 2012 Elsevier Inc. 

1. Introduction

Huntington’s disease (HD) is an autosomal dominant inher-
ited neurodegenerative disorder caused by an abnormal expansion
of CAG repeat located in exon 1 of the gene encoding for the
Huntingtin protein [8,58].  The CAG repeat expansion leads to an
abnormal polyglutamine (polyQ) tract in mutant Htt (mHtt) N-
terminal region, which triggers a variety of aberrant interactions
leading to pathological gain of toxic functions as well as loss of
normal functions [7,59,65]. Moreover, the polyQ expansion can
cause conformational changes in the mutant protein leading to
intranuclear and intracytoplasmic insoluble aggregates or inclu-
sions, which seem to play important roles in HD pathogenesis

Open access under the Elsevier OA license.
[12,37].
HD symptoms consist of motor, cognitive and psychiatric distur-

bances [58], which are attributable to the death of medium spiny
GABAergic striatal neurons and, to a lesser extent, cortical neurons
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33,55].  Several lines of evidence have proposed that the striatal cell
eath observed in studies of HD pathogenesis in humans and ani-
al  models is mediated by a misbalance in energetic metabolism,

s well as oxidative stress and excitotoxicity [8,10,42].
Different genetic and toxin-based protocols have been devel-

ped to induce HD-like symptoms in laboratory animals [55].
f particular importance, the administration of either quino-

inic acid (QA) or 3-nitropropionic acid (3-NP) to rodents
nd non-human primates represents useful experimental mod-
ls of HD; both biochemical and behavioral characteristics
bserved in HD patients are reproduced in these models
20,56,60,70].

QA (2,3-pyridinedicarboxylic acid), a tryptophan metabolite at
he kynurenine pathway in glial cells, is a well-known agonist of
he N-methyl d-aspartate (NMDA) type glutamate receptors that
ypically produces excitotoxic damage [54,66]. Given its endoge-
ous nature, QA itself has been directly implicated as a potential
athogenic factor in HD [71], since it has been recently demon-
trated that neostriatal and cortical levels of this toxicant is
ignificantly enhanced in postmortem brains from HD patients
t early stages of the disease [22,77]. QA has been currently
hown to exert selective striatal toxicity by means of excitotoxic,
ro-inflammatory and oxidative mechanisms [26,29,57,61],  and
ntioxidant compounds have been reported to protect against QA-
nduced damage [4].  In addition, recent in vivo and in vitro studies
howed that QA also causes brain energy impairment, resulting in
nhibition of the mitochondrial complexes I, II and IV, as well as
xidative stress [28,62].

3-Nitropropionic acid (3-NP) is a mitochondrial toxin that
as been found to effectively produce HD-like symptoms in ani-
als models [35,64,70].  The primary mechanism of 3-NP-induced

eurotoxicity involves irreversible inhibition of succinate dehydro-
enase (SDH), a key enzyme located at the inner mitochondrial
embrane and responsible for succinate oxidation to fumarate

31,70]. SDH inhibition interferes with mitochondrial electron
ransport cascade and oxidative phosphorylation, which leads
o cellular energy deficit [32]. 3-NP treatment causes depletion
f ATP levels, alteration in calcium homeostasis, generation of
eactive oxygen species (ROS) and neuronal death [34,36,44,50].
nterestingly, some studies have demonstrated that 3-NP-induced
euronal death may  also occur as result of excitotoxic events
46,51], which likely represent a secondary response to a primary
nergetic deficit.

More recently, an emerging line of research has provided
nteresting models to study integrative toxic events occurring in
eurodegenerative disorders, including HD [14,15]. These mod-
ls comprehend the facilitation of excitotoxic events through the
mpairment of energy metabolism, and are produced by com-
ination of toxic molecules in different biological systems and
nder different experimental conditions [70]. Recently, evidence
howed that the energy impairment induced by 3-NP, added by a
oderate toxic action of QA, produced synergic increase of stri-

tal degeneration, in a mechanism involving intracellular calcium
eregulation [24]. These evidences corroborate data from the stud-

es of Pérez-De La Cruz and coworkers, who demonstrated that,
n the combined model, both oxidative stress and energy deficit
re likely synergically contributing to cell death in slices of stria-
um [53]. From a molecular point of view, it is noteworthy that
mpairment in energy metabolism and excitotoxicity, two  common
lements in HD, seem to affect each other and involve a significant
ncrease in ROS generation and oxidative stress, which modulate
athways mediating neuronal death: the interesting integra-

ive hypothesis for HD is proposed and discussed by Pérez-De
a Cruz and Santamaría [51]. Furthermore, some lines of evi-
ence indicate that antioxidants and energy precursor agents may
educe neuronal death in HD models [16,25,68].  Although these
lletin 87 (2012) 397– 405

different events, namely (i) oxidative stress, (ii) excitotoxicity
and/or (iii) energetic deficits affect each other and seem to mediate
neuronal death in experimental models of HD [51], the relationship
between them in either QA- or 3-NP-based models is not com-
pletely understood. In addition, to the best of our knowledge, the
understanding about such relationship is significantly scarcer in
combined models (e.g., QA plus 3-NP).

Probucol (PB) is a phenolic lipid-lowering agent with antiox-
idant properties that had been clinically used during the past
few decades for the treatment and prevention of cardiovascular
diseases [11,74,75].  Of particular importance, previous experimen-
tal studies have reported that Probucol plays protective effects
in experimental models of neurotoxicity/neuropathology [18,49].
Although the beneficial effects of Probucol under in vivo conditions
are mediated by its hypocholesterolemic and anti-inflammatory
properties [74], its beneficial roles under short-term incubations
in in vitro models are likely related to its direct antioxidant (scav-
enger) properties [73].

Taking into account that (i) the combined model of HD (QA
plus 3-NP) represents an useful tool in studding events mediating
HD pathogenesis and that (ii) the potential relationship between
energetic impairment, excitotoxicity and oxidative stress in the
QA plus 3-NP-based model is not completely understood, we  took
advantage of the direct antioxidant/scavenger properties of Probu-
col to comprehend the role of ROS in the neurotoxic effects of
QA plus 3-NP, as well as in the synergistic relationship between
both challenges. Because of the relevant contribution of astro-
cytes in the combined model [51], striatal slices were used in
this study since neuronal-glial interactions are preserved, thereby
resembling the physiological conditions of the brain in a more inte-
grative manner. Markers of energetic metabolism and oxidative
stress were evaluated in the slices exposed to 3-NP, QA and/or
Probucol in order to investigate the role of ROS in mediating the
toxicity of both compounds alone or in association. Additional stud-
ies using the NMDA type glutamate receptor antagonist MK-801
and the energy precursor agent succinate were also performed in
an attempt to better comprehend the mechanisms of damage and
neuroprotection.

2. Methods

2.1. Chemicals

3-Nitropropionic acid, quinolinic acid, Probucol, MK-801, sodium succi-
nate, thiobarbituric acid (TBA), malonaldehyde-bis-dimethyl acetal (MDA),
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2′ ,7′-
dichlorofluorescein diacetate (DCFH-DA) were purchased from Sigma (St. Louis,
MO,  USA). All other reagents were obtained from local suppliers.

2.2.  Animals

Adult male Wistar rats (200–250 g) (n = 30) from our own breeding colony were
kept in cages with continuous access to food in a room with controlled temperature
(22 ± 3 ◦C) and a 12 h light/dark cycle, with lights on at 7:00 am.  All experiments
were conducted in accordance with the Guiding Principles of the Animal Care and
Wellness Committee of the Universidade Federal de Santa Catarina (CEUA/UFSC
PP00424; 23080.008706/2010-52).

2.3. Preparation and incubation of striatal slices

Rats were killed by decapitation and the striatum was rapidly removed and
placed in ice-cold Krebs–Ringer bicarbonate buffer (KRB) (pH 7.4) containing
(122 mM NaCl, 3 mM KCl, 1.2 mM MgSO4, 1.3 mM CaCl2, 0.4 mM KH2PO4, 25 mM
NaHCO3, 10 mM glucose). The striatum was removed and slices (0.4 mm)  were
rapidly prepared using a McIlwain Tissue Chopper, separated in KRB at 4 ◦C and
allowed to recover for 30 min in KRB at 37 ◦C [47].
2.4. Slice treatment

QA and 3-NP were dissolved in PBS buffer and neutralized to pH 7.4 with NaOH,
and they were freshly prepared each time before treatment. Probucol was dissolved
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Fig. 1. Mitochondrial dysfunction induced by QA and 3-NP. Striatal slices were incu-
bated with QA (0.1, 0.5 and 1 mM), 3-NP (0.1, 0.5 and 1 mM)  or vehicle at 37 ◦C for
2  h in KRB. After this period, the medium was replaced for fresh culture medium
without QA or 3-NP and the slices were maintained for additional 4 h. Mitochon-
drial viability was  evaluated by the MTT reduction method. Results are expressed as

a decrease in the mitochondrial MTT  reductive capacity in striatal
slices (Fig. 1). Sub-toxic concentrations of QA (0.1 mM)  and 3-NP
(0.1 mM),  which did not affect mitochondrial function when indi-
vidually presented in the incubation medium, caused significant

Fig. 2. Mitochondrial dysfunction induced by QA plus 3-NP. Striatal slices were incu-
bated with 0.1 mM QA, 0.1 mM 3-NP, 0.1 mM QA plus 0.1 mM 3-NP or vehicle at
37 ◦C for 2 h in KRB. After this period, the medium was replaced for fresh culture
medium without QA and/or 3-NP and the slices were maintained for additional 4 h.
D. Colle et al. / Brain Resea

n  dimethylsulfoxide (DMSO), which was  used as control/vehicle and whose con-
entration did not exceed 0.1%. Sodium succinate and MK-801 were dissolved in
BS buffer.

After the preincubation time striatal slices were incubated with vehicle, QA (0.1,
.5 and 1 mM), 3-NP (0.1, 0.5 and 1 mM),  or with the combination of subtoxic con-
entrations of both agents (0.1 mM for both) at 37 ◦C for 2 h in KRB. After this period,
he medium was removed, the slices were washed with KRB and the medium was
eplaced by a nutritive culture medium composed of 50% of KRB, 50% of Dulbecco’s
odified Eagle’s medium (DMEM, Gibco), 20 mM of HEPES and 100 �g/mL of gen-

amicine in a humidified 5% CO2/95% air atmosphere at 37 ◦C [43], and slices were
aintained for additional 4 h to evaluate mitochondrial viability, lipid peroxidation

nd ROS formation.
Some experiments were performed in the presence of Probucol (10 and 30 �M),

odium succinate (1 mM),  MK-801 (50 �M)  or their respective vehicles. These com-
ounds were co-incubated with the toxins (QA and/or 3-NP) and re-add in the slice
edium during the second incubation. The analytical procedures were performed

mmediately after the last incubation.

.5. MTT reduction assay

MTT reduction assay was  evaluated as an index of mitochondrial function,
ccording to previous reports [16,52]. This method is based in the ability of cells
o reduce MTT  to a dark violet formazan product by mitochondrial dehydrogenases
n  viable cells [45].

Striatal mitochondrial viability was evaluated after the second incubation. The
lices (one per probe) were added with 15 �L of MTT  (5 mg/mL), and re-incubated
t 37 ◦C for 60 min  in KRB (750 �L). Then, the medium was  removed and the slices
ere washed for 30 min  in 1 mL  of dimethylsulfoxide (DMSO) to remove the for-
azan. Quantification of formazan was estimated by measuring optical density at

40  nm.  The slices were solubilized (1% SDS; 0.1 N NaOH) and an aliquot was used for
rotein determination. Results were expressed as the percentage of MTT  reduction
ith respect to control values. Preliminary experiments showed that 0.1% DMSO

Probucol’s vehicle) did not interfere with the analyzed biochemical parameters per
e.  Data from five experiments per group were collected and analyzed.

.6. Lipid peroxidation assay

Lipid peroxidation (LP) was assessed in homogenates obtained from the striatal
lices (four slices per probe) by the assay of thiobarbituric acid-reactive substances
TBA-RS) formation, according to previous reports [57].

Immediately, after the last incubation, the slices were homogenized in 500 �L
f ultra-purified water, and an aliquot of 20 �L of the homogenate was sepa-
ated for protein determination. The homogenates remaining were mixed with

 mL  of the TBA reagent (containing 15% of trichloroacetic acid, 0.375% of thio-
arbituric acid and 2.5%, v/v of HCl) to be re-incubated in a boiling water bath
95 ◦C) for 30 min. Samples were then centrifuged at 3000 × g, 15 min. The opti-
al density of supernatants was  estimated in 540 nm. The concentrations of
DA  (expressed as nmol of MDA  per mg  protein) were calculated by interpo-

ation in a standard curve of MDA  (constructed in parallel), corrected by the
ontent of protein per sample and expressed as percent of MDA  formed vs.
he control values. Data from five experiments per group were collected and
nalyzed.

.7.  Estimation of reactive oxygen species (ROS) formation

Formation of ROS was estimated with the fluorescent probe, 2′ ,7′-
ichlorofluorescein diacetate (DCFH-DA), as described by [2].  After cellular uptake,
CFH-DA is enzymatically hydrolyzed by intracellular esterase to form non
uorescent DCFH, which is then rapidly oxidized to form highly fluorescent 2′ ,7′-
ichlorofluorescein (DCF) in the presence of ROS. DCF fluorescence intensity is
roportional to the amount of ROS that is formed. At the end of incubation, stri-
tal  slices were homogenized in order to read the ROS production. An aliquot of
0  �L of the homogenate was  separated for protein determination. DCFH-DA (5 �M)
as  added to supernatants and fluorescence was read after 30 min  using excitation

nd emission wavelengths of 480 and 525 nm,  respectively. ROS levels (expressed as
mol of oxidized DCF per mg  protein) were calculated by interpolation in a standard
urve of oxidized DCF (constructed in parallel), corrected by the content of protein
er  sample expressed as percent of DCF oxidized formed vs. the control values. Data
rom five experiments per group were collected and analyzed.

.8. Protein determination

The protein measurements content of the homogenized slice were assessed
ccording to Lowry method [39].
.9. Statistical analysis

Data were analyzed using GraphPad Prism version 5.00 for Windows (GraphPad
oftware, San Diego, CA). Differences among the groups were analyzed by one-way
the  percentage of MTT  reduction with respect to control values (dotted line). Data
are  represented as mean ± SEM (n = 3). *p < 0.05 and **p  < 0.01 indicate statistical
difference from control by one-way ANOVA, following by Tukey’s post hoc test.

ANOVA followed by the Tukey’s post hoc test. Results are expressed as mean ± SEM.
The  differences were considered significant when p < 0.05.

3. Results

3.1. Probucol protects against mitochondrial dysfunction induced
by QA, 3-NP or QA plus 3-NP

In order to investigate the potential deleterious effects of QA
and 3-NP on energy metabolism, MTT  reduction was assessed as an
index of the mitochondrial reductive capacity of striatal slices. Fig. 1
depicts a concentration-response study where slices of striatum
were exposed to different concentrations of QA  or 3-NP (0–1 mM).
QA and 3-NP (at 0.5 and 1 mM,  but not 0.1 mM)  caused a signif-
icant decline in mitochondrial function (p < 0.05), as indicated by
Mitochondrial viability was evaluated by the MTT  reduction method. Results are
expressed as the percentage of MTT  reduction with respect to control values (dot-
ted line). Data are represented as mean ± SEM (n = 3). **p  < 0.01 indicates statistical
difference from control. ##p < 0.01 indicates statistical difference from QA or 3NP by
one-way ANOVA, following by Tukey’s post hoc test.
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Fig. 3. Protective effect of Probucol against QA, 3-NP or QA plus 3-NP-induced mitochondrial dysfunction. Striatal slices were incubated with 1 mM QA, 1 mM 3-NP, 0.1 mM
QA  plus 0.1 mM 3-NP or vehicle at 37 ◦C for 2 h in KRB. After this period, the medium was replaced for fresh culture medium without QA and/or 3-NP and the slices
were  maintained for additional 4 h. PB (10 and 30 �M)  or vehicle were co-incubated with the toxins and re-added in the culture medium during the second incubation.
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ata  are represented as mean ± SEM (n = 5). **p  < 0.01 and ***p < 0.001 indicate sta

rom  QA, 3NP or QA plus 3NP by one-way ANOVA, following by Tukey’s post hoc te

itochondrial dysfunction in striatal slices when presented simul-
aneously (Fig. 2). Because 0.2 mM QA or 3-NP alone also did not
ffected mitochondrial function (data not shown), it is possible to
tate that the incubation with QA plus 3-NP induced a synergistic
oxicity.

In order to investigate the molecular mechanisms mediating
he toxicity induced by QA and 3-NP (alone or in association), the
otential protective effect of Probucol (an antioxidant and scav-
nger compound) was evaluated in the presence of 1 mM of each
oxin (alone) or 0.1 mM of both toxins (simultaneously). Fig. 3 show
hat the three toxic treatments (1 mM QA; 1 mM 3-NP; or 0.1 mM
f both) significantly induced mitochondrial dysfunction in stri-
tal slices (Fig. 3). Probucol was effective in protecting the insult
licited by QA in both concentrations (p < 0.01 and p < 0.001 for
0 and 30 �M,  respectively) (Fig. 3). On the other hand, Probucol
ad no effect in striatal slices against the insult elicited by 3-NP
Fig. 3). However, in QA plus 3-NP model, Probucol (10 and 30 �M)
ompletely preserved the mitochondrial function showed a potent
europrotective activity, managing to restore the mitochondrial

unction (Fig. 3).

.2. ROS production and lipid peroxidation elicited by QA, 3-NP
r QA + 3-NP and protective effect of Probucol

Considering that mitochondrial dysfunction and ROS genera-
ion are closely related phenomena, which also can contribute
o increased lipid peroxidation, ROS levels were investigated in
A- and/or 3-NP-exposed slices. ROS generation was significantly

ncreased in the striatal slices exposed to 1 mM QA, 1 mM 3-NP or
.1 mM of both compounds (Fig. 4A). As expected, Probucol, which
resents scavenger activity, completely prevented the QA, 3-NP
nd QA plus 3-NP-induced ROS formation in the slices analyzed
Fig. 4A).

Lipid peroxidation, which represents a consequence of
ncreased ROS formation, was assessed as an index of oxidative
amage to lipids. The statistical analysis revealed a significant

ncreased of lipid peroxidation by all toxic conditions (1 mM QA,

 mM 3-NP, or 0.1 mM QA plus 0.1 mM 3-NP) in striatal slices
Fig. 4B). The lipoperoxidative effects induced by either QA, 3-NP or
A plus 3-NP were completely blocked by Probucol 10 and 30 �M

Fig. 4B).
ed as the percentage of MTT reduction with respect to control values (dotted line).
l difference from control. ##p < 0.01 and ###p < 0.001 indicate statistical difference

3.3. Protective effect of sodium succinate and MK-801 against QA,
3-NP and QA plus 3-NP-induced mitochondrial dysfunction

Several studies have demonstrated that antioxidant compounds
are able to protect against the neurotoxicity elicited by QA,  3-
NP and QA plus 3-NP models. However, recently, the particular
interest in characterizing the protective properties of energy pre-
cursor agents against the toxic insult with 3-NP has been increased
[3,30,40,76]. In this study, we used sodium succinate as an energy
precursor and its capacity to restore the mitochondrial function
was investigate in an attempt to understand the mechanism of
damage induced by the toxins and the potential contribution of
the energetic metabolism disruption in either QA, 3-NP or QA
plus 3-NP-induced toxicity. Sodium succinate (1 mM)  was unable
to recover the mitochondrial dysfunction induced by QA and QA
plus 3-NP treatments (Fig. 5A). On the other hand, sodium suc-
cinate effectively protected striatal slices against 3-NP-induced
mitochondrial dysfunction (p < 0.05, Fig. 5A).

In addition, mitochondrial dysfunction and ROS generation can
trigger excitotoxicity and induce massive entry of calcium ions
(Ca2+) from the extracellular environment, prompting the activa-
tion of cell death pathways [17,72]. Furthermore, QA stimulates
synaptosomal glutamate release and inhibits glutamate uptake into
astrocytes [69], which could lead to excitotoxic events. MK-801,
a well-known NMDA antagonist, has protective action against QA
insults [27]. However, studies on the potential protective effect of
NMDA receptor antagonists in the combined model (QA  plus 3-NP)
are lacking in the literature. To further determine the contribu-
tion of the excitotoxic events linked with NMDA receptor activation
in QA, 3-NP and QA plus 3-NP-induced damage, slices were incu-
bated with the toxins in the absence or presence of MK-801, a
non-competitive antagonist of NMDA receptor.

As already demonstrated, MK-801 protected against QA  toxicity
in striatal slices (p < 0.001, Fig. 5B). Interestingly, MK-801 also was
effective in protecting the mitochondrial function disrupted by 3-
NP and QA plus 3-NP in striatal slices (p < 0.001 and p < 0.01, Fig. 5B).

4. Discussion
The present study showed that QA (but not 3-NP)-induced mito-
chondrial dysfunction in striatal slices was  prevented by Probucol,
an antioxidant compound with scavenger properties in vitro. When
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Fig. 4. Protective effect of Probucol against QA, 3-NP or QA plus 3-NP induced ROS formation and lipid peroxidation. Striatal slices were incubated with 1 mM QA, 1 mM
3-NP,  0.1 mM QA plus 0.1 mM 3-NP or vehicle at 37 ◦C for 2 h in KRB. After this period, the medium was replaced for fresh culture medium without QA and/or 3-NP and the
slices  were maintained for additional 4 h. PB (10 and 30 �M) or vehicle were co-incubated with the toxins and re-add in the culture medium during the second incubation.
Formation of ROS was estimated with the fluorescent probe, 2′ ,7′-dichlorofluorescein diacetate (DCFH-DA) using excitation and emission wavelengths of 480 and 525 nm,
respectively. ROS levels (expressed as nmol of oxidized DCF per mg  protein) are expressed as percent of control (dotted line) (A). Lipid peroxidation (LP) was assessed in
homogenates obtained from the slices by TBARS formation and expressed as nmol of MDA  per mg  of protein. Results are expressed as percent of MDA formed vs. the control
v *p < 0.
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d
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alues  (dotted line) (B). Data are represented as mean ± SEM (n = 5). **p < 0.01 and **
ndicate  statistical difference from 3NP by one-way ANOVA, following by Tukey’s p

A and 3-NP were simultaneously present at concentrations that
re sub-toxic when incubated individually (0.1 mM),  a synergistic
itochondrial toxicity was observed, which was totally protected

y Probucol. These results contribute to the understanding on
olecular mechanisms mediating QA- and/or 3-NP-induced mito-

hondrial dysfunction, corroborating previous data pointing to
xcitotoxicity, oxidative stress and energetic deficit as important
vents mediating the toxicity [24,53]. In addition, the presented
esults add new insights on the involvement of ROS in the toxic
ffects of QA and 3-NP to mitochondria, indicating that the blockade
f QA-induced ROS is enough to significantly blunt the decreased
itochondrial dysfunction, although this event was not observed

or 3-NP.

Probucol prevented ROS formation and lipid peroxidation in

ll used models, but did not protect against the mitochondrial
ysfunction induced by 3-NP (only by QA or QA plus 3-NP). This
ata indicates that QA and 3-NP might share similar damage
001 indicate statistical difference from control. #p < 0.05, ##p < 0.01 and ###p < 0.001
c test.

mechanisms (ROS formation), but also may  have different mech-
anisms. Although the predominant hypothesis on QA toxicity is
oriented to sustained NMDAr overactivation and excitotoxicity
[66], further leading to cell damage produced by enhanced levels
of Ca2+ [41,63],  evidence showed that QA is also able to produce
damage via ROS production [33,67] and/or alterations in energy
metabolism [28,62]. In this study, we demonstrated that QA was
able to induced mitochondrial dysfunction in striatal slices, but
this effect may  be secondary to excitotoxicity, calcium influx and
ROS production. Interestingly, Probucol prevented mitochondrial
dysfunction probably by avoiding the secondary effect (energetic
deficit) due to the blockade of the primary event (ROS production).
Thus, when QA-induced ROS production was prevented by Probu-

col, there was protection against mitochondrial dysfunction. These
results indicate that ROS production and oxidative stress played
an important role of QA mediating deleterious effects in striatal
slices (mitochondrial dysfunction) and that the antioxidant and
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Fig. 5. Protective effect of sodium succinate and MK-801 against QA, 3-NP and QA
plus  3-NP-induced mitochondrial dysfunction. Striatal slices were incubated with
1  mM QA, 1 mM 3-NP, 0.1 mM QA plus 0.1 mM 3-NP or vehicle at 37 ◦C for 2 h in
KRB. After this period, the medium was replaced for fresh culture medium without
QA  and/or 3-NP and the slices were maintained for additional 4 h. Sodium succinate
(1  mM)  (A) or MK-801 (50 �M)  (B) were co-incubated with the toxins and re-add in
the slices medium during the second incubation. Mitochondrial viability was eval-
uated by the MTT  reduction method. Results are expressed as the percentage of
MTT  reduction with respect to control values (dotted line). Data are represented
as  mean ± SEM (n = 5). *p < 0.05 and ***p < 0.001 indicate statistical difference from
c
3

s
t
i
t
j
p

a

in glutamate release, cellular depolarization, activation of NMDA
ontrol. #p < 0.05, ##p < 0.01 and ###p < 0.001 indicate statistical difference from QA,
NP or QA plus 3NP by one-way ANOVA, following by Tukey’s post hoc test.

cavengers properties of Probucol were important in counteracting
hese effects. This idea is supported by other studies reporting the
nvolvement of oxidative stress induced by QA [33]. In this regard,
he toxicity induced by QA in striatal slices could be linked not
ust to NMDAr overactivation and excitotoxicity, but also to ROS

roduction-inducing mitochondrial dysfunction.

On the other hand, Probucol, which diminished ROS production
nd lipid peroxidation induced by 3-NP, did not protect against
lletin 87 (2012) 397– 405

the mitochondrial dysfunction induced by this toxin. The scav-
enger property of Probucol protected only against QA  probably
because it was not able to modulate a direct energetic deficit
induced by 3-NP. 3-NP is a suicide inactivator of the mitochon-
drial Complex II, directly leading to mitochondrial dysfunction [23],
decreased ATP levels, membrane depolarization and ROS formation
[34,36,44]. Thus, 3-NP-induced ROS formation is a consequence
of mitochondrial dysfunction and despite Probucol antioxidant
effects, mitochondrial function was not re-established. Thus, this
work demonstrated a crucial effect of ROS in mitochondrial dys-
function induced by QA, but also demonstrated that 3-NP-induced
ROS production is not the only responsible by mitochondrial dys-
function in this model. Noteworthy, the novelty of this study does
not contradict previous data from literature, which show that ROS,
excitotoxicity and energetic deficit are mechanisms modulating the
toxicity in all the models [24,53].

However, the temporal profile of primary and secondary events
seems to be important in these models. This idea was better under-
stood by using MK-801 (an NMDAr antagonist) and succinate (an
energy precursor agent). MK-801, which prevents excitotoxicity,
also prevented QA, 3-NP and QA plus 3-NP-induced mitochon-
drial dysfunction. These findings indicate that 3-NP also can induce
excitotoxic events. However, the incubation of striatal slices with
succinate, an energetic precursor, was able to prevent against 3-
NP-induced mitochondrial dysfunction, but did not protect against
QA effects. Interesting, succinate also did not protect against QA
plus 3-NP. These findings demonstrate the involvement of primary
and secondary events in these models. Although oxidative stress,
energetic deficit and excitotoxicity represent important events in
the models (QA, 3-NP and QA plus 3-NP), their sequences are likely
different depending upon the specific model. On  the other hand,
the prevention of excitotoxicity-induced by 3-NP (by using MK-
801) was able to prevent mitochondrial dysfunction. This data
prove a critical role of excitotoxicity in mitochondrial dysfunction
induced by 3-NP model alone or in association with QA. Stud-
ies demonstrated that 3-NP can induce excitotoxicity [46,51]. The
hypothesis of an indirect or “secondary” excitotoxicity suggests
that 3-NP-induced striatal degeneration is due in first place to
depletion in ATP levels produced by a deficit in energy metabolism,
further leading to membrane depolarization and sustained voltage-
gated NMDAr activation by primary alteration of membrane Na+,
K+-ATPases [1,5,46,51]. Under these conditions, 3-NP is able to
cause excitotoxicity by making neurons vulnerable to endogenous
basal levels of glutamate [51], producing neuronal necrotic death
[6,48].

Liot et al. [38] showed that 3-NP induced the activation of
NMDAr in neuronal cells, leading to ROS formation, as well as
a significant mitochondrial fragmentation and cell death [38].
Remarkably, pretreatment with AP5, a glutamate receptor antag-
onist blocked the 3-NP-induced ROS formation, mitochondrial
fragmentation, and neuronal cell death [38]. This study provides
evidence that secondary excitotoxicity (caused by primary complex
II inhibition) may  play an important role in 3-NP-induced cell death.
This is in accordance with our study, which indicates that MK-801
was able to protect striatal slices from 3-NP-induced mitochondrial
toxicity. The protective effect of MK-801 against 3-NP toxicity may
indicate a secondary excitotoxicity with involvement of NMDAr
activation. This is in accordance with other studies indicating the
involvement of glutamate receptor activation in 3-NP-induced
cell death [5,9,13,19].  The results also suggest that 3-NP-induced
damage may  be partially glutamate receptor-mediated because the
energy deficiency induced by this toxin might lead to increases
receptors, and increases in damaging calcium cascades [15,21,38].
Our results also showed that the simultaneous exposure to

subtoxic concentrations of QA plus 3-NP (which cannot induce
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Fig. 6. Schematic representation of the mechanisms of QA plus 3NP-induced toxicity. Low concentrations of 3-NP primarily induce a moderate mitochondrial respiratory
complex II inhibition (SDH) (event 1), which in turn triggers ATP drop, decrease in mitochondrial membrane potential (m�� ) and massive production of ROS/RNS (event
2).  The energy deficit makes neurons more vulnerable to endogenous basal levels of glutamate (“secondary” excitotoxicity). This scenario leads to plasma membrane
depolarization, which may  release the Mg2+ blockade of voltage-gated NMDAr (event 3). Opening of NMDAr causes intracellular Ca2+ influx. On the other hand, QA induce a
moderate activation NMDAr (event 4), thus causing increased intracellular Ca2+ concentrations. In addition, QA also stimulates synaptosomal glutamate release (event 5) and
affects glutamate re-uptake into astrocytes (event 6), and so increasing extracellular concentrations of glutamate. Increased levels of intracellular calcium, which can directly
lead  to mitochondrial dysfunction (event 7), might activate nitric oxide synthase (NOS) (event 8) thus increasing nitric oxide (NO) formation. NO can combine with O2− to
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orm  ONOO− (event 9). In addition, ROS/RNS generation might induce lipid peroxid
eath  by necrosis and/or apoptosis (event 11). The blockade of NMDAr with MK-801
itochondrial dysfunction and neuronal cell death. Succinate, as an energetic precu

itochondrial damage alone) induced mitochondrial dysfunction
nd oxidative stress in a synergistic manner. In fact, when subtoxic
oncentrations of QA (0.1 mM)  and 3-NP (0.1 mM)  were combined,
here was a significant decrease in the mitochondrial viability in
triatal slices, as well as increased in ROS levels and lipid peroxida-
ion, showing the involvement of oxidative stress in the impaired
f mitochondrial function induced by this mixed exposure. Inter-
stingly, Probucol (by scavenging ROS) prevented mitochondrial
oxicity in the mixed model. Probucol was able to protect striatal
lices against QA plus 3-NP-inducing mitochondrial dysfunction,
uggesting that oxidative stress played an important role in medi-
ting the deleterious effects of QA plus 3-NP. In addition, MK-801
lso provides protection against QA plus 3NP. This is in accordance
ith Pérez-De La Cruz and coworkers, who reported a reduction

f lipid peroxidation by MK-801 in QA plus 3-NP-treated synap-
osomal membranes [52]. On the other hand, succinate did not
rotect striatal slices against mitochondrial dysfunction induced
y QA plus 3-NP. Conversely, MK-801 effectively blunted the
itochondrial toxicity induced by the association of both tox-

ns. Altogether, these findings suggest that a cascade of toxic
vents related with NMDAr overactivation may  play a relevant
ole for cell damage following the toxic insult that involves deficit

n energy metabolism and excitotoxicity when QA and 3-NP are
ssociated.

As already mentioned, we found a synergistic toxicity of QA and
-NP, which produced oxidative damage to striatal slices. Based
(event 10). Altogether, these events lead to proteases activation, thus inducing cell
t 12) and the scavenging activity of Probucol toward ROS/RNS (event 13) can block

may  mitigate mitochondrial dysfunction induced by 3-NP (event 14).

on literature data [24,51,53,70] and on our current findings, Fig. 6
depicts the main molecular mechanisms of QA plus 3NP-induced
toxicity. The primary mechanism mediating such damage may
involve a moderate energy metabolism deficit induced by SDH
inhibition by 3-NP. The energy metabolism dysfunction makes neu-
ronal cells more vulnerable to be damage by physiologic glutamate
levels (“secondary” excitotoxicity) [51]. In addition, QA induces a
moderate activation NMDAr, thus likely causing increased intra-
cellular Ca2+ concentrations, which in turn can lead to major
alterations in synaptic and mitochondrial functions, generation of
ROS and RNS and activation of cell death pathways [51]. 3-NP also
induces ROS and RNS formation, as well as increases in intracellu-
lar Ca2+ levels and further activation of proteases [70]. Altogether,
these events might cause neuronal cell death (either necrotic or
apoptotic) (Fig. 6).

In summary, the findings of this study show that the two  stud-
ied toxic models (QA and 3-NP) or the combined model (QA plus
3-NP) can generate complex patterns of damage, which involve
metabolic compromise, ROS formation, and oxidative stress. These
neurotoxic models share common mechanisms of cell damage,
despite each model recruits these processes in a differential man-
ner: QA by NMDAr activation and 3-NP by SDH inhibition. These

events were counteracted by Probucol, an antioxidant compound
with scavenger properties under in vitro conditions. Moreover, a
partial inhibition of SDH by subtoxic 3-NP and moderate excitotoxi-
cty by subtoxic QA are potentiated when both agents are associated.
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he toxic action of QA plus 3-NP seems to involve changes in
a2+ metabolism and ROS/RNS formation, and can be prevented
r attenuated by antioxidant/scavenger compounds and NMDAr
ntagonists. Therefore, oxidative stress remains as a major expres-
ion in these toxic models, as well as a potential key target to
meliorate neuronal damage in HD patients.

isclosures

The authors report no declarations of interest.

cknowledgements

The financial supports by (i) FINEP Research Grant “Rede
nstituto Brasileiro de Neurociência (IBN-Net)” # 01.06.0842-00,
ii) Conselho Nacional de Desenvolvimento Científico e Tec-
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