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We obtain some e!ective lower and upper bounds for the number of (n, k)-MDS
linear codes over F

q
. As a consequence, one obtains an asymptotic formula for this

number. These results also apply for the number of inequivalent representations over F
q

of the uniform matroid or, alternatively, the number of F
q
-rational points of certain

open strata of Grassmannians. The techniques used in the determination of bounds for
the number of MDS codes are applied to deduce several geometric properties of certain
sections of Grassmannians by coordinate hyperplanes. ( 2001 Academic Press
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1. INTRODUCTION

Let < be a vector space of dimension n over the "nite "eld F
q
of q elements.

Fixing a basis of <, we can represent elements x3< by their coordinates
1Partially supported by a Career Award grant from AICTE, New Delhi and an IRCC grant
from IIT Bombay.
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(x
1
,2 , x

n
), and then we can de"ne a metric, known as the Hamming metric,

on < by

d(x, y)"DMi3M1, 2,2, nN :x
i
Oy

i
ND, for x, y3<.

An (n, k)-linear code over F
q
is simply a k-dimensional subspace of <. Given

such a code C, one de"nes the minimal distance of C to be

d(C)"minMd (x, y) : x, y3C, xOyN.

If d(C)"t, then the code C corrects x(t!1)/2y errors. Thus, in coding
theory, one is often interested in constructing codes C for which d(C) is as
large as possible. In general, the minimal distance of any (n, k)-linear code
satis"es the Singleton bound (cf. [29]), namely,

d (C)4n!k#1.

If d(C)"n!k#1, then C is said to be a maximum distance separable code,
or simply, a MDS code.

Let q be a prime power and n, k be any integers such that 14k4n. We are
primarily interested in the following problem.

Problem A. Determine the number of (n, k)-MDS linear codes over F
q
.

It turns out that this problem admits a number of equivalent formulations.
For example, in matroid theory, one has the notion of a uniform matroid. If we
let ;

k,n
denote the uniform matroid on n elements (in which any k elements

form a base), then Problem A is equivalent to

Problem A@. Determine the number of inequivalent representations over
F
q
of the uniform matroid ;

k,n
.

For a proof of equivalence of Problem A and Problem A@, and some related
results, we refer to [42].

As another example, consider the Grassmannian, which is one of the most
basic objects in algebraic geometry. If we let G

k,n
denote the Grassmannian

(of k-dimensional subspaces of an n-space) along with its canonical PluK cker
embedding (see Section 2 for details), and if ;(k, n) denotes the open stratum
of G

k,n
consisting of those points of G

k,n
for which all the PluK cker coordinates

are nonzero, then Problem A is equivalent to

Problem AA. Determine the number of F
q
-rational points of ; (k, n).
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It may be noted that, in view of Weil conjectures, the last problem is
essentially equivalent to determining the (l-adic) Betti numbers of; (k, n) and
the eigenvalues of the Frobenius endomorphisms on the eH tale cohomology
groups of ; (k, n). For details concerning this formulation, we refer to [41].

In a sense, Problem A can be traced back to some classical problems in
"nite (projective) geometry posed by B. Segre in 1955. To describe these
problems, we recall that an n-arc in the (k!1)-dimensional projective space
Pk~1 is a set of n points P

1
,2,P

n
in Pk~1 such that no k of them lie in

a hyperplane. An n-arc is said to be complete if it cannot be extended
to a (n#1)-arc in Pk~1. Note that the point set of the rational normal
curve, namely MP

t
: t3F

q
NXMP

=
N, where P

t
"(1, t, t2,2 , tk~1) and P

=
"

(0, 0,2, 0, 1), is a classical example of a complete (q#1)-arc. The problems
of Segre can now be stated as follows.

S1. For which n does there exist an n-arc in Pk~1(F
q
)?

S2. For which k, k(q, is every (q#1)-arc in Pk~1(F
q
) the point set of

the rational normal curve?
S3. For which n and k, k(q, is every n-arc in Pk~1(F

q
) a subset of the

point set of the rational normal curve?
It is not di$cult to see that the notion of an n-arc in Pk~1(F

q
) is essentially

equivalent to the notion of a (n, k)-MDS linear code. Thus Problem A also
admits an equivalent formulation in the language of arcs in projective spaces
over "nite "elds (see, for example, [38, Lemma 4]). To relate Segre's problems
to MDS codes, we let

c(q)"c(q; k, n)"the number of (n, k)-MDS codes over F
q
.

Now the connection of Segre's problems with MDS codes is clear from the
following observations (cf. [41, Proposition 3.2]).

C1. There exists an n-arc in Pk~1(F
q
) if and only if c(q; k, n)'0.

C2. If k(q, then every (q#1)-arc in Pk~1(F
q
) is the point set of the

rational normal curve if and only if c(q; k, q#1)"c(q; 2, q#1)"
(q!1)q (q!2)!

C3. If n4q#1 and k(n!1, then every n-arc in Pk~1(F
q
) is a subset

of the point set of the rational normal curve if and only if
c(q; k, n)"c (q; 2, n)"(q!1)n~1(q!2)(q!3)2(q!n#2).

For more on Segre's problems and the known results concerning them, we
refer to [6], [7], and [19].

Returning to Problem A, an exact formula for c (q; k, n) is known only when
k"2 (any n) and k"3 (and n49). Since there is a duality for MDS codes (cf.
[45, Proposition 4.1]), we have c(q; k, n)"c (q; n!k, n), and in this way a few
more values of (n, k) are covered. The known exact formulae are as follows.

(i) c (q; 1, n)"(q!1)n~1

(ii) c (q; 2, n)"(q!1)n~1(q!2)2(q!n#2)
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(iii) c (q; 3, 6)"(q!1)5(q!2)(q!3)(q2!2q#21)
(iv) c(q; 3, 7)"(q!1)6[(q!3)(q!5)(q4!20q3#148q2!468q)

!30a
1
(q)]

(v) c(q; 3, 8)"(q!1)7[(q!5)(q7!43q6#788q5!7937q4#47097q3
!162834q2!299280q!222960)!240(q2!20q#78)a

1
(q)#840b

2
(q)]

(vi) c (q;3, 9)"(q!1)8[q10!75q9#2530q8!50466q7#657739q6

!5835825q5!35563770q4!146288034q3#386490120q2!588513120q
#389442480!1080(q4!47q3#807q2!5921q#15134)a

1
(q)#840(9q2

!243q#1684)b
2
(q)#30240(!9b

3
(q)#9a

2
(q)#2a

3
(q))].

Here, the functions a
j
(q), bl (q) appearing in the formulae (iv)}(vi) are

de"ned by a
j
(q)"DMx3F

q
: f
j
(x)"0ND, where f

1
(x)"x2#x#1,

f
2
(x)"x2#x!1, and f

3
(x)"x2#1, and for a prime l, bl (q)"1 if q is

a power of l and 0 otherwise.
Of these exact formulae, (i) is trivial, (ii) is easy, and (iii) is not di$cult to

obtain directly. Formulae (iv) and (v) were proved by Glynn [15]. Also,
(iv) was proved independently in characteristic 2 by Rolland [38]. Lastly,
(vi) was proved a few years ago by Iampolskaia, Skorobogatov, and Sorokin
[23]. It is clear that the exact formulae become increasingly complicated as
n increases even for a small value of k such as k"3, and it is perhaps
a hopeless task to obtain an exact formula in the general case. In fact, as
Skorobogatov [41] has remarked, the work of MneK v [33] indicates that it
may be theoretically impossible to determine c(q; k, n) in general.

Faced with this scenario, we attempt in this paper to do what seems to be
the next best thing to obtaining an exact solution of Problem A. Namely, we
determine explicit upper and lower bounds for the number c(q; k, n), for any
values of n, k, and q (see Theorem 5.5 for a precise statement). As a corollary,
one obtains the following asymptotic formula

c (q; k, n)"qd#C1!A
n

kBD qd~1#O(qd~2), where d"k(n!k).

This implies in particular that given any (n, k) with 14k4n, there exist
(many) MDS codes for su$ciently large q. To get some idea of how closely
these bounds approximate c(q), the reader may have a look at the tables in
Section 7. It is seen therein that as q increases, our bounds become close to
each other and (hence) to the exact value. Thus, these bounds seem fairly
e!ective.

The main idea behind obtaining these bounds is quite simple. We work
with the equivalent formulation in terms of the open stratum in Grassman-
nian (Problem AA) and note that to calculate the number of its F

q
-rational

points, it su$ces to determine the number of F
q
-rational points of all sections

(typically denoted by E") of the Grassmannian G
k,n

by arbitrary families " of
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coordinate hyperplanes. Counting the latter is di$cult in general, but in some
cases we can do it using classical geometric facts about Grassmannians and
some combinatorial rami"cations thereof. Moreover, in the general case, we
can obtain bounds for the number of F

q
-rational points of E" , using the

Griesmer}Wei bounds for higher weights of linear codes and some work of
Nogin [35] about the so-called Grassmann codes. The information thus
obtained about DE"(F

q
)D is applied to yield the bounds for c (q; k, n) via the

classical Bonnferroni inequalities.
In the process of counting the number of F

q
-rational points of E" , we are

led to consider a combinatorial notion of close families of subsets of a "nite
set and prove a structure theorem concerning them. This part may perhaps be
of interest in itself, and the reader may directly refer to Section 4 for details.

The counting of DE" (F
q
)D also paves the way for deducing a number of

geometric results concerning the linear sections of Grassmannians by coordi-
nate hyperplanes. This is done mainly using the Grothendieck}Lefschetz
trace formula and Deligne's main theorem ascertaining the validity of the
Riemann hypothesis for varieties over "nite "elds (see Theorem 6.4 for
a combined statement) and also using a result on hyperplane sections from
[25]. It may be noted that the Schubert varieties in Grassmannians are
particular cases of linear sections such as E". Also, a result of MneK v [33]
shows that up to birational equivalence and a torus action, the linear sections
E" are as general as any quasiprojective variety (at least over the reals). Thus,
geometric properties of the linear sections E" can be of considerable interest.
We are able to prove results concerning the dimension, irreducibility (and, in
general, the number of irreducible components), bounds on the dimensions of
the singular loci, and in some cases Cohen-Macaulayness and normality, for
the linear sections E" when D"D42. In case " is singleton, these results can be
recovered from the known results concerning Schubert varieties (although
our proofs are di!erent) but when " has two elements, the results appear to
be new. More generally, when " is a close family of cardinality'2, we
determine the dimension of E" and show that it has only one top-dimensional
irreducible component.

This paper is organized as follows. In the next section, we set up some
notation and collect some preliminaries concerning Grassmannians, MDS
codes, and elementary facts about counting or estimating the cardinality of
"nite unions of "nite sets. Main lemmas about the cardinality of sections of
Grassmannians by coordinate hyperplanes are proved in Section 3. In
Section 4, we de"ne the notion of close families and prove basic results
concerning them. This section is self-contained and can be read independent
of others. Our main results about the bounds on the number of MDS codes
are proved in Section 5. Geometric applications of our techniques to linear
sections of Grassmannians are given in Section 6, and a reader primarily
interested in these geometric results can go directly to this section, referring to
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the earlier sections only as necessary. Finally, in Section 7, we give a number
of tables which contain the numerical values of the lower and upper bounds
for c(q; k, n) together with the exact value (wherever available) for certain
small values of (n, k) and q.

2. PRELIMINARIES

We begin with some notation and generalities about Grassmannians.
A vector space < of dimension n over the "eld F

q
of q elements, a basis

Mv
1
,2 , v

n
N of <, and an integer k with 14k4n will be kept "xed through-

out this paper. We set

d"k (n!k) and N"A
n

kB.
By G

k,n
(F

q
), or often simply by G

k,n
, we shall denote the Grassmannian

consisting of all k-dimensional subspaces of <. It is well known that G
k,n

can
be naturally embedded in the projective space PN~1(F

q
). This is known as the

PluK cker embedding and it can be explicitly described as follows. First, let

I (k, n)"Ma"(a
1
,2, a

k
)3Zk : 14a

1
(2(a

k
4nN.

We can, and will, index the points of PN~1(F
q
) by elements of I (k, n) (ordered,

say, lexicographically). Now, given a k-dimensional subspace=, the coordi-
nates (in terms of Mv

1
,2 , v

n
N) of a basis of= give a k]n matrix A"(a

ij
) of

rank k and the PluK cker coordinate associated to= is given by p"(pa)a|I (k,n)
where

pa"a-th minor of A"det(a
iaj)14i,j4k

, for a3I(k, n).

Note that a di!erent choice of a basis for= results in all pa's being multiplied
by a nonzero scalar and thus = uniquely determines a point of PN~1(F

q
).

Note also that the above construction is valid if F
q
is replaced by any "eld F.

In case F is an algebraically closed "eld (for example, the algebraic closure of
F
q
), then it is well known that the corresponding Grassmannian G

k,n
(F) is

a nondegenerate, irreducible, nonsingular projective variety in PN~1(F) of
dimension d (cf. [22]).

Following Andrews [3], we de"ne the q-factorial of a nonnegative integer
d by

[d]!"(qd!1)(qd~1!1)2(q!1)
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and the Gaussian binomial coe$cient corresponding to n and k by

C
n

kD
q

"

[n]!

[k]![n!k]!
"

(qn!1)(qn!q)2(qn!qk~1)

(qk!1)(qk!q)2(qk!qk~1)
.

It is well known (and not di$cult to prove) that [n
k
]
q
is precisely the cardinal-

ity of the Grassmannian G
k,n

(F
q
), and q(d2)[d]! is the cardinality of the general

linear group G¸
d
(F

q
). (See, for example, [17].) It is also well known that [n

k
]
q
is,

in fact, a polynomial in q of degree d with positive integral coe$cients; indeed

C
n

kD
q

"

d
+
i/0

l
i
qi,

where l
i
is the number of partitions of i with at most k parts, each 4n!k;

i.e., l
i
equals the cardinality of the following set:

M(j
1
,2, j

r
)3Nr : j

1
#2#j

r
"i, r4k and n!k5j

1
525j

r
51N.

Alternatively, l
i
can be described in terms of paths in a k](n!k) rectangle or

topologically (cf. [5, p. 292]) by l
i
"dimH2i(G

k,n
; C). Notice that the se-

quence l
0
, l

1
,2, ld of the coe$cients of [n

k
]
q

is symmetric, i.e. l
i
"ld~i

for
04i4d. This follows readily from the combinatorial description (by consid-
ering the complement in a k](n!k) rectangle of the Young diagram of
a partition) or from the topological description (by PoincareH duality). Thus,
whenever 1(k(n!1, one gets easily the following estimate, which will be
useful for us in the remainder of the paper.

C
n

kD
q

"qd#qd~1#2qd~2#O (qd~3). (1)

We now turn to some preliminaries about MDS codes. Throughout, by
a code we will mean a linear code. Thus, an (n, k)-code over F

q
is simply

a k-dimensional subspace of <. Recall that the dual of an (n, k)-code C is the
(n, n!k)-code CM given by Mx3< : Sx, yT"0 for all y3CN, where S T is the
usual dot product on < w.r.t the basis Mv

1
,2, v

n
N. Let us also recall the

following well-known characterization of the minimal distance of a code.
This result is implicit in [29] as well as in [36] and [38], and in any case, its
proof is a simple exercise in linear algebra.

LEMMA 2.1. ¸et C be an (n, k)-linear code over F
q
and H be its parity check

matrix (i.e., an (n!k)]n matrix whose rows form a basis of the dual of C in <)



MDS CODES AND GRASSMANNIANS 475
and d be a positive integer. ¹hen d"d (C) if and only if every set of d!1
columns of H is linearly independent and some set of d columns of H is linearly
dependent.

Note that the Singleton inequality d(C)4n!k#1 is an immediate
consequence of the above lemma. Furthermore we have the following corol-
lary, which links MDS codes to Grassmannians.

COROLLARY 2.2. ¸et C be an (n, k)-linear code over F
q

and A be a k]n
matrix whose rows form a basis of C. ¹hen C is an MDS code if and only if all
k]k minors of A are nonzero. Consequently, the number of (n, k)-linear MDS
codes over F

q
equals the cardinality of the open stratum Mp3G

k,n
(F

q
) : paO0 for

all a3I (k, n)N of the Grassmannian.

Proof. Follows by applying Lemma 2.1 to the dual CM of C and noting
that C is an MDS code if and only if CM is. The latter follows, for instance,
from Proposition 4.1 of [45]. j

Finally, in this section, we will recall some classical facts from set theory.
Let N be a nonnegative integer. Put

[N]"M1, 2,2,NN and for r3[N], I
r
[N]"M"-[N] : D"D"rN.

Let A
1
,2, A

N
be "nite sets. Given any "-[N], let

E""Y
i|"

A
i
.

Given any r3[N], let

e
r
" +

"|Ir *N+

DE"D and B
r
"

r
+
i/1

(!1)i`1e
i
.

PROPOSITION 2.3 (Principle of Inclusion and Exclusion).

K Z
i|*N+

A
i K"B

N
"

N
+
i/1

(!1)i`1e
i
.

PROPOSITION 2.4 (Bonnferroni Inequalities). Given any r3[N], we have

K Z
i| *N+

A
i K4B

r
if r is odd,
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and

K Z
i|*N+

A
i K5B

r
if r is even.

Remark 2.5. These results are very well known. The inequalities in Prop-
osition 2.4 seem to have "rst appeared in a paper of Bonnferroni (1936) on
probability and statistics. For a reference to Bonnferroni's work as well as for
a proof of Propositions 2.3 and 2.4, see, for example, [9, Sects. 4.1 and 4.7]. It
may be tempting to think that the Bonnferroni bounds B

r
become better as

r increases, that is,

B
1
5B

3
5B

5
52 and B

2
4B

4
4B

6
42,

but this is not true in general. Examples are easy to construct. Roughly
speaking, this will be true if the intersections E" are not too large compared
to the A

i
's. However, one can show that the inequalities above will always

hold starting from B
r
if r'[N/2]. Indeed, for such r, we have ( N

r~1
)5(N

r
), and

one can "nd a contractive surjection f : I
r~1

[N]PI
r
[N] (i.e., a surjective

map such that f ("@)M"@ for all "@3I
r~1

[N]). The existence of such a map
follows from the symmetric chain decomposition (SCD) of the Boolean lattice
(cf. [4, Theorem 1, p. 18]) or, alternatively, as a consequence of Hall's
marriage theorem (cf. [4, Ex. 7, p. 9]). Now,

+
"{|Ir~1*N+

DE"{
D" +

"|Ir *N+

+
"{|f~1(")

DE"{
D

5 +
"|Ir *N+

DE"D D f ~1(") D

5 +
"|Ir *N+

DE"D,

where the "rst inequality follows since f is contractive and the second since
f is surjective. Thus e

r~1
5e

r
, and this implies the desired inequalities for the

Bonnferroni bounds.

3. HYPERPLANE SECTIONS OF GRASSMANNIANS

We now introduce a variant of a set-theoretic notation used in the previous
section, which will be relevant for our purpose. Given any subset " of I(k, n),
we let

E""Mp3G
k,n

: pa"0 for all a3"N.
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For a small subset " such as MaN, Ma, bN, Ma, b, cN, the corresponding E" would
be simply denoted by Ea , Eab , Eabc , respectively. Given any a3I(k, n), by a6 we
denote the corresponding set, i.e., a6 "Ma

1
,2 , a

k
N. Finally, given any point

p"(pa)3PN~1(F
q
) and any integers c

1
,2, c

k
between 1 and n, we set

pc12ck"G
0 if c

i
"c

j
for some iOj

sgn(p)pa if c
1
,2, c

k
are distinct and p3S

k
, a3I(k, n)

are such that cp (i)"a
i
, for 14i4k.

In estimating the number of points of the open stratum of Corollary 2.2,
the following fundamental lemma about the Grassmannian would be crucial.
Brie#y, it says that the intersection of G

k,n
with a basic open subset

;a"Mp3PN~1 :paO0N is in natural one-to-one correspondence with a cell
(i.e., an a$ne space) of dimension d. This result is classical and appears, for
instance, essentially as Proposition 2 in [24]. It may be noted that although
in [24] it is assumed that the ground "eld is C, the argument therein works
for arbitrary ground "elds (of any characteristic). A slightly weaker version
appears also in the literature on coding theory (see, for example, [36, 38, 41]).

LEMMA 3.1 (Basic Cell Lemma). Fix any a3I (k, n). ¸et

Ba"Mp3G
k,n

: pa"1N

and

Ca"Mt"(t
ij
)3M

k,n
(F

q
) : t

iaj"d
ij

for 14i, j4kN,

where M
k,n

(F
q
) denotes the set of all k]n matrices with entries in F

q
and d

ij
denotes the Kronecker delta. ¹hen the polynomial maps (or morphisms)
' :BaPCa and ( :CaPBa de,ned by

'(p)"(t
ij
(p)),

where for p3Ba ,

t
ij
(p) :"pa12ai~1jai`1

2ak , for 14i4k, 14j4n

and

((t)"(pb),
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where for t3Ca ,

pb :"b-th minor of t"det(t
ibj

)
14i, j4k

, for b3I (k, n)

are bijective and inverses of each other. In particular, G
k,n

W;a is in one-to-one
correspondence with Ad(F

q
), where ;a"Mp3PN~1 : paO0N.

COROLLARY 3.2. Given any a3I (k, n), we have DEaD"[n
k
]
q
!qd.

Proof. With ;a as in Lemma 3.1, we have Ea"G
k,n

C(G
k,n

W;a) and
DAd(F

q
) D"qd. j

COROLLARY 3.3. ¸et a, b3I (k, n) be distinct and let d"k!DaN WbM D be the
00distance11 between them. ¹hen

DEab D"C
n

kD
q

!2qd#qd~(d`1
2 )[d]!.

In particular, if DaN WbM D"k!1, then

DEab D"C
n

kD
q

!2qd!qd~1.

Proof. Let A
1
"Mp3G

k,n
: paO0 and pb"0N and n

1
"DA

1
D. By Lemma

3.1, we see that n
1
"DMt3Ca : fb (t)"0ND, where Ca is as in Lemma 3.1 and fb (t)

is the k]k minor det(t
ibj)14i,j4k

. Now, write

b1 C(a6 Wb1 )"Ms
1
, s

2
,2, s

d
N with s

1
(s

2
(2(s

d
.

Since t
iaj"d

ij
(14i, j4k), by expanding the k]k matrix (t

ibj) suitably, using
Laplace development, it follows that

fb (t)"det(t
ibj)14i, j4k

"$det(t
isj

)
14i, j4d

.

Therefore, the a$ne variety Mt3Ca : fb(t)"0N is a cone over the complement
of G¸

d
(F

q
) in Fd2

q
. Consequently,

n
1
"qd~d2 (qd2!q(d2)[d]!)"qd!qd~(d`1

2 )[d]!.

The desired equality now follows from Corollary 3.2 since Eab"EbCA
1
. j
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Remark 3.4. Given any a, b3I(k, n), if d"k!Da6 Wb1 D denotes the &&dis-
tance'' between them, then we always have d4minMk, n!kN. Indeed, it is
obvious that d4k, and moreover, the relations

2k!Da6 Wb1 D"Da6 D#Db1 D!Da6 Wb1 D"Da6 Xb1 D4n

readily imply that d4n!k.

In general, the cardinality of E" is very di$cult to determine exactly.
However, we show below that it can be determined if the elements of " are
&&close'' to each other. Moreover, a rather surprising application of coding
theory shows that the cardinality in the general case is bounded above by that
in the close case.

LEMMA 3.5. ¸et " be a subset of I(k, n) of cardinality r. ¹hen

DE" D4C
n

kD
q

!qd!qd~1!2!qd~r`1.

Moreover, if " has the property that Da6 Wb1 D"k!1, for all a, b3I(k, n),
aOb, then the equality holds.

Proof. Since the PluK cker embedding G
k,n
)PN~1(F

q
) is nondegenerate, it

de"nes a nondegenerate projective system in the sense of Tsfasman}Vlay dut,
(cf. [44, 45]) and therefore (by [45, Theorem 2.1]) a nondegenerate linear
([n

k
]
q
, N)!code. Viewed this way, the higher weights d

r
of this code satisfy the

following Griesmer}Wei bound (cf. [46]):

d
r
5

r~1
+
i/0

d
1

qi
.

Moreover, we know from the work of Nogin [35] that the minimum distance
d
1

for this code is qd. Now, using the equivalence with the language of
projective systems (cf. [45]) once again, we "nd that the di!erence [n

k
]
q
!d

r
is

given by

maxMDG
k,n

W%
r
D :%

r
a codimension r projective subspace of PN~1N.

Thus, using the Griesmer}Wei bound with d
1
"qd, we see that for any

projective subspace %
r
of codimension r in PN~1, we have

DG
k,n

W%
r
D4C

n

kD
q

!qd!qd~1!2!qd~r`1.
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Now E" is evidently the intersection of G
k,n

with r coordinate hyperplanes,
and hence the "rst part of the lemma is proved. Next, suppose " has the
property that Da6 Wb1 D"k!1, for all a, b3I (k, n), aOb. Choose any a3".
Using arguments similar to those in the proof of Corollary 3.3 above, we see
that for any p3G

k,n
and b3"CMaN, pb corresponds to $t

uv
in the corre-

spondence of Lemma 3.1, for a pair (u, v)O(i, a
j
) for all 14i, j4k, which is

uniquely determined by b. Moreover, the pairs (u, v) corresponding to distinct
elements of "CMaN are distinct. It follows that the set

A
r~1

"Mp3G
k,n

: paO0 and pb"0 for all b3"CMaNN

is in bijection with the zero locus of r!1 distinct coordinates in Fd
q
, and thus

DA
r~1

D"qd~r`1. The desired equality follows by induction on r since
E""E"CMaNCA

r~1
. j

Remark 3.6. For a more leisurely proof of the above lemma as well as for
an application of these ideas to the study of the so-called Grassmann codes,
see [13].

4. CLOSE FAMILIES OF k-SUBSETS

In this section, we shall prove some set-theoretic and combinatorial results,
which, together with Corollary 3.3 and Lemma 3.5, would be useful in
estimating the number of MDS codes. We shall "nd it convenient to use
subsets instead of sequences. Accordingly, we consider I

k
[n] instead of I(k, n).

Recall that for any integer j, we let

I
j
[n]"MA : A is a subset of [n] with DA D"jN

and that [n] denotes the set of "rst n positive integers. As an axiomatic set
theory, for a given "-I

k
[n], the intersection of all A3" will be denoted by

W".
A family "-I

k
[n] will be called close if

DAWB D"k!1 for all A, B3", AOB.

Basic examples of close families can be obtained by considering either of the
following two types.

DEFINITION 4.1. Let "-I
k
[n] be a nonempty family with D"D"r. We say

that
(i) " is of ¹ype I if there exists S3I

k~1
[n] and ¹-[n]CS with D¹ D"r

such that

""MSXMtN : t3¹N.
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(ii) " is of ¹ype II if there exists S3I
k~r`1

[n] and ¹-[n]CS with
D¹ D"r such that

""MSX¹CMtN : t3¹N.

Remark 4.1. With notation as in the de"nition above, observe that if " is
of Type I or of Type II, then W" is equal to S; in particular,

DW"D"G
k!1

k!r#1

if " is of Type I

if " is of Type II.

It follows that if r'2, the class of Type I families is disjoint from the class of
Type II families. If r"2, these two classes coincide. If r"1, any "-I

k
[n]

with D"D"r is of Type I as well as of Type II.

The following characterization of close families is reminiscent of results in
extremal set theory or the theory of block designs. However, we were unable
to "nd it in the relevant literature.

THEOREM 4.2. (Structure Theorem for Close Families).¸et "-I
k
[n] with

D"D"r52. ¹hen " is close if and only if " is either of ¹ype I or of ¹ype II.

Proof. It is obvious that if " is of Type I or Type II, then " is close.
Conversely, suppose " is close. We proceed by induction on r. The case of
r"2 is trivial. Suppose r"3. Write ""MA, B, CN and let t

B
, t

C
3A and j

B
,

j
C
3[n]CA be the unique elements such that

B"(ACMt
B
N)XM j

B
N and C"(ACMt

C
N)XM j

C
N.

If t
B
"t

C
, then " is clearly of Type I, whereas if t

B
Ot

C
, then DBWC D"k!1

implies that j
B
"j

C
, and consequently, " is of Type II.

Now suppose r'3 and that the result holds for smaller values of r. Fix any
A3" and let

"@""CMAN, S@"W"@ and S"W".

By the induction hypothesis, we are in either of the two cases below.

Case 1. "@ is of Type I.
Here, DS@ D"k!1, and thus for S"S@WA, we have k!24DS D4k!1.

Suppose, if possible, DS D"k!2. Now since r'3, we can "nd distinct sets
B
1
, B

2
, B

3
3"@ and distinct elements t

1
, t

2
, t

3
3[n]CS@ such that B

i
"S@XMt

i
N

for i"1, 2, 3. Since DB
i
WAD"k!1'k!2"DS@WAD, we must have t

i
3A
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for i"1, 2, 3. But then DAD5k#1, which is a contradiction. Therefore,
DSD"k!1 and so " must be of Type I.

Case 2. "@ is of Type II.
Here, DS@ D"k!r#2, and there exists ¹@-[n]CS@ with D¹@ D"r!1 such

that "@"MS@X¹@CMt@N : t@3¹@N. Thus, for S"S@WA, we have k!r#
14DS D4k!r#2. In any case, since r'3, there exists t @

1
3¹@ such that

t @
1
3A. Let B

1
"S@X¹@CMt @

1
N. Suppose, if possible, DS D"k!r#2. Then

S@"S-A and since DA D"k, there exists t @
2
3¹@ such that t @

2
NA. Let

B
2
"S@X¹@CMt @

2
N. Now DB

1
WAD"k!1 implies that ¹@CMt @

2
N-A. But then

DB
2
WAD"k, which is a contradiction. Therefore, DSD"k!r#1. So there is

a unique s@3S@ such that S"S@CMs@N. Now DB
1
WAD"k!1 implies that

¹@-A, and thus S@X¹@CMs@N"A. It follows that if we let ¹"¹@XMs@N, then
¹-[n]CS, D¹ D"r and ""MSX¹CMtN : t3¹N. Thus " is of Type II.

This completes the proof. j

Remark 4.3. It may be remarked that subfamilies " of I
k
[n] are some-

times referred to as k-uniform hypergraphs or simply as hypergraphs (see, for
example, [4]). Indeed, if k"2, then these are essentially the same as simple
graphs (i.e., "nite graphs without loops or multiple edges). In the case of
k"2, the structure theorem above is equivalent to an elementary result in
graph theory that if a connected simple graph G has the property that any
two edges are incident, then G is either a star or a triangle.

As a consequence of the structure theorem above, we can calculate the
cardinality of close families of a given size. In the following, we shall tacitly
use the following elementary identities of binomial coe$cients; for a proof of
these, one may refer to [12, Lemma 3.1 (iv) and Lemma 3.2].

Given any integers a, b, c with a50, we have

A
a

bBA
a!b

c B"A
a

cBA
a!c

a!b!cB"A
a

a!b!cBA
b#c

b B.
COROLLARY 4.4. Given any integer r51, let c

r
"c

r
(k, n) denote the car-

dinality of all close families in I
k
[n] of cardinality r. ¹hen

c
r
"

i
g
g
g
j
g
g
g
k

N if r"1

A
n

rBA
n!r

k!1B if r"2

A
n

rBCA
n!r

k!1B#A
n!r

n!k!1BD if r53.
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Proof. The case of r"1 is trivial. For r52, the number of "-I
k
[n] of

Type I is clearly equal to

A
n

k!1BA
n!k#1

r B"A
n

rBA
n!r

n!k#1!rB
whereas the number of "-I

k
[n] of Type II is clearly equal to

A
n

k!r#1BA
n!k#r!1

r B"A
n

rBA
n!r

n!k!1B.

Thus, in view of Remark 4.1, the desired result follows from Theorem 4.2. j

Remark 4.5. It would be interesting to determine the structure and,
consequently or otherwise, the cardinality of the set of families "-I

k
[n] of

k-subsets of [n] such that D"D"r and any two distinct elements of " are at
&&distance'' d from each other (i.e., DAWB D"k!d for A, B3", AOB). The
above two results correspond to the case of d"1 while the Proposition
below corresponds to the case of r"2. It may be noted that a variant of this
general problem where in one replaces the condition &&distance d'' by &&dis-
tance 4d'' (i.e., DAWBD5k!d for all A, B3") is much studied in the
literature. For example, the well-known ErdoK s}Ko}Rado theorem (cf. [4, p.
45]) is related to the case d"k!1 of the latter problem.

PROPOSITION 4.6. ¸et d be an integer with 14d4k and j
d
"j

d
(k, n) be

the number of 2-element subsets MA, BN of I
k
[n] such that DAWBD"k!d. ¹hen

j
d
"

1

2 A
n

kBA
n!k

d BA
k

dB"
N

2 A
n!k

d BA
k

dB.

Proof. Choosing an ordered pair (A, B) with A, B3I
k
[n] and DAWBD"

k!d is equivalent to choosing any k!d elements of [n], then any d elements
from the rest, and "nally any d elements from the remaining n!(k!d )!d
integers. Hence, the number of such ordered pairs is equal to

A
n

k!dBA
n!k#d

d BA
n!k

d B"A
n

n!kBA
k

dBA
n!k

d B.

For subsets instead of ordered pairs, we have to divide by 2. j
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Remark 4.7. With notations as in the two results above, we have:

1. j
d
"0 if d'minMk, n!kN.

2.
.*/ Mk,n~kN

+
d/1

j
d
"A

N

2B
3. c

2
"j

1
.

These identities follow easily from the formulae obtained above or, alterna-
tively, from the set-theoretic descriptions of c

r
and j

d
and the observation in

Remark 3.4.

5. BOUNDS FOR THE NUMBER OF MDS CODES

In this section, we shall prove our main results concerning estimates for

c(q)"c(q; k, n)"the number of (n, k)-MDS codes over F
q
.

It is trivial to check that if k"n, then c(q)"1. Moreover, using the well-
known duality between MDS codes and their duals (cf. [45, Proposition 4.1]),
we clearly have c (q; k, n)"c (q; n!k, n). Thus using Corollary 2.2, we can
easily see that

c(q; 1, n)"c(q; n!1, n)"(q!1)n~1.

With this in view, we shall tacitly assume throughout this section that
1(k(n!1.

Following Section 3, we will consider hyperplane sections E" for
"-I (k, n). As a variant of the notation used in Section 2, we de"ne for any
r51,

e
r
(q)"e

r
(q; k, n)" +

D"D/r

DE" D,

where the sum is over all subfamilies "-I(k, n) of cardinality r. We set, by
convention,

e
0
(q)"e

0
(q; k, n)"DG

k,n
(F

q
)D"C

n

kD
q

.
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We also de"ne for any r50,

B
r
(q)"B

r
(q; k, n)"

r
+
i/0

(!1)ie
i
(q).

Note that for r'N"(n
k
), we have e

r
(q)"0 and B

r
(q)"B

N
(q).

LEMMA 5.1. c(q)"B
N
(q)"+N

r/0
(!1)re

r
(q). Moreover, for any r50,

B
2r`1

(q)4c(q)4B
2r

(q).

Proof. By Corollary 2.2, we have

c(q)"KGk,n
(F

q
)C Z

a|I (k,n)
Ea K"C

n

kD
q

!K Z
a|I(k,n)

Ea K.

Thus the desired result follows from Propositions 2.3 and 2.4. j

Now recall that for any r51, we have de"ned in Section 4 the function
c
r
"c

r
(k, n). Also for any integer d with 14d4k, we have de"ned the

function j
d
"j

d
(k, n). It may be noted that c

r
and j

d
are explicitly computable

from the formulae given in Corollary 4.4 and Proposition 4.6. We set c
0
"1.

Observe that as a consequence of Theorem 4.2, it is readily seen that for r50,

c
r
(k, n)"0 if and only if r'maxMk, n!kN#1. (2)

It may be noted that the last assertion can also be derived from Corollary 4.4
(cf. [13]).

We de"ne another explicit function by putting for any r50,

e
r
(q)"e

r
(q; k, n)"C

n

kD
q

!qd!qd~1!2!qd~r`1.

Note that e
0
(q)"e

0
(q)"[n

k
]
q
. More generally, we have the following relation

between e
r
(q) and e

r
(q).

LEMMA 5.2. For 04r4N, we have c
r
e
r
(q)4e

r
(q)4(N

r
)e

r
(q).

Proof. The upper bound follows from the "rst assertion in Lemma 3.5
while the lower bound follows from the second assertion in Lemma 3.5. j

PROPOSITION 5.3. =ith notations as above, we have the following.
(i) B

0
(q)"e

0
(q)"[n

k
]
q
. And asymptotically,

B
0
(q)"qd#qd~1#2qd~2#O(qd~3).
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(ii) B
1
(q)"e

0
(q)!e

1
(q) is given by

B
1
(q)"Nqd#(1!N)C

n

kD
q

"Nqd#(1!N)
k~1
<
j/0

qn!qj

qk!qj

and asymptotically, it is given by

B
1
(q)"qd#(1!N)qd~1#(2!2N)qd~2#O(qd~3).

(iii) B
2
(q)"e

0
(q)!e

1
(q)#e

2
(q) is equal to

CN!2A
N

2BDqd#C1!N#A
N

2BDC
n

kD
q

#

.*/Mk,n~kN
+
d/1

j
d
qd~(d`1

2 )[d]!

and asymptotically, it is given by

B
2
(q)"qd#(1!N)qd~1#C2!2N#A

N

2BDqd~2#O(qd~3).

Proof. The "rst assertion is trivial and the asymptotic formula in (i) has
already been noted in Section 2. For (ii), note that

e
1
(q)" +

a|I(k,n)
DEa D" +

a|I(k,n) AC
n

kD
q

!qdB"NC
n

kD
q

!Nqd,

where the second equality follows from Corollary 3.2. The asymptotic for-
mula for B

2
(q) follows from (i). Lastly, in view of Remark 3.4, we have

e
2
(q)" +

Ma,bN-I (k,n)aOb

DEab D"
.*/ Mk,n~kN

+
d/1

+
Ma,bN-I (k,n)DaWbD/k~d

DEabD

"

.*/ Mk,n~kN
+
d/1

j
dAC

n

kD
d

!2qd#qd~(d`1
2 )[d]!B,

where the last equality follows from Corollary 3.3 and Proposition 4.6. The
desired formulae for B

2
(q) follow from above in view of Remark 4.7.

Moreover, if d'1, then we have

qd~(d`1
2 )[d]!"qd!qd~1!qd~2#O (qd~3).
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In view of (1) and Remark 4.7, this yields the asymptotic formula for
B

2
(q). j

DEFINITIONS 5.4. Given any s50, we de"ne I̧
s
(q)" I̧

s
(q; k, n) and

;I
s
(q)";I

s
(q; k, n) by

I̧
s
(q)"

s
+
r/0

c
2r

e
2r

(q)!
s`1
+
r/1
A

N

2r!1Be
2r~1

(q)

and

;I
s
(q)"

s
+
r/0
A
N

2rB e
2r

(q)!
s
+
r/0

c
2r~1

e
2r~1

(q).

Furthermore, we de"ne ¸
s
(q)"¸

s
(q; k, n) by ¸

0
(q)"B

1
(q) and for s51,

¸
s
(q)"B

2
(q)#

s
+
r/2

c
2r

e
2r

(q)!
s~1
+
r/2
A

N

2r!1Be
2r~1

(q)

and ;
s
(q)";

s
(q; k, n) by ;

0
(q)"B

0
(q), ;

1
(q)"B

2
(q) and for s52,

;
s
(q)"B

2
(q)#

s
+
r/2
A
N

2rB e
2r

(q)!
s
+
r/2

c
2r~1

e
2r~1

(q).

Finally, we de"ne

I̧ (q)" I̧ (q; k, n)"maxM I̧
s
(q) : 04s4x(N!1)/2yN,

;I (q)";I (q; k, n)"minM;I
s
(q) : 04s4xN/2yN,

and

¸(q)"¸ (q; k, n)"maxM¸
s
(q) : 04s4x(N!1)/2yN,

;(q)"; (q; k, n)"minM;
s
(q) : 04s4xN/2yN.

THEOREM 5.5. =e have the following lower and upper bounds for the number
c(q)"c (q; k, n) of all (n, k)-MDS linear codes over F

q
.

(i) For 04s4x(N!1)/2y , we have

I̧
s
(q)4¸

s
(q)4c(q).
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(ii) For 04s4xN/2y, we have

c(q)4;
s
(q)4;I

s
(q).

(iii) ¸astly, we have

I̧ (q)4¸ (q)4c(q)4;(q)4;I (q).

Proof. Given any s50, by Lemma 5.1, we have c (q)5B
2s`1

(q). In
particular, c(q)5B

1
(q)"¸

0
(q)" I̧

0
(q). Now if 14s4x(N!1)/2y , or

equivalently, if 142s#14N, then by Lemma 5.2,

B
2s`1

(q)"B
2
(q)#

s
+
r/2

e
2r

(q)!
s`1
+
r/2

e
2r~1

(q)

5B
2
(q)#

s
+
r/2

c
2r

e
2r

(q)!
s`1
+
r/2
A

N

2r!1B e
2r~1

(q).

Thus B
2s`1

(q)5¸
s
(q). Likewise, Lemma 5.2 implies that

B
2
(q)5c

0
e
0
(q)!Ne

1
(q)#c

2
e
2
(q)

and thus ¸
s
(q)5 I̧

s
(q). This proves (i). Assertion (ii) is similarly proved, and

(iii) is an immediate consequence of (i) and (ii). j

COROLLARY 5.6. For any given parameters (n, k) with 14k4n, there exist
(n, k)-MDS linear codes over F

q
for su.ciently large q. In fact, c(q; k, n)'0

whenever q5N"(n
k
).

Proof. Indeed, by Lemma 5.3 (ii), we have

¸
0
(q)"B

1
(q)"qd#(1!N)qd~1#O (qd~2).

Since the coe$cient of qd is positive, it follows that ¸
0
(q)'0 for su$ciently

large q. Hence, by Theorem 5.5 (i), c(q)'0 for q su$ciently large. The last
assertion follows by looking at ¸

0
(q) more carefully. Thus, we write

¸
0
(q)"Nqd#(1!N)C

n

kD
q

"

d
+
i/0

l
i
qi!

d~1
+
i/0

Nl
i
qi"1#

d~1
+
i/0

l
i
(q!N)qi,

where l
i
denotes the coe$cient of qi in the polynomial expansion of the

Gaussian binomial coe$cient [n
k
]
q
. As remarked in Section 2, each l

i
is

positive, and thus the last expression above is 51 if q5N. j
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Remark 5.7. The last assertion in the above corollary appears to give
a partial answer to the "rst problem of B. Segre. However, the bound N"(n

k
)

is not optimal, in general; this may be seen easily from the existence of the
Reed}Solomon codes. However, the proof of Corollary 5.6 also shows that as
soon as q'N, there is an abundance of MDS codes for the corresponding
parameters.

THEOREM 5.8. ¹he number c(q)"c (q; k, n) of all (n, k)-MDS linear codes
over F

q
is asymptotically equal to

c (q)"qd#C1!A
n

kBDqd~1#O(qd~2).

Proof. By Lemma 5.3, both ¸
0
(q)"B

1
(q) and ;

1
(q)"B

2
(q) are asymp-

totically given by

qd#(1!N)qd~1#O(qd~2).

Now by Theorem 5.5, ¸
0
(q)4c (q)4;

1
(q) for all q. This implies the desired

formula. j

Remark 5.9. It may be worthwhile to write down explicitly some of the
lower bounds and upper bounds given by Theorem 5.5. For example, ¸

s
(q)

for s"0 gives the following lower bound for c(q),

A
n

kB qk (n~k)#C1!A
n

kBD
(qn!1)(qn!q)2(qn!qk~1)

(qk!1)(qk!q)2(qk!qk~1)
,

while ;
s
(q) for s"0 gives the trivial upper bound

C
n

kD
q

"

(qn!1)(qn!q)2(qn!qk~1)

(qk!1)(qk!q)2(qk!qk~1)
.

A simpler, and slightly less trivial, upper bound can be obtained as a direct
consequence of the basic cell lemma. Namely,

c (q; k, n)4qk (n~k).

To see this, note that by Corollary 2.2, c (q)4DG
k,n

(F
q
)CEaD, for any a3I(k, n),

and then use Corollary 3.2. We leave it to the reader to work out more special
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cases of the bounds in Theorem 5.5 and to observe that in a few cases, some
simpli"cations in the de"ning expressions can be made.

6. GEOMETRIC APPLICATIONS

Let F be an algebraically closed "eld. Consider the Grassmannian G
k,n

(F)
of all k-dimensional subspaces of the n-dimensional vector space Fn over F.
Let Mv (1),2 , v(n)N be the standard F-basis of Fn. As noted before, G

k,n
(F) is

a projective algebraic variety of PN~1
F

, which is de"ned over Z (and hence
over F

q
for any prime power q). We are interested in the geometry of the

closed subvarieties

E"(F)"Mp"(pc)3G
k,n

(F) : pc"0 for all c3"N,

where "-I (k, n). Note that classical Schubert varieties )a (F) of G
k,n

(F) are
particular cases of E"(F). Indeed, given a"(a

1
,2, a

k
)3I (k, n), the corre-

sponding Schubert variety )a(F) is given by

)a (F)"M=3G
k,n

(F) : dim(=WA
i
)5i for i"1,2, kN,

where A
i
"spanMv(a

1
),2 , v(a

i
)N for 14i4k. Furthermore, if we consider

the Bruhat order on I(k, n) de"ned by

b4b@8b
i
4b@

i
for all i"1,2 , k,

where b"(b
1
,2,b

k
) and b@"(b@

1
,2, b@

k
) are arbitrary elements of I(k, n),

then, in terms of the PluK cker coordinates, we have

)a(F)"Mp"(pc)3G
k,n

(F) : pb"0 for all b3I (k, n) with b4/ aN.

It is well known (cf. [22]) that )a (F) are irreducible algebraic varieties
and

dim)a (F)"
k
+
i/1

a
i
!

k(k#1)

2
.

Note that the Grassmannian G
k,n

(F) is a particular case of )a(F) with
a"(n!k#1, n!k#2,2, n). In particular, dimG

k,n
(F)"d"k(n!k).
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Last, recall that we have a natural transitive action of GL
n
(F) on the

Grassmannian G
k,n

(F), given by (g,=)>=@, where=@3G
k,n

(F) is obtained
from g3GL

n
(F) and=3G

k,n
(F) by considering a k]n matrix C whose rows

form a basis of= and letting=@ be the subspace spanned by the rows of Cg.
Alternatively, we can view G

k,n
(F) as the quotient GL

n
(F)/P

k
, where P

k
is the

parabolic subgroup of GL
n
(F) consisting of invertible matrices g"(g

ij
) such

that g
ij
"0 whenever 14j4k(i4n; now GL

n
(F) acts naturally on this

quotient and thus on G
k,n

(F). In particular, G
k,n

(F) is a homogeneous space.

LEMMA 6.1. For any a3I(k, n), Ea (F) is isomorphic to a Schubert variety in
G

k,n
(F). In particular, Ea(F) is an irreducible variety, and moreover the di-

mension of Ea(F) is d!1.

Proof. By the homogeneity of G
k,n

(F), it is clear that Ea(F) is isomorphic
to Eh (F), for any h3I(k, n). Take h"(n!k#1, n!k#2,2, n!1, n).
Then h is the maximal element of I (k, n) w.r.t. the Bruhat order and if
g"(n!k, n!k#2,2, n!1, n), then b4/ g8b"h, for any b3I(k, n).
Hence )g(F)"Eh(F). Therefore Eh(F) and consequently any Ea(F) is irredu-
cible. The assertion about the dimension of Ea(F) follows easily from the
formula for the dimension of Schubert varieties. j

Remarks 6.2. (i) It may be noted that the sections Ea and Eh appearing in
the above proof are not only isomorphic but also isotopic in the sense that
there is an automorphism of the ambient space PN~1

F
(in fact, a collineation,

i.e., a projective linear isomorphism), which leaves G
k,n

(F) invariant and maps
Ea(F) onto Eh (F). Indeed, let g3G¸

n
(F ) be the matrix corresponding to

a permutation of the basis Mv(1),2, v(n)N in such a way that v(a
i
)Cv(h

i
) for

14i4k. Then the compound matrix C
g
(which, by de"nition, is the N]N

matrix with rows and columns indexed by the elements of I (k, n), whose
(b, c)th entry is the k]k minor det(gbicj )14i, j4k

, where b, c3I (k, n)) is
nonsingular and gives the desired collineation.

(ii) It is well known (see, for example [34, Theorem 4.1]) that if
t"Mtb : b3I (k, n)N is the set of coordinate functions on G

k,n
(F), then the

vanishing ideal of )a (F) in the homogeneous coordinate ring R"F[t] of
G

k,n
(F) is precisely the ideal Ja generated by Mtb : b4/ aN. In particular, the ring

R/Ja is reduced. Note that if a"g"(n!k, n!k#2,2, n!1, n), then the
ideal of )g(F) in R is (th). Hence, from the previous remark, we see that the
ideal of Ea(F) in R is (ta) and the ring R/(ta) is reduced.

We shall now try to study more general linear sections E" of the Grass-
mannian G

k,n
. We begin by proving a useful fact about sections by close

families as a nice application of the structure theorem.

LEMMA 6.3. ¸et P"MPc : c3I(k, n)N be a family of N independent indeter-
minates over F and S"F[P] denote the corresponding polynomial ring. ¸et
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Q"I (G
k,n

) denote the (vanishing) ideal of G
k,n

in S. If " is a close subset of
I(k, n), then the ideal I""Q#(Pc : c3") generated by Q and the indetermi-
nates corresponding to ", is a radical ideal. In particular, the linear section
E" is also the scheme-theoretic intersection of G

k,n
and the linear subvariety

de,ned by the vanishing of the Pc1s for c3".

Proof. The case when " is empty is trivial. If D"D"1, then E""Ea for
some a3I(k, n) and the result follows from Lemma 6.1 and Remark 6.2 (ii).
Assume that D"D"r52. By Theorem 4.2, " is of Type I or Type II. If " is of
Type I, then by suitably permuting the basis elements v(1),2, v(n) of Fn

(which, as in Remark 6.2 (i), would give a collineation of PN~1
F

leaving G
k,n

(F)
invariant, or algebraically an automorphism of S which leaves Q invariant),
we may assume that " equals

"
I
"M(n!k#1!j, n!k#2, n!k#3,2, n) : 04j4r!1N.

On the other hand, if " is of Type II, then a suitable permutation of the basis
elements would permit us to assume that " equals

"
II
"M(n!k, n!k#1,2 , n!k#jY ,2, n) : 04j4r!1N,

where n!k#jY indicates that n!k#j is deleted. Note that both "
I
and "

II
are upward closed w.r.t. the Bruhat order in the sense that if ; denotes any
one of them, then

a@3;, b@3I(k, n) and a@4b@Nb@3;.

Therefore from [34, Theorem 4.4], it follows that I" is a radical ideal. j

We shall now show how one can quickly obtain some interesting geometric
information about some of the linear sections E" if we use the results of
Section 3 together with powerful results in algebraic geometry for varieties
over "nite "elds. For simplicity, we shall assume henceforth that the ground
"eld F is an algebraic closure of a "nite "eld F

q
of characteristic p. It is clear of

course that all the varieties considered in this section (such as E" (F)) are
de"ned over F

q
or for that matter over the prime sub"eld F

p
. Now that F is

"xed, we may simply write G
k,n

, Ea , etc., in place of G
k,n

(F), Ea(F), etc., in the
remainder of this section.

We state below a weak version of the Grothendieck}Lefschetz trace
formula, coupled with Deligne's main theorem concerning the so-called
Riemann hypothesis for varieties over "nite "elds.

THEOREM 6.4. ¸et X be a projective algebraic variety de,ned over F
q
, and

let XM "X? F denote the corresponding variety over the algebraic closure F of
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F
q
. ¸et dimXM "d. ¹hen there exist integers b

i
, for 04i42d, and algebraic

integers u
ij
, for 04i42d, 14j4b

i
, such that

Du
ij
D4qi@2 for 04i42d, 14j4b

i
,

and for any m51, we have

DX(F
qm

) D"
2d
+
i/0

(!1)i
bi
+
j/1

um
ij
;

in particular,

DX(F
qm

) D4
2d
+
i/0

b
i
(qm)i@2.

Furthermore, if XM is irreducible, then for any m51, we have

DX (F
qm

) D"(qm)d#
2d~1
+
i/0

(!1)i
bi
+
j/1

um
ij
4(qm)d#

2d~1
+
i/0

b
i
(qm)i@2.

Remark 6.5. The numbers u
ij

are the eigenvalues of the (geometric)
Frobenius endomorphism on the eH tale cohomology spaces Hi (XM )"
Hi (XM , Q

l
) of XM , where l is a prime di!erent from p. The assertion about the

absolute values of u
ij

may be stated more precisely by saying that each u
ij

is
pure of weight 4i/2. Recall that a number u3Q1

l
is said to be pure of weight

r if u is an algebraic integer and Dn (u)D"qr@2 for any embedding n of Q1
l
in C.

And Hi(XM ) is said to be pure of weight i if all the eigenvalues of the Frobenius
endomorphism on Hi(XM ) are pure of weight i. It is known that if X is
nonsingular, then each Hi (XM ) is pure of weight i. For a more general and more
detailed description of the above theorem, see [14, 32], and/or the original
sources referred therein.

COROLLARY 6.6. ¸et X be a projective algebraic variety de,ned over F
q
, and

let XM "X?F denote the corresponding variety over F. If dimXM "d, then the
limit

lim
m?=

DX(F
qm

) D
qmd

exists and is equal to the number of irreducible components of XM of dimension d.

Proof. Let

XM ">
1
X2X>

b
X>

b`1
X2X>

b`c
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be an irredundant decomposition of XM into irreducible subvarieties, where
>

1
,2 ,>

b
are of dimension d and>

b`1
,2,>

b`c
are of dimension (d. Since

the decomposition is irredundant, it follows that for r'1 and
14i

1
(2(i

r
4b#c, the intersection >

i1
W2W>

ir
is of dimension (d.

Now by Proposition 2.3, we see that DX(F
qm

) D equals

b
+
i/1

D>
i
(F

qm
) D#

c
+
j/1

D>
b`j

(F
qm

) D! +
14i:j4b`c

D>
i
(F

qm
)W>

j
(F

qm
) D#2.

Dividing by qmd and taking limit as mPR, the desired result follows readily
from Theorem 6.4. j

Remark 6.7. As noted in [14, Proof of Proposition 3.3], we have, in
general, that for any scheme X of dimension d, the number of irreducible
components of dimension d is equal to the dimension of the (2d)th eH tale
cohomology space of XM .

THEOREM 6.8. Suppose 1(k(n!1. ¸et "-I(k, n) be a family such that
D"D52. ¹hen we have the following.

(i) If " is close, then dimE""d!2.
(ii) If " is close and D"D"2, then E" has exactly two irreducible compo-

nents of dimension d!2.
(iii) If " is close and D"D'2, then E" has exactly one irreducible compon-

ent of dimension d!2.
(iv) If " is not close and D"D"2, then E" has exactly one irreducible

component of dimension d!2.

Proof. Let r"D"D. Since r52, we can "nd two distinct elements a and
b in ". Assume that either " is close or D"D"2. In case " is close, by Lemma
3.5, we have

DE" (F
q
) D"C

n

kD
q

!qd!qd~1!2!qd~r`1 (3)

whereas if " is not close and D"D"2, then d"k!Da6 Wb1 D'1 and by
Corollary 3.3, we have

DEab(Fq) D"C
n

kD
q

!2qd#qd~(d`1
2 )[d]!. (4)
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Also recall that by Corollary 3.2, we have

DEa(Fq) D"C
n

kD
q

!qd. (5)

Now using the asymptotic description for [n
k
]
q

as in Section 2, and the
asymptotic description for qd~(d`1

2 )[d]! appearing in the proof of Proposition
5.3, we see that

DE"(F
q
) D"bqd~2#O(qd~3), (6)

where

b"G
1 if D"D'2 and " is close,

1 if D"D"2 and " is not close,

2 if D"D"2 and " is close.

It is clear that each of the identities (3), (4), (5), and (6) are valid with q replaced
by qm for any m51. Hence we see that E" is a proper subvariety of Ea. By
Lemma 6.1, the latter is irreducible of dimension d!1, and therefore, if we let
e"dimEab , then e4d!2. Moreover, if e(d!2, then from Theorem 6.4
we see that DE"(F

qm
) D/qme is unbounded as mPR. But this contradicts

Corollary 6.6. Thus, e"d!2. The remaining assertions concerning the
number of irreducible components of dimension d!2 follow from (6) in view
of Corollary 6.6. j

In the case of E" , where " is close and D"D"2, we can sharpen the result in
Theorem 6.8 (ii) using the following algebro-geometric result. Recall that
a projective algebraic variety is said to be arithmetically Cohen}Macaulay if
its homogeneous coordinate ring is Cohen}Macaulay.

THEOREM 6.9. Suppose 1(k(n!1. ¸et a, b3I(k, n) be such that
Da6 Wb1 D"k!1. ¹hen the projective variety Eab is arithmetically Cohen}
Macaulay. In particular, Eab is Cohen}Macaulay and equidimensional.

Proof. Let P"MPc : c3I (k, n)N, S"F[P] and Q"I(G
k,n

) be as in
Lemma 6.3. Furthermore, let I"I(Ea) and J"I(Eab) denote, respectively,
the ideals of Ea and Eab in S. By Lemma 6.1 and the arithmetic Cohen}
Macaulayness of Schubert varieties (cf. [21, 27, 34]), we see that the homo-
geneous coordinate ring A"S/I of Ea is a Cohen}Macaulay domain of
dimension d. Moreover, by Theorem 6.8, it follows that the homogeneous
coordinate ring B"S/J of Eab is of dimension d!1. Also, in view of Remark
6.2 (ii), Lemma 6.3, and Hilbert's Nullstellensatz, we have I"(Q, Pa) and
J"(I, Pb).
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The arithmetic Cohen}Macaulayness of the projective variety Eab (or
equivalently, the Cohen}Macaulayness of S/J) now follows from one of
several routine arguments using the fact that S/I is Cohen}Macaulay,
J"(I, Pb), and dimS/J"dimS/I!1. We outline below one such argument
for the sake of completeness. Let hb denote the image of Pb in A"S/I. Then
B"S/J is isomorphic to AM "A/(hb). Now let m be a maximal ideal of

A containing hb and m be the corresponding maximal ideal of AM . Since A is
Cohen}Macaulay, it is universally catenary (cf. [30, Theorem 33]), and thus
(using, for example, the observations in [30, Sect. 14.B]), it follows that the
localizations Am and AM m are of dimensions d and d!1, respectively, and the

former is Cohen}Macaulay. In particular, hb is a regular element in Am and
by [30, Theorem 30], it can be extended to a maximal regular sequence hb ,
f
2
,2 , fd of Am. Consequently, fM

2
,2 , fMd is a regular sequence of AM m . There-

fore AM m is Cohen}Macaulay. This shows that Eab is arithmetically Cohen-

Macaulay. The remaining assertions are consequences of standard facts in
commutative algebra (see, for example, [30, Sect. 16]). j

Remark 6.10. The irreducibility and arithmetic Cohen}Macaulayness of
Ea can also be derived using arguments similar to those in the proofs of
Theorems 6.8 and 6.9. In other words, we can "rst use Corollary 3.2 and
Theorem 6.4 to determine the dimension and the number of top-dimensional
irreducible components of Ea , and second we can use the connection with
Schubert varieties (in e!ect, just the basis theorem) only to the extent of
deducing the observation in Remark 6.2 (ii) that the ideal of Ea in R is (ta). In
this way, one can avoid Lemma 6.1 and using some results from [21, 27, 34].

COROLLARY 6.11. Suppose 1(k(n!1. ¸et a, b3I(k, n) be such that
Da6 Wb1 D"k!1. ¹hen the projective variety Eab(F) has exactly two irreducible
components, each of dimension d!2.

Proof. Follows from Theorems 6.8 and 6.9. j

It turns out that the results of Section 3 can be used not only to get
information about the dimension of the hyperplane sections E" and of their
irreducible components, but also to derive interesting facts concerning the
singularities of these hyperplane sections. To this end, we shall use the
following result, which is proved in [25, Proposition 3.2]. We use this
opportunity to remark a small correction in [25, Proposition 3.2], namely
that dX

Z (f)
(F

q
) should be replaced by qdX

Z (f )
(F

q
) on two occasions in the

statement of the said proposition. Indeed, the proof of [25, Proposition 3.2] is
valid only if this correction is made.

PROPOSITION 6.12. ¸et X be an irreducible projective variety in PN~1
F

of
dimension d de,ned over F

q
, f be a homogeneous polynomial in N variables with
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coe.cients in F
q
, H be a subscheme of PN~1

F
corresponding to the principal ideal

generated by f, and let E* be the scheme}theoretic intersection of X and H. ¸et
p( f )"dimSingE* denote the dimension of the singular locus of E* and let
E be the algebraic set (i.e., the reduced subscheme) associated to E*. ¹hen there
exists a constant B

0
"B

0
( f, X), independent of q such that

Kq DE (F
q
) D!DX(F

q
) DK4B

0
( f, X)q(d`p (f )`2)@2.

Remark 6.13. From Lemma 6.3 and the proof of Theorem 6.9, it is clear
that if Ma, bN is close, then the scheme theoretic intersection of Ea with the
hyperplane Hb corresponding to the ideal (Pb) is reduced and equals Eab.

COROLLARY 6.14. Given any a3I(k, n), we have dimSingEa5d!4, or
equivalently, the codimension of SingEa in Ea is 43.

Proof. The case when k"1 or k5n!1 is trivial. Thus we may assume
that 1(k(n. From Corollary 3.2 and the asymptotic description for [n

k
]
q

given in Section 2, we have

DEa(Fq) D"C
n

kD
q

!qd"qd~1#2qd~2#O(qd~3).

Applying Proposition 6.12 with X"G
k,n

(F) and f"Pa and noting that

q (qd~1#2qd~2#2)!(qd#qd~1#2qd~2#2)"qd~1#O(qd~2),

we get d!14(d#p ( f )#2)/2, which implies that p ( f )5d!4. Hence
from Lemma 6.1 and the fact that Ea is reduced (cf. Remarks 6.2 (ii)), it follows
that codim Sing Ea43. j

Remark 6.15. In fact, a more precise result than that given by the above
corollary is known. Indeed, by Lemma 6.1, we know that Ea is isomorphic to
the Schubert variety )g(F) in G

k,n
(F), where g"(n!k, n!k#2,

2, n!1, n). Now, thanks to the work of Lascoux [28], Svanes [43], and
Lakshmibai and Weymann [26], the structure of the singular locus of all
Schubert varieties in Grassmannians is well understood. Thus, for example,
from [26, Theorem 5.3], we can easily see that Sing)g(F)")g{ (F), where
g@"(n!k!1, n!k, n!k#3,2, n!1, n). In particular, from the di-
mension formula noted at the beginning of this section and in view of the
proof of Lemma 6.1, we obtain that dimSingEa"dim)g{ (F)"
2(n!k!2)#(k!2)(n!k)"d!4, and thus codim SingEa"3. This
shows, in particular, that Ea has no singularities in codimension 1, and since,
as noted in the proof of Theorem 6.9, it is Cohen}Macaulay, it follows from
Serre's criterion of normality that Ea is a normal variety. It may be remarked
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that the normality of arbitrary Schubert varieties is known in general from
the work of Andersen [2], Ramanan and Ramanathan [37], and Seshadri
[40] (see also [31] for a short proof ). However, in the case of more general
hyperplane sections E" , which may not be Schubert varieties, very little seems
to be known in the literature. In the case of Eab , where Ma, bN is close, the
following corollary gives some results that our methods would yield.

COROLLARY 6.16. Suppose 1(k(n!1. ¸et a, b3I(k, n) be such that
Da6 Wb1 D"k!1. ¹hen dimSing Eab"d!3, or equivalently, the codimension
of SingEab in Eab is 1. In particular, Eab is not a normal variety.

Proof. By Lemma 6.1 we know that Ea is an irreducible projective variety
with dimEa"d!1. Now in view of Corollaries 3.2 and 3.3, by applying
Proposition 6.12 with X"Ea and f"Pb it follows that there is a constant B

0
independent of q such that

Dq(2qd~2#2)!(qd~1#2qd~2#2) D4B
0
q(d~1`p (f )`2)@2.

Consequently, d!14(d#p ( f )#1)/2 and therefore p ( f )5d!3. On the
other hand, by Remark 6.13, the scheme theoretic intersection E*ab of Ea and
the hyperplane Hb corresponding to (Pb) is reduced, and thus it has no
singularities in codimension 0 (see, for example, [11, Ex. 11.10, p. 266]). Hence
E*ab"Eab and p ( f )4dimEab!1"d!3. Thus codim Sing Eab"1. Now
since Eab has singularities in codimension 1, Serre's criterion of normality
implies that it cannot be a normal variety. j

In contrast to the linear section Eab by a close family of two coordinate
hyperplanes, we shall show that in the case of families Ma, bN which are not
close, the variety Eab is much better behaved.

THEOREM 6.17. Suppose 1(k(n!1. ¸et a, b3I(k, n) be such that
Da6 Wb1 D(k!1. ¸et Hb denote the hyperplane in PN~1

F
de,ned by MPb"0N, and

let E*ab denote the scheme theoretic intersection of Ea and Hb. ¹hen we have the
following.

(i) dimSingE*ab5d!5. In other words, codimSingE*ab43.
(ii) E*ab is arithmetically Cohen}Macaulay. In particular, it is Cohen}

Macaulay and equidimensional.
(iii) Eab is an irreducible variety.

Proof. To prove (i), we proceed as in the proof of Corollary 6.16. Thus, we
"rst note that Ea is irreducible of dimension d!1. Now, using Corollary 3.2,
Corollary 3.3, the asymptotic description for qd~(d`1

2 )[d]! appearing in the
proof of Proposition 5.3, and Proposition 6.12, we see that there is a constant
B
0

independent of q such that

Dq (qd~2#3qd~3#2)!(qd~1#2qd~2#2) D4B
0
q(d~1`p (f )`2)@2.



MDS CODES AND GRASSMANNIANS 499
Consequently, d!24(d#p ( f )#1)/2, and therefore p ( f )5d!5. Next,
to prove (ii), we let S"F[P] and Q be as in Lemma 6.3 so that R"S/Q is the
homogeneous coordinate ring of G

k,n
. Write R"F[t], where

t"Mtc : c3I(k, n)N and tc denotes the image of Pc in R. Let J* be the ideal of
R generated by ta and tb. Since Ea and Hb are both reduced, it follows that the
homogeneous coordinate ring of E*ab is isomorphic to R/J*. Since J*

and JJ* have the same set of minimal primes, it follows from Hilbert's
Nullstellensatz that dimE*ab"dimEab"d!2. Now R is Cohen}Macaulay
(cf. [21]) and J* is an ideal of codimension 2 and is generated by two
elements. Hence, by [11, Proposition 18.13], we can conclude that R/J* is
Cohen}Macaulay. This proves (ii). In particular E*ab is equidimensional. But
we know from Theorem 6.8 (iv) that Eab has exactly one irreducible compon-

ent of dimension d!2. This implies that JJ* is prime and thus Eab is
irreducible. j

Remark 6.18. It appears likely that if Ma, bN-I(k, n) is not close, then E*ab
is reduced (so that E*ab"Eab) and dimSingEab"d!5; this would then
imply that Eab is Cohen}Macaulay and normal. In any case, it is clear already
that the geometry of Eab seems to depend a lot on the combinatorial
condition as to whether or not Ma, bN is close.

EXAMPLES 6.19. Finally, in this section, we work out two examples, which
nicely illustrate some of the results proved above.

1. Consider G
2,4

, which is the simplest nontrivial Grassmannian. This is
a hypersurface in P5 of dimension d"4 and is de"ned by the equation

P
12

P
34
!P

13
P
24
#P

14
P
23
"0.

Suppose a"(1, 2). Then Ea"G
2,4

WMP
12
"0N is like a projective cylinder

over the a$ne cone de"ned by an equation of the form xw!yz"0. Thus Ea
is clearly irreducible of dimension 3; indeed, the ideal of Ea is like the principal
ideal (xw!yz) in the polynomial ring F[x, y, z, w, u], and this ideal is clearly
a prime ideal of height 1. Moreover, the point de"ned by P

12
"P

13
"P

24
"

P
14
"P

23
"0 and P

34
"1 is the only singular point of Ea and thus

dimSingEa"0 as is to be expected. Next, if b"(1, 3), then Ma, bN is a close
family and Eab is the union of the two planes %

1
and %

2
de"ned by

P
12
"P

13
"P

14
"0 and P

12
"P

13
"P

23
"0, respectively. So, dimEab"2

and Eab has two irreducible components of dimension 2. Moreover, the
singular locus of Eab is the line formed by the intersections of %

1
and %

2
.

Thus dimSingEab"1, as is to be expected. Finally, if c"(1, 4), then
""Ma, b, cN is a close family of maximum possible cardinality and the
corresponding E" is isomorphic to P2 so that it is irreducible of dimension
d!2. It may be noted that if we take a family such as "@"M(1, 2), (1, 3),



500 GHORPADE AND LACHAUD
(3, 4)N, which is not close, then E"{
is isomorphic to a union of two P1's and

thus it is reducible of dimension (d!2. On the other hand, if we let
h"(3, 4) and we take the 2-element family Ma, hN, which is not close, then Eah
is the determinantal hypersurface in P4 given by an equation of the form
xw!yz"0. Thus Eah is irreducible (and Cohen}Macaulay) of dimension 2.

2. Consider G
2,5

, which is a subvariety of P9 of dimension d"6. It is not
di$cult to see that the following "ve quadratic relations determine G

2,5
.

P
12

P
34
!P

13
P
24
#P

14
P
23
"0;

P
12

P
45
!P

14
P
25
#P

15
P
24
"0;

P
12

P
35
!P

13
P
25
#P

15
P
23
"0;

P
13

P
45
!P

14
P
35
#P

15
P
34
"0;

P
23

P
45
!P

24
P
35
#P

25
P
34
"0.

Suppose a"(1, 2) and b"(1, 3). Consider Eab"G
2,5

WMP
12

"P
13
"0N.

Then from the above quadratic relations, we see that for any p3Eab , we must
have p

23
"0 or p

14
"p

15
"0. It follows that Eab"<(1)X<(2) where <(1)

and <(2) are subvarieties of P9 de"ned by

<(1)"MP
12
"P

13
"P

14
"P

15
"0"P

23
P
45
!P

24
P
35
#P

25
P

34
N

and

<(2)"MP
12
"P

13
"P

23
"0"P

14
P
25
!P

15
P
24

"P
14

P
35
!P

15
P

34
"P

24
P
35
!P

25
P

34
N.

It is clear that <(1) is isomorphic to G
2,4

and thus it is irreducible of
dimension 4. Furthermore, <(2) is isomorphic to a cylinder (since P

45
is free)

over a determinantal variety in P5 de"ned by an ideal of the form

I
2AC

x y z

u v wDB
that is generated by the 2]2 minors of a generic 2]3 matrix. It is well known
(cf. [8, Proposition 1.1]) therefore that the projective variety in P5 corre-
sponding to the ideal above is irreducible and has dimension 4!1"3.
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Therefore, <(2) is also irreducible, and dim<(2)"3#1"4. So, the asser-
tions (i) and (ii) of Theorem 6.8 are veri"ed. Next, let c"(1, 3), and consider
Eabc. As in the case of Eab, we can easily see that for any p3Eabc , we must
have p

15
"0 or p

23
"p

24
"p

25
"0. It follows that Eabc is the union of two

subvarieties, one isomorphic to G
2,4

and the other isomorphic to P3. It may
be noted that in this case Eabc is reducible of dimension 4 but it has only one
irreducible component of dimension 4. Finally, consider ""M(1, 2), (1, 3),
(1, 4), (1, 5)N, which is a close family of maximum possible cardinality. Then
E" is isomorphic to G

2,4
, which is irreducible of dimension 4.

Note that if in G
2,5

, we consider a 2-element family which is not close such
as Ma, hN, where h"(3, 4), then the corresponding Eah turns out to be a projec-
tive variety in P8 de"ned by an ideal of the form

I
2 A

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

B
that is generated by the 2]2 minors of a ladder shaped subset of a generic
3]3 matrix. It may be remarked that such ladder determinantal varieties have
recently been of interest and one knows that, in general, they are irreducible
(cf. [1, Theorem 20.16.4]), arithmetically Cohen}Macaulay (cf. [18, Corollary
4.10]), and projectively normal (cf. [10, Proposition 3.3]). Also, from [18,
Corollary 4.7] it can be seen that the dimension of Eah is 4. This con"rms
some of the results of Theorems 6.8 and 6.17 in the particular case of the
linear section Eah of G

2,5
.

We remark that the above decompositions of Eab (say) into irreducible
components can be used to compute directly the number of F

q
-rational points

of Eab. It is interesting and instructive, especially in the second example, to do
so and compare with the formula given by Corollary 3.3.

7. TABLES

In this section, we give some numerical data to compare, wherever pos-
sible, the lower bound ¸ (q)"¸ (q; k, n) and the upper bound ;(q)"
;(q; k, n) for number c(q)"c (q; k, n) of all (n, k)-MDS linear codes over F

q
. It

will be seen that the bounds quickly become better as q increases. Of course,
the MDS codes may not always exist for a given set of parameters and in such
a case the lower bound ¸ (q) is usually negative. In fact, we can easily avoid
these negative values and, in view of Remark 5.9, also make a minor
improvement in the upper bound ;(q) by replacing ¸ (q) and ;(q) by Ķ (q)
and ;K (q), respectively, where the latter are de"ned by Ķ (q)"maxM¸ (q), 0N
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and ;K (q)"minM;(q), qdN. However, in practice ¸ (q) quickly becomes posit-
ive and ;(q) quickly becomes smaller than qd.

(n, k)"(5, 2)

q"2 ¸(q)"!755
c(q)"0
;(q)"155

q"8 ¸(q)"!116945
c(q)"72030
;(q)"250180

q"32 ¸(q)"752269015
c(q)"803463270
;(q)"834446500

q"128 ¸(q)"4083938982775
c(q)"4097278095750
;(q)"4104293323300

q"512 ¸(q)"17696499789458935
c(q)"17699930414237190
;(q)"17701667866691620

q"2048 ¸(q)"73462400307624392695
c(q)"73463279573643761670
;(q)"73463720623898435620

q"8192 ¸(q)"301899332435640416395255
c(q)"301899557593636585365510
;(q)"301899670263342869807140

(n, k)"(6, 2)

q"2 ¸(q)"!5274
c(q)"0
;(q)"651

q"32 ¸(q)"587426008626
c(q)"697406118360
;(q)"773487190971

q"512 ¸(q)"4592733883143010903026
c(q)"4594689536371003677720
;(q)"4595715252586834081371

q"8192 ¸(q)"20247738819037735639138726461426
c(q)"20247771753930719892728171053080
;(q)"20247788696637052969529490759771
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(n, k)"(6, 3)

q"2 ¸(q)"!16265
c(q)"0
;(q)"1395

q"32 ¸(q)"12924803540365
c(q)"18854872557090
;(q)"23274288377355

q"512 ¸(q)"2327775159087185688779245
c(q)"2329516639604540539808130
;(q)"2330369613207389653784235

q"8192 ¸(q)"165768039589972820570950606406918125
c(q)"165768509822290080011242807140458370
;(q)"165768733035888981455839539456467115

(n, k)"(7, 3)

q"2 ¸(q)"!258214
c(q)"0
;(q)"11811

q"128 ¸(q)"14123647489168989269978846
c(q)"14763973216014483920056080
;(q)"15093570758315423135537841

q"2048 ¸(q)"5354042033282754906723825686066392657886
c(q)"5354784455399714241650925286098021465360
;(q)"5355088314817274002456447976702416620081

(n, k)"(8, 3)

q"2 ¸(q)"!3508517
c(q)"0
;(q)"97155

q"128 ¸(q)"22859051508168206183682487379017
c(q)"26143755283265696967345957437040
;(q)"27818370911486822148299133905997

q"512 ¸(q)"38858929850431024228647936374271440818633
c(q)"39096878508416888436124942798204100945520
;(q)"39186366672436705546578090425688010235853
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(n, k)"(9, 3)

q"2 ¸(q)"!43386809
c(q)"0
;(q)"788035

q"128 ¸(q)"29035501732844392930104338279237572141
c(q)"43680038826242120201491233198224596320
;(q)"51566850324744464560126628177426264779

We can also consider the case when (n, k)"(10, 3), where no exact formula
is known but the lower and upper bounds can still be computed. If we
compute these as q runs over powers of 2, we do not get any interesting
information until q"64 because for q432, ¸ (q) is negative while ;(q) is
positive. Later, however, ¸(q) is fairly large positive integer and the di!erence
between ¸ (q) and ;(q) becomes relatively small. For instance, the "rst four
digits of ¸(q) and; (q) are identical, for q"2048. This time we avoid making
a table since the numbers involved are quite huge.

Finally, we remark that the tables above have been prepared using Math-
ematica. More extensive data are also available. Anyone interested in these
data and/or a copy of the relevant Mathematica programs may send an
e-mail to the "rst author.
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