Free Radical Biology and Medicine xx (XXXX) XXXX—XXXX

journal homepage: www.elsevier.com/locate/freeradbiomed

Contents lists available at ScienceDirect

Free Radical Biology and Medicine

Review Article

4-Hydroxynonenal (HNE) modified proteins in metabolic diseases

José Pedro Castro™™*!, Tobias Jung®, Tilman Grune

a,b,c,d,:

, Werner Siems®"

2 Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany

b German Center for Diabetes Research (DZD), 85764 Miinchen-Neuherberg, Germany

¢ German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
4 NutriAct — Competence Cluster for Nutritional Sciences Berlin-Potsdam, Germany

€ Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
f Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal

& Institute of Physiotherapy and Gerontology of Kortexmed, 38667 Bad Harzburg, Germany

B University of Salzburg, Institute of Biology, Department of Cellular Physiology, A-5020 Salzburg, Austria

ARTICLE INFO ABSTRACT

Keywords:
4-hydroxynonenal
HNE-modified Proteins
Proteasome

Proteolysis

HNE metabolism

4-Hydroxynonenal (HNE) is one of the quantitatively most important products of lipid peroxidation. Due to its
high toxicity it is quickly metabolized, however, a small share of HNE avoids enzymatic detoxification and reacts
with biomolecules including proteins.

The formation of HNE-protein-adducts is one of the accompanying processes in oxidative stress or redox
disbalance. The modification of proteins might occur at several amino acids side chains, leading to a variety of

products and having effects on the protein function and fate.

This review summarizes current knowledge on the formation of HNE-modified proteins, their fate in
mammalian cells and their potential role as a damaging agents during oxidative stress. Furthermore, the
potential of HNE-modified proteins as biomarkers for several diseases are highlighted.

1. Introduction - proteins as targets for oxidative
modifications

Metabolic disorders such as the metabolic syndrome, type 2
diabetes and cardiovascular diseases have been increasing over the
years contributing to a decrease in both life and health span.
Development of more powerful prevention approaches are, therefore,
required and pass through understanding the molecular mechanisms
adjacent to the development of such limiting diseases for human life”s
quality. From a cellular and molecular perspective, which factors
decisively contribute to metabolic disorders? Oxidative stress is
thought to play a role in tissue dysfunction by disrupting cellular redox
signaling and by impinging oxidative damage on biomolecules, resulted
by the attack of reactive oxygen species (ROS), which accumulate over
time. This has been widely proposed as the main cause of the aging
process and moreover, to play a role in dysregulating metabolism.

Oxidative stress has been described to be closely related to metabolic
alterations such as obesity and metabolic syndrome [1], in multiple
forms of insulin resistance [2] and in pancreatic -cell death mediated
by ROS [3]. Chronic oxidative stress results in increased levels of
oxidized proteins which can be sufficient to trigger cellular dysfunction
and cell death, since practically the whole metabolism relies on
proteins to execute manifold cellular processes. Amongst the several
modifications proteins can bear, protein carbonylation has been
accepted, due to its irreversibility and stability, to be a relevant
modification. Oxidative carbonylation is a non-enzymatic phenomenon
which leads to protein dysfunction and can result from either a direct
or secondary reaction of oxidants with a given protein. The direct
reaction concerns metal-catalyzed ROS attack on amino acids, e.g.
proline (Pro), arginine (Arg), lysine (Lys) and threonine (Thr). The
more abundant products from this reaction on proteins are glutamic
semialdehyde for Pro and aminoadipic semialdehyde for Lys [4]. These
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carbonylated side chains increase the overall protein hydrophobicity
due to unfolding, resulting in an increased risk for aggregation [4—6].
Secondary reactions generating carbonyls on proteins can also occur.
For example, protein carbonylation can result from modified aldehydes
(from lipid peroxidation), such as 4-hydroxynonenal (HNE), on specific
amino acids as described below. This is thought to play a major role in
metabolic diseases displaying increase levels of oxidative stress [7—9].
Supporting the view that HNE-modified proteins are highly associated
with metabolic alterations progression Grimsrud and colleagues iden-
tified several carbonylated proteins from obese insulin-resistant
C57BI/6J mice when compared to lean and insulin-sensitive ones
[8]. They identified modified proteins from several different pathways
such as “carbohydrate and lipid metabolism, signal transduction,
antioxidant enzymes/cell stress responses, nucleic acid metabolism,
protein synthesis/degradation and structural proteins”. Remarkably,
they found a crucial protein for adipose tissue homeostasis, the fatty
acid binding protein (FABP) to be a specific cellular target of HNE.
Altogether, this strengthens the point for obesity and insulin resistance
to be mediated by the increased levels of ROS and dysfunctional HNE-
modified proteins. Within this review we will describe the basics on
HNE-protein modifications chemistry, HNE metabolism, the fate of
HNE-modified proteins and how can HNE-modified proteins be used
as biomarkers for metabolic disorders.

2. How does HNE affect proteins? Chemistry of protein
modification

The chemistry of HNE-formation from n-6 fatty acids in mem-
branes or lipid stores are described in detail in several reviews [10,11].
It seems that there is more than one pathway of HNE formation is
possible. Furthermore, one has to take into account, that besides HNE
also other lipid peroxidation products are formed, including malon-
dialdehyde (MDA). All aldehydic lipid peroxidation products and in
addition to these also other intermediate lipid peroxidation com-
pounds, as oxy- or peroxy-radicals, are able to react with proteins.
We will focus in this review on the HNE-modified proteins, since HNE
is one of the quantitatively more important lipid peroxidation products.

Although, HNE is largely formed in membranes (or other hydro-
phobic compartments), the partition coefficient of HNE allows a
diffusion into the cytosol or the extracellular space. Nevertheless, it
can be assumed that the concentration of HNE in the cell membranes is
much higher, compared to the hydrophilic cellular compartments. This
implies a long lasting distribution controlled reservoir for HNE in the
membranes, which will be release according to a concentration
gradient. Taking this into account cellular proteins might be exposed
to a flux of HNE also in conditions of abated oxidant production.

It is known for quite some time that free HNE is able to react with
proteins thereby changing their conformation and altering function
[12].

The reaction of the HNE with a protein can take place by two
principal reactions: (i) the addition of the aldehydic group to an amino
group of the protein forming a Schiff’s base undergoing further
rearrangements and (ii) by a Michael addition to a nucleophile by the
active C=C double bond (Fig. 1). The formation of HNE-protein
adducts is rather fast and in the order of seconds or minutes with
exposed protein moieties [13]. Interestingly, not every protein-borne
nucleophile or amino group react with the same velocity with HNE, so
that Lys, histidine (His) and cysteine (Cys) are often the most
frequently modified side chains. There is a strong hierarchy in the
reaction as tested in the poly-amino-acids [14]. Cys revealed the
highest reactivity, followed by His and Lys and Arg, with the lowest
reactivity. Interestingly, regarding poly-amino-acids no significant
reactivity was found using poly-glutamine, although, that does not
necessarily mean that the reaction is not possible. In fact, a specific
protein moiety might create a microenvironment allowing this reaction
to occur. One should also take into account that protein cofactors and
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ligands might take part in the modulation of reactivity towards HNE.

HNE is always seen as a bi-functional aldehyde allowing, therefore,
easily the formation of cross-links within or between proteins. Since
under physiological conditions or under pathophysiological situations,
HNE is formed as a product in a condition of oxidative stress, it is likely
that many proteins are also directly damaged by oxidants. This would
lead to a partial unfolding of proteins and the exposure of hydrophobic
moieties at the protein surface leading to initial protein aggregates
[15-18]. These can afterwards be cross-linked easily by HNE and other
bi-functional reactive metabolites. It is likely that such small cross-
linked protein aggregates are the basis for the age pigment lipofuscin,
also called ceroid or AGE-pigment-like fluorophores by various authors
[19,20].

In a cell, about 1-8% of the total formed free HNE formed is able to
modify proteins as measured by the addition of free HNE to various
cells in in vitro systems [21]. Here, one has to take into account that
under real stress conditions the cellular metabolic response might be
able to metabolize the amount of formed HNE quicker, especially in a
densely packed tissue, so this share might eventually change in
complex tissues. It is impossible to identify exclusive HNE-protein
targets. Mass spectrometry-analyses (MS) revealed literally hundreds
of proteins modified by HNE and there might be more; currently below
the detection limit [22,23]. In addition to that, it also seems that HNE
is readily crossing membranes so that in all cellular compartments
protein-HNE-adducts are detectable [24]. As mentioned earlier, the
binding of HNE to proteins is modulating the protein function and is
clearly a dose dependent process. For a detailed review see [25]. The
results on HNE-binding and affecting protein function clearly depends
on the experimental or (patho)physiological conditions. As a recent
study demonstrated the detection of a HNE-proteasome moiety is time
dependent, demonstrating that there intramolecular re-arrangements
[26]. Some protein adducts formed might be reversible especially the
ones between Cys and HNE in the presence of glutathione (GSH) [27].

The fate of HNE-modified proteins will be reviewed below in this
article. However, it is worth mentioning that the proteins of the
proteostasis system itself are targets for HNE-modification. So, MS-
analyses revealed that heat shock protein 70 (HSP70), heat shock
protein 90 (HSP90) and protein disulfide isomerase (PDI) are targeted
by HNE. Furthermore, also the activity of the endosomal/autophagy
system might be modified by reactive aldehydes [28]. Several studies
investigated the ubiquitin-proteasomal system (UPS) as a target for
HNE-modification [29-34]. This includes the 20S as well as the 26S
proteasomal forms. Using MS-techniques modification sites were often
demonstrated and identified. Other studies reported a decline in
proteasomal activity due to HNE treatment. However, such results
need to be analyzed with care. Proteasomal inhibition by HNE is
generally achieved only at high HNE concentrations [34]. On the other
side it might well be that since HNE is a bi-functional aldehyde and
able to cross-link proteins, not HNE itself but cross-linked aggregates
inhibit the proteasome. The devastating effect of cross-linked protein
aggregates on proteasomal function is known for several years [35-37]
and was also shown for HNE-cross-linked proteins [38,39]. In our
hands, HNE alone (up to 100 uM) was unable to inhibit the protea-
some, but HNE-amyloid peptide aggregates were efficient inhibitors of
the 20S proteasome [40].

HNE-protein adducts are physiological products of metabolism,
which might be increased during diseases in tissues or plasma [41].
Therefore, HNE-protein adducts might contribute to the pathogenesis
of diseases but may be used as biomarkers (reviewed in [25,42]). This
will be explored in one of the upcoming chapters.

3. HNE metabolism: the amount of protein modification
The most important degrading enzymes of HNE are glutathione-S-

transferases (GST), alcohol dehydrogenases (ADH) and aldehyde
dehydrogenases (ALDH). The products generated via these enzymatic
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A. Schift's Base Formation
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B. Michael Addition
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Fig. 1. HNE-modification of proteins. There are two principal ways of modification of amino acid side chains by 4-hydroxynonenal: via a Schiff's base formation due to the reaction of
the aldehydic group of HNE with an amino group of a protein (A) or via a Michael addition of the HNE double bond to a protein side chain (B).
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Fig. 2. HNE metabolic pathways. HNE is metabolized either by reduction, oxidation or conjugation. All pathways contribute to the HNE detoxification, with the exception of the
conjugation to proteins. The formed intermediate products are either further metabolized into metabolites of the fatty acid metabolism or excreted. HNE modified proteins are either

degraded or accumulate during cellular lifetime.

reactions are called primary intermediates of HNE: HNE-GSH, hydro-
xynonenoic acid abbreviated as HNA, and 1,4-dihydroxynonene ab-
breviated as DHN (Fig. 2).

The quantitative proportions with the primary intermediates of
HNE in rat hepatocytes are: more than half of HNE is metabolized to
the GSH-HNE conjugate, about one third is HNA, and about one tenth
will be DHN. After adding HNE to rat hepatocytes after 3 min of
incubation almost all HNE was degraded, and two thirds of degrada-
tion capacity was used to form the three primary HNE metabolites. One
third of HNE degradation products one could find within the secondary
intermediates including proteins modified by HNE. The amount of
HNE-modified proteins generated in hepatocytes from exogenously
added HNE was less than 10% [43].

In many experimental set-ups the concentration of HNE-protein
conjugates declined again after going through a maximum after the
stress exposure. That is the result of proteasomal degradation of HNE-
modified proteins, comparable to other oxidatively modified proteins
[18,44,45]. The pool of HNE-peptide and HNE-protein conjugates
reflects an important part of damaging effects of HNE towards cellular
functions. In contrast, the other pathways of HNE degradation con-
tribute to the detoxification of HNE. Those products include products
of beta- and alpha-oxidation and of the tricarboxylic acid cycle such as
acetyl-CoA, citrate, aconitate, malate, fumarate, succinate, finally
carbon dioxide, and water [46]. Alary and group determined and
quantified GSH-HNA and GSH-DHN metabolites [47]. From those
conjugates finally the mercapturic acids were formed. Very active in the
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formation of the chemically stable mercapturic acids are the kidneys
[13,48]. Mercapturic acids are excreted by the urine (Fig. 2).

The inhibition of different intracellular enzymes was studied by our
group and others, including the Na*K* ATPase, poly-ADP ribose
polymerase (PARP), Complex I of the respiratory chain, protein kinase
C (PKC), NADPH oxidase (NOX), and proteasome. Identified inhibition
values in the literature indicate a wide range of enzyme sensitivities
towards HNE (see also [18,49]). Interestingly, ADP ribosyl-transferase
(ADPRT), and NOX in leukocytes are very sensitive enzymes towards
HNE.

Usually inflammation is accompanied by the formation of HNE-
protein-adducts this includes also atherosclerotic lesions. Many of
these studies were performed by using various antibodies, however, for
the detection and identification of HNE-modified proteins the high
resolution MS-analyses need to be applied. Due to the low sensitivity of
these methods in order to identify minor protein modifications sample
enrichment procedures and new routines as neutral loss scanning
should be used [11].

4. The fate of HNE-modified proteins

In the course of metabolic diseases there is an increase in HNE-
modified proteins as we have described earlier. The question that then
rises is what is the fate of a HNE-modified protein? One of the possible
fates is degradation.

In spite of the possibility for cells to metabolize HNE when formed,
a HNE-covalent modification followed by rearrangement reactions in
proteins might be irreversible; therefore, in order to prevent the risk for
HNE-modified protein accumulation their degradation is required.
Cells employ the 20S proteasome to clear oxidized proteins, and since
HNE-modified proteins also display carbonylated added groups to
some of their amino acid residues such as Cys, Lys and His as described
above, it is expected them to be degraded by the 20S proteasome as
well (Fig. 3). However, there are isolated reports showing a role of the
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ubiquitination pathway for the degradation of HNE-modified proteins,
as shown for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
[50] without depicting whether this is targeting towards the 26S
proteasome or the autosomal/lysosomal degradation pathway.
Supporting this view, the HNE-modified proteins have been shown
to be degraded in vitro by the 20S proteasome, the known proteasomal
form for degrading oxidized proteins [18,51,52]. However, this pro-
teolytic susceptibility may vary depending on the concentration of HNE
used and the stage of HNE-protein modification. In fact, data obtained
from isolated histones and from Clone 9 liver cells showed that
depending on the HNE concentration used, proteolytic susceptibility
actually differed. For example, protein degradation was higher when
mild concentrations such as 1-10 uM were used in opposite to high
concentrations such as 100 uM where proteolysis was inhibited [34]. In
support of this: when equine ADH was subjected to HNE in 2 fold
molar excess proportion, degradation was more efficiently, around 1.5
fold faster than controls. However, when ADH was challenged with
higher concentrations up to 100-fold molar, its degradation was highly
impaired [53]. This diminishment in proteasomal activity might be
attributed to post-translational modifications of the system itself, as
has been shown that the proteasome is a target for HNE attack [29,54].
The 26S proteasome, mainly responsible for ubiquitinated protein
turnover, may also have its function impaired, driven by HNE binding.
A study using rats with ethanol on their diet, which presumably leads to
HNE formation through P450 cytochrome 2E1 (CYP2E1) metabolism,
showed from liver samples that adducts with 26S proteasome subunit
proteasome regulatory particle base subunit 4 (Rpt4) were formed
[32]. Decreased activity was proposed to be associated with the
blockage between 19S regulator and 20S proteasome due to the
adducts formed. Moreover, in agreement with these studies, a decline
in trypsin-like (but not chymotrypsin-like) activity of the proteasome in
HepG2 cells overexpressing CYP2E1 was related to increased levels of
HNE-modified proteins compared to control [33]. Another study
reported a different modification for a distinct subunit resulting in this
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HNE, covalently bound to —-NH,-groups
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Fig. 3. The fate of HNE-modified proteins. HNE-modification of proteins might occur via a one side reaction or at two sides, due to the bifunctionality of the HNE molecule. A two side
reaction might lead to intra- or intermolecular cross-links. While not cross-linked, modified proteins are readily degraded, cross-linked proteins accumulate and in turn inhibit the

proteasomal system.
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case, in proteasomal chymotrypsin-like activity impairment. An in-
hibitory effect of HNE in a specific catalytic site from the a6/C2 subunit
of the 20S proteasome in liver was reported [31].

Nevertheless, there is a very limited number of studies showing
different ways for HNE-modified proteins degradation. One study
employing epithelial lens cells showed that when delivered into cell
culture, HNE-modified crystallin was degraded at a faster rate than the
unmodified crystallin and that the inhibition of the lysosomal activity
stabilized HNE-modified crystallin, however, inhibition of the protea-
some activity alone had only slight effects on HNE-modified crystallin
stability [55], suggesting a role for lysosomal degradation or other
proteases for extracellular HNE-modified proteins.

Moreover, another mechanism for degrading HNE-modified pro-
teins was shown. A study using cochlear spiral ligament fibrocytes
showed a disrupted network attributed to the HNE-modification in the
proteins responsible for gap junction-mediated intercellular commu-
nication and these proteins were degraded by a calpain-degradation
dependent mechanism [56].

The different types of HNE-modified degradation might be tissue or
cell type dependent and further research is needed to clarify the HNE-
modified protein degradation. To our knowledge there is no further
mechanism described for their clearance, also no differentiation of the
degradation pathway depending on the site and nature of the protein-
HNE interaction is known.

Protein reaction with HNE is frequently related to the formation of
cross-linked material, including various fluorophores. A relevant
fluorophore has been identified as a lysine-derived dihydro-pyrrole
derivative [57]. So, it seems that another fate for HNE-modified
proteins might be the accumulation into cross-linked aggregates that
might play a role in cellular dysfunction such as the proteasomal
system inhibition. If this is the case, these HNE-driven aggregates
affect the normal functioning and metabolism of cells. It is known for
several years that oxidized, aggregated proteins are a poor substrate for
proteasomal degradation and that they can bind to proteasome
domains leading to entry clog and resulting in proteasome inhibition
[58-60]. Interestingly, HNE-modified protein aggregates also seem to
be detrimental to the proteasomal system, as it was shown that HNE-
crossed-linked amyloid  peptide, which is responsible for the forma-
tion of senile plaques in AD, can inhibit the proteasome [40]. Several
age-related neurological diseases exhibit the accumulation of protein
aggregates that impair the proteasomal system. One of the conse-
quences of decreased proteolysis is the impairment of transcription
factor turnover possible triggering the apoptotic pathway [61] and the
disruption in homeostasis [62]. This shows the importance of degrad-
ing on time the formed HNE-modified proteins.

Therefore, since HNE-modified proteins have been found in several
metabolic diseases, their utility as biomarkers has to be considered.
This will be explored in the following chapter.

5. HNE as a biomarker, HNE-modified proteins and their
pathological importance

The degradation of HNE is an important antioxidative defense
mechanism. It leads to the formation of non-toxic metabolites or less
toxic products, which are excreted. Although, as discussed above HNE-
modified proteins have a higher proteolytic susceptibility and are
subject to degradation, the extracellular compartment is less endowed
with proteases recognizing damaged, globular proteins and, therefore,
HNE-modified proteins might be relatively stable. So, HNE-modified
proteins can be used as biomarkers of oxidative stress, due to their
higher biological stability, compared to free HNE or even the oxidizing
radicals itself. Interestingly, HNE-modified proteins were detected in a
number of diseases, e.g. in rheumatological diseases and other diseases
of autoaggression [41]. A consistently growing evidence of increased
HNE levels in tissues and biological fluids from a great variety of
human diseases certainly suggests a pathogenic contribution by the
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aldehyde to their clinical expression and possible progression. It is fully
recognized that HNE may take part in cell signaling involved in
inflammatory reactions, which in fact represents the main driving
force on the progression of the large majority of human chronic
diseases [63]. Moreover, at least in terms of molecular pathology, no
doubt exists about a possible causative role of the n-6 poly-unsaturated
fatty acid (PUFA) peroxidation end-product HNE in cell death,
inflammation, fibrosis and atypical cell proliferation [63]. Thus, while
a conclusive definition of HNE role in human pathology is yet to be
fulfilled; it is a matter of fact that HNE levels are increased in a number
of diseases. Interestingly, HNE levels also show a tendency to increase
with age as shown in a relatively small human cohort [64].

In several diseases the role of lipid peroxidation and, therefore,
HNE has been demonstrated. In gastrointestinal diseases several lipid
peroxidation products have been determined. So, N (&)-(hexanoyl)
lysine (HEL) and HNE-modified proteins, which are recognized
biomarkers of lipid peroxidation, have been shown to in models of
gastrointestinal diseases [65]. The same authors also mentioned HNE-
modification of the transient receptor potential cation channel sub-
family V. member 1 (TRPV1) channel, HEL-modification of tropomyo-
sin 1 (TMP1), and HEL-modification of gastrokine 1. Furthermore, the
oxidative modification of LDL has been implicated in the pathogenesis
of atherosclerosis. Kumano-Kuramochi et al. found that HNE-modified
BSA potently inhibited the uptake of acetylated low density lipoprotein
(AcLDL) [66]. Furthermore, HNE-modified LDL is playing a direct role
in the pathological processes within the atherosclerotic lesion [67].

Barnham et al. and Jomova et al. described oxidative stress by
including the importance of aldehyde modified proteins in neurode-
generative diseases [68,69]. Today it is widely acknowledged that
changes in the redox status are involved in the pathogenesis of
neurodegenerative diseases, such as Alzheimer's (AD) or Parkinson's
disease (PD) [70-73].

Aldehydic products reacting with proteins might lead to the
formation of immunogenic biomolecules. So, the oxidation of proteins
or their lipid-peroxidation product mediated modification products
might be one of autoantibody formation in chronic inflammatory
diseases. Additionally, oxidatively modified LDLs also play a role in
systemic lupus erythematosus (SLE) [74].

The findings by Toyoda et al., provide evidence to suspect an
etiologic role of lipid peroxidation in autoimmune diseases [75].
Accumulation of modified proteins has been found by these authors
in cells during aging and oxidative stress and in various pathological
states, including premature diseases, muscular dystrophy, rheumatoid
arthritis, and atherosclerosis. HNE-modified proteins and anti-DNA
autoantibodies were demonstrated to be a serologic hallmark of SLE.
Besides autoantibodies also HNE-modified immunoglobulins might be
used as an indicator for oxidative stress in SLE [41]. Interestingly, in
this study a correlation between the presence of HNE-modified
immunoglobulin G with the acute stage of the disease was found. The
potential use of HNE-modified proteins as biomarkers for some
diseases is summarized in Table 1.

Table 1
HNE-modified proteins as potential biomarkers for several diseases.

Disease References
Insulin resistant obesity [8]
Rheumatological diseases [41]
Neurodegenerative diseases (generally) [68,69]

AD and PD (specifically) [70-73]
SLE [74]
Atherosclerosis [76]
Gastrointestinal diseases [65]
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6. Conclusion

This review briefly summarizes the multiple effects of HNE on the

cellular protein pool. It is obvious that the high reactivity of the
aldehydic metabolite results in multiple effects on different proteins,
changing their function and stability. High levels or formation rates of
HNE might be, therefore, influencing cellular function and behavior.
The formation of cross-linked HNE-protein adducts might significantly
influence the cellular senescence process and, therefore, contribute to
organismal aging. Nevertheless, the detection of HNE-protein adducts

are

opening a new variety of biomarkers significantly easier to

determine and more stable compared to free HNE or even the oxidants
itself.

Therefore, it is important to develop new tools and apply modern

technologies in the investigation of HNE-modified proteins in order to
reveal their functional impact on cell metabolism and to be used as
biomarkers.
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