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0. Introduction

Simple rings, like fields, are literally ‘simple’ in many ways. Hence quite a few
invariants of rings become trivial for simple rings. We show that this principle
applies to the derived Picard group, which classifies dualizing complexes over
a ring.

In this paper all rings are algebras over a base fieldk, ring homomorphisms
are all overk, and bimodules are allk-central. The symbol⊗ denotes⊗k . For
a ringB, B◦ denotes the opposite ring.

We shall writeModA for the category of leftA-modules, andDb(ModA) will
stand for the bounded derived category. A brief review of key definitions such as
dualizing complexes, two-sided tilting complexes and the derived Picard group
DPic(A) is included in the body of the paper.

Theorem 0.1. LetA andB be rings and letT ∈ Db(Mod(A⊗B◦)) be a two-sided
tilting complex. Suppose eitherA or B is a Goldie simple ring.
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(1) T ∼= P [n] for some integern and some invertibleA–B-bimodule P .
ThereforeA andB are Morita equivalent, and in particular both are Goldie
simple rings.

(2) The structure of the derived Picard group ofA is DPic(A) = Z × Pic(A).

An algebra is calledGorensteinif it has finite left and right injective dimension.

Theorem 0.2. LetA be a left noetherian ring and letB be a right noetherian ring.
Let R be a dualizing complex over(A,B). Assume either of the two conditions
below hold.

(i) A andB are both Goldie simple rings.
(ii) EitherA or B is a Goldie simple ring, and eitherA or B is noetherian and

admits some dualizing complex.

ThenR ∼= P [n] for some integern and some invertibleA–B-bimoduleP , the
ringsA andB are Morita equivalent, and both are noetherian Gorenstein simple
rings.

One motivating question is to classify all dualizing and tilting complexes
over the Weyl algebras. When the base field has characteristic zero, this
question is answered by Theorems 0.1 and 0.2. When the base field has positive
characteristic, the same answer is given in Section 5.

Theorem 0.2 also has a surprising consequence.

Corollary 0.3. LetA be a filtered ring such that the associated graded ringgrA is
connected graded and noetherian. Suppose either one of the following conditions
holds:

(i) grA is commutative.
(ii) gr A is PI.
(iii) gr A is FBN.
(iv) grA has enough normal elements in the sense of[1, p. 36].
(v) grA is a factor ring of a graded AS-Gorenstein ring.

If A is simple, thenA is Gorenstein. In cases(i)–(iv), A is also Auslander–
Gorenstein and Cohen–Macaulay.

For example, every simple factor ringA of the enveloping algebraU(L)

of a finite dimensional Lie algebraL is Auslander–Gorenstein and Cohen–
Macaulay. This is also true for simple factor rings of many quantum algebras
listed in [2].
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In Section 1 we review some basic facts about bimodules over simple rings.
Theorem 0.1 is proved at the end of Section 2. Theorem 0.2 is proved in Section 3,
and Corollary 0.3 is proved in Section 4. In Section 5 we prove statements
analogous to Theorems 0.1 and 0.2 whenA is a Weyl algebra over a base field
k of positive characteristic. In Section 6 we discuss an example of Goodearl and
Warfield which shows that not every noetherian simple ring is Gorenstein.

1. Preliminaries

Let A be a ring (i.e., ak-algebra). By anA-module we mean a leftA-module.
With this convention anA◦-module means a rightA-module. A finitely generated
A-module is calledfinite.

Our reference for derived categories is [3]. As for derived categories and
derived functors of bimodules, such as R Hom and⊗L , the reader is referred to
[4,5].

The following elementary facts will be used later.

Lemma 1.1. Let A be a ring and letB be a(left and right) Goldie simple ring.
LetM be a nonzeroA–B-bimodule finite on both sides. Then:

(1) M is a generator ofModB◦.
(2) If the canonical homomorphismA → EndB◦(M) is bijective, thenM is

projective asA-module.
(3) Suppose thatA is also a Goldie simple ring, and that bothA → EndB◦(M)

andB◦ → EndA(M) are bijective. ThenM is an invertible bimodule.

Proof. (1) SupposeM = ∑p

i=1A · mi and letNi := AnnB◦(mi). Then

AnnB◦ M =
p⋂

i=1

Ni.

SinceB is a simple ring andM �= 0 we must have AnnB◦ M = 0. Hence for some
i the right idealNi ⊂ B is not essential. This implies the elementmi is not torsion,
and so theB◦-moduleM is not torsion.

At this point we can forget theA-module structure onM. So let M be
a finite B◦-module that is not torsion. We will show that HomB◦(M,B) �= 0.
ReplacingM by a quotient of it we may assumeM is a finite uniform torsion-
freeB◦-module. In this case we have injectionsM → M ⊗B Q → Q whereQ is
the total ring of fractions ofB.

Without loss of generality we can assumeM is a finiteB◦-submodule ofQ.
ThusM = ∑q

i=1 s
−1
i xi ·B◦ for certainsi , xi ∈ B with si regular elements. Passing

to a left common denominator we haves−1
i xi = s−1yi for suitables, yi ∈ B.

Therefore left multiplication bys is a nonzeroB◦-linear mapλs :M → B.
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Finally we reduce to the case of a finiteB◦-moduleM such that HomB◦(M,B)

�= 0. Let I ⊂ B be the union of the images of allB◦-linear homomorphisms
M → B. This is a nonzero two-sided ideal, and henceI = B. So there
are some homomorphismsφi :M → B such that 1∈ ∑r

i=1φi(M) ⊂ B. Thus∑
φi :Mr → B is surjective, proving thatM is a generator ofModB◦.
(2) SinceM is a generator ofModB◦ and A → EndB◦(M) is bijective,

a theorem of Morita [6] (see [7, 17.8]) says thatM is a finite projectiveA-module.
(3) By parts (1) and (2), theA-moduleM is also a finite projective generator.

By Morita’s theorem the bimoduleM is invertible. ✷
Lemma 1.2. Let M be a bounded complex ofB◦-modules with nonzero
cohomology such thatExtiB◦(M,M) = 0 for all i < 0. Let i0 := min{i |
HiM �= 0} and j0 := max{j | HjM �= 0}. If i0 �= j0 (i.e., i0 < j0), then
HomB◦(Hj0M,Hi0M) = 0.

Proof. This is true because a nonzero morphism from Hj0M to Hi0M gives rise
to a nonzero element in Exti0−j0

B◦ (M,M). ✷
Lemma 1.3. Let M be a bounded complex ofA–B-bimodules with nonzero
cohomology. Suppose the following conditions hold:

(i) B is Goldie and simple.
(ii) ExtiB◦(M,M) = 0 for all i �= 0.
(iii) H j0M is finite on both sides, wherej0 is as in Lemma1.2.

ThenM ∼= (Hj0M)[−j0] in D(Mod(A⊗B◦)).

Proof. By Lemma 1.1(1), Hj0M is a generator ofModB◦. Let i0 be as in
Lemma 1.2. Ifi0 < j0 then the conclusion of Lemma 1.2 contradicts the fact that
Hj0M is a generator ofModB◦. Thereforei0 = j0 and the assertion follows.✷

2. Two-sided tilting complexes

The following definition is due to Rickard [8,9] and Keller [10]. Recall that
“ring” means “k-algebra”.

Definition 2.1. LetA andB be rings and letT ∈ Db(Mod(A⊗B◦)) be a complex.
We sayT is a two-sided tilting complexover (A,B) if there exists a complex
T ∨ ∈ Db(Mod(B ⊗ A◦)) such thatT ⊗L

B T ∨ ∼= A in D(Mod(A ⊗ A◦)) and
T ∨ ⊗L

A T ∼= B in D(Mod(B ⊗B◦)).



560 A. Yekutieli, J.J. Zhang / Journal of Algebra 256 (2002) 556–567

The complexT , when considered as a complex of leftA-modules, is perfect,
and the setaddT ⊂ Db(ModA), namely the direct summands of finite direct sums
of T , generates the categoryDb(ModA)perf of perfect complexes. The formula
for T ∨ is T ∨ ∼= R HomA(T ,A). The canonical morphismB �→ R HomA(T ,T )

in D(Mod(B ⊗ B◦)) is an isomorphism. The functorM �→ T ⊗L
B M is an

equivalenceD(ModB) → D(ModA) preserving boundedness. By symmetry there
are three more variations of all these assertions (e.g.,T ∨ is a perfect complex of
A◦-modules). See [5] for proofs.

The next definition is due to the first author [5]. WhenB = A we write
Ae := A⊗A◦.

Definition 2.2. Let A be ring. Thederived Picard groupof A is defined to be

DPic(A) := {two-sided tilting complexesT ∈ Db(ModAe)}
isomorphism

,

with operation(T ,S) �→ T ⊗L
A S.

Clearly the definition of the group DPic(A) is relative to the base fieldk. For
instance, ifA = K is a field extension ofk then DPic(K) = Z×Gal(K/k), where
Gal(K/k) is the Galois group (cf. [5, 3.4]).

The derived Picard group was computed in various cases, see [5,11]. As shown
in [5], the derived Picard group classifies the isomorphism classes of dualizing
complexes (cf. next section).

There are some obvious tilting complexes. IfP is an invertibleA-bimodule
andn is an integer, thenT := P [n] is a two-sided tilting complex. Recall that the
(noncommutative) Picard group Pic(A) of A is the group of isomorphism classes
of invertible bimodules. It follows that DPic(A) contains a subgroupZ × Pic(A).

Proof of Theorem 0.1. (1) Assume thatB is simple and Goldie. Let

j0 := max
{
i | Hi (T ) �= 0

}
.

Without loss of generality we may assume thatj0 = 0 (after a complex shift). As
in [5, 1.1], H0(T ) is finite on both sides. By Lemma 1.3 it follows thatT ∼= P

whereP := H0(T ).
SinceP is a two-sided tilting complex we have

EndB◦(P ) ∼= H0R HomB◦(T ,T ) ∼= A.

By Lemma 1.1(2),P is a projectiveA-module. According to [5, 2.2],P is an
invertible A–B-bimodule. The functorM �→ P ⊗B M is then an equivalence
ModB → ModA.

(2) TakeA = B. By part (1) every tilting complex is isomorphic toP [n]. The
assertion follows. ✷
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3. Dualizing complexes

The definition of a dualizing complex over a noncommutative graded ring is
due to the first author [4]. The following more general definition appeared in [1].

Definition 3.1. AssumeA is a left noetherian ring andB is a right noetherian ring.
A complexR ∈ Db(Mod(A⊗B◦)) is called adualizing complex over(A,B) if it
satisfies the following conditions:

(i) R has finite injective dimension overA and overB◦.
(ii) R has finite cohomology modules overA and overB◦.
(iii) The canonical morphismsB → R HomA(R,R) in D(Mod(B ⊗ B◦)) and

A → R HomB◦(R,R) in D(Mod(A⊗A◦)) are both isomorphisms.

If moreoverA = B, we sayR is adualizing complex overA.

Whenever we sayR is a dualizing complex over(A,B) we are tacitly
assuming thatA is left noetherian andB is right noetherian.

Recall that an algebraA is Gorenstein if it has finite left and right injective
dimension. Hence a noetherian ringA is Gorenstein if and only if the bimodule
R := A is a dualizing complex. Existence of dualizing complexes for non-
Gorenstein rings is studied in [1,12].

If A is noetherian and has at least one dualizing complex then the derived
Picard group DPic(A) classifies the isomorphism classes of dualizing complexes.
Indeed, given a dualizing complexR, any other dualizing complexR′ is
isomorphic toR ⊗L

A T for some two-sided tilting complexT , andT is unique
up to isomorphism.

Proof of Theorem 0.2. By Lemma 1.3,R ∼= P [n] for some bimoduleP and
some integern.

Since R is dualizing the canonical homomorphismsA → EndB◦(P ) and
B◦ → EndA(P ) are isomorphisms. When bothA andB are Goldie and simple
(condition (i)), Lemma 1.1(3) implies thatP is invertible.

Now assumeA is noetherian, and it has some dualizing complexR1
(condition (ii)). Then by the proof of [5, 4.5]—suitably modified to fit our
situation—the complexT := R HomA(R1,R) ∈ Db(Mod(A⊗B◦)) is a two-sided
tilting complex. Since eitherA or B is a Goldie simple ring, it follows from
Theorem 0.1 that bothA andB are Goldie simple rings. As above we deduce
thatP is an invertible bimodule.

Under both conditions the ringsA andB are Morita equivalent. Since the
bimoduleP is a dualizing complex over(A,B), it has finite injective dimension
on both sides. But on the other hand,P is a progenerator on both sides; henceA

has finite injective dimension on the left andB has finite injective dimension on
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the right. By Morita equivalence, bothA andB are (two-sided) noetherian and
have finite left and right injective dimensions.✷
Remark 3.2. One can define dualizing complexes in a slightly more general
situation, by replacing the noetherian condition with the weaker coherence
condition (see [4, 3.3]). Thus in Definition 3.1A is a left coherent ring,B is a right
coherent ring, and in condition (ii) the word ‘finite’ is replaced with ‘coherent’. It
is not hard to check that a “coherent” version of Theorem 0.2 holds.

Example 3.3. Let A be lim−→An whereAn is thenth Weyl algebra with its natural

embedding inAn+1. Using the method of faithful flatness (see [13, Section 7.2]
and [14]) we see thatA has the following properties:

(i) A is neither left nor right noetherian.
(ii) A has infinite Krull, Gelfand–Kirillov, injective, and global dimensions.
(iii) A is a Goldie domain (i.e., a left and right Ore domain).
(iv) A is a coherent ring.

Suppose now chark = 0. ThenA is a simple ring. Therefore Theorem 0.1
holds. For instance, the derived Picard group ofA is Z × Pic(A). By the
“coherent” version of Theorem 0.2 (see Remark 3.2)A does not admit a dualizing
complex, becauseA is not Gorenstein.

Examples of noetherian simple rings with infinite Krull dimension were given
by Shamsuddin [15] and Goodearl–Warfield [16]. It is not hard to show that these
simple rings also have infinite injective dimension (see Section 6).

4. The Auslander condition

Let R be a dualizing complex over(A,B) and letM be anA-module. The
gradeof M with respect toR is defined to be

jR(M) = min
{
q

∣∣ ExtqA(M,R) �= 0
}
.

The grade of aB◦-module is defined similarly.
We recall the definitions of the Auslander condition and the Cohen–Macaulay

condition. Gelfand–Kirillov dimension is denoted by GKdim.

Definition 4.1. Let R be a dualizing complex over(A,B).

(1) R is calledAuslanderif the two conditions below hold.
(i) For every finiteA-moduleM, everyq , and everyB◦-submoduleN ⊂

ExtqA(M,R) one hasjR(N) � q .



A. Yekutieli, J.J. Zhang / Journal of Algebra 256 (2002) 556–567 563

(ii) The same holds after exchangingA andB◦.
(2) If there is a constants such that

jR(M)+ GKdimM = s

for all finite A-modules or finiteB◦-modulesM, thenR is calledCohen–
Macaulay.

Thecanonical dimensionwith respect to an Auslander dualizing complexR is
defined to be

CdimR M = −jR(M)

for all finite A-modules orB◦-modulesM. By [1, 2.10], CdimR is a finitely
partitive, exact dimension function. See [13, 6.8.4] for the definition of dimension
function.

When A is a Gorenstein ring and the bimoduleR := A is an Auslander
dualizing complex thenA is called anAuslander–Gorensteinring. If A is
an Auslander–Gorenstein ring such thatR := A is also Cohen–Macaulay,
then A is called anAuslander–Gorenstein Cohen–Macaulay ring. This is the
usage in [17,18]. We remind the critical reader that unlike commutative rings,
a noncommutative Gorenstein ring need not be either Auslander or Cohen–
Macaulay.

The following is easy.

Lemma 4.2. Let A, B, C be rings. LetL,M,N be bounded complexes over
B◦,A,A⊗B◦ respectively, and letP be a invertibleB–C-bimodule.

(1) For everyi there is an isomorphism ofA-modules

ExtiB◦(L,N) ∼= ExtiC◦(L⊗B P,N ⊗B P).

(2) SupposeA is left noetherian andHjM is finite overA for all j . Then, for
everyi there is an isomorphism ofC◦-modules

ExtiA(M,N ⊗B P) ∼= ExtiA(M,N) ⊗B P.

Proof. (1) This follows from the fact that− ⊗B P induces a Morita equivalence.
(2) This is obvious whenM = A[i]. Then the assertion follows from the facts

thatM has a bounded above resolution by finite freeA-modules andP is a flat
B◦-module. ✷
Proposition 4.3. Let A, B, C be rings. LetP be an invertibleB–C-bimodule
andn an integer. SupposeR is a dualizing complex over(A,B), and letR1 =
R ⊗B P [n], which is a dualizing complex over(A,C). ThenR is Auslander
(respectively Cohen–Macaulay) if and only ifR1 is.
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Proof. Without loss of generality we may assumen = 0.
Let us assumeR1 is Auslander; we will prove thatR is also Auslander. Given

a finiteA-moduleM and an integeri, let N be aB◦-submodule of ExtiA(M,R).
ThenN ⊗B P is aC◦-submodule of

ExtiA(M,R)⊗B P ∼= ExtiA(M,R ⊗B P) = ExtiA(M,R1).

By the Auslander condition forR1, we have ExtjC◦(N ⊗B P,R1) = 0 for all j < i.

Hence ExtjB◦(N,R) = 0 by Lemma 4.2(1). This is the Auslander condition forR.
The converse follows from the factR = R1 ⊗C P∨.

The argument above also shows that

CdimR(M) = CdimR1(M) and CdimR(N) = CdimR1(N ⊗B P)

for all finite A-modulesM and finiteB◦-modulesN . Since GKdim is preserved
by Morita equivalence,R is Cohen–Macaulay if and only ifR1 is. ✷
Proof of Corollary 0.3. By [1], A has a dualizing complexR in all cases.
Furthermore in cases (i)–(iv),R is Auslander and Cohen–Macaulay. By Theo-
rem 0.2,R ∼= P [n] for some invertibleA-bimoduleP and some integern, and
A is a Gorenstein ring. In cases (i)–(iv) the Auslander–Gorenstein and Cohen–
Macaulay properties ofA follow from Proposition 4.3. ✷

5. Weyl algebras in positive characteristics

In this section we study dualizing complexes and two-sided tilting complexes
over the Weyl algebrasAn when chark > 0.

Proposition 5.1. LetB be an Azumaya algebra over its centerZ(B), and suppose
SpecZ(B) is connected. LetA be another ring andT ∈ D(Mod(A⊗B◦)) a two-
sided tilting complex. ThenT ∼= P [n] for some integern and some invertible
A–B-bimoduleP .

Proof. Use the proof of [5, 2.7], noting that for a prime idealp ⊂ Z(B), the
localizationB ⊗Z(B) Z(B)p is a local ring. ✷

The following lemma takes care of dualizing complexes.

Lemma 5.2. LetA be a left noetherian ring andB a right noetherian ring.

(1) If A has finite injective dimension as left module, andB has finite injective
dimension as right module, then every two-sided tilting complexT over
(A,B) is also a dualizing complex over(A,B).
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(2) If A or B is noetherian and Gorenstein, then every dualizing complex over
(A,B) is also a two-sided tilting complex.

Proof. (1) By [5, 1.6 and 1.7] the cohomologies ofT are finite modules on
both sides and the morphismsB → R HomA(T ,T ) andA → R HomB◦(T ,T )

are isomorphisms. SinceT has finite projective dimension overA and the left
moduleA has finite injective dimension it follows thatT also has finite injective
dimension overA. Likewise on the right.

(2) If A is a noetherian Gorenstein ring then the bimoduleA is a dualizing
complex overA. Let R be any dualizing complex over(A,B). As mentioned
earlier, the proof of [5, 4.5]—suitably modified to fit our situation—shows that
the complex R HomA(A,R) is a two-sided tilting complex over(A,B). But
R ∼= R HomA(A,R). ✷
Proposition 5.3. Let B be an Azumaya algebra over its centerZ(B). Suppose
Z(B) is a noetherian Gorenstein ring andSpecZ(B) is connected. LetA be a left
noetherian ring andR a dualizing complex over(A,B). ThenR ∼= P [n] for some
integern and some invertibleA–B-bimoduleP .

Proof. First we show thatB is also Gorenstein. Letd be the injective dimension
of C := Z(B). For any prime idealp of C the local ringCp is Gorenstein, of
injective dimension� d , and hence also the completion̂Cp. Now the completion
B̂p := B ⊗C Ĉp is isomorphic to a matrix ring Mr (Ĉp); so by Morita equivalence
B̂p is Gorenstein. Faithful flatness (going over all primesp) shows the vanishing
of ExtiB(M,B) and ExtiB◦(N,B) for all finite modulesM andN and alli > d ; so
we deduce thatB is Gorenstein.

Now we may use Proposition 5.1 and Lemma 5.2(2).✷
Corollary 5.4. LetB be thenth Weyl algebra overk, with chark > 0. LetA be any
left noetheriank-algebra, and letR be any dualizing complex, or any two-sided
tilting complex, over(A,B). ThenR ∼= P [n] for some invertibleA–B-bimodule
P and integern.

Proof. By a result of Revoy [19], the Weyl algebraB is Azumaya with center
a polynomial algebra overk. Now use the Propositions 5.1 and 5.3.✷

6. Goodearl–Warfield’s example

We use an example of Goodearl–Warfield [16, 4.6] to show that not every
noetherian simple ring has finite injective dimension. This can also be done for
the example of Shamsuddin [15].
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Example 6.1. Let R[θ; δ] be the noetherian simple domain of infinite Krull
dimension constructed in [16, 4.6]. In this example the base fieldk is an infinite
extension ofQ. The ringR is a noetherian regular commutativek-algebra of
infinite Krull dimension obtained by localizing a polynomial ring of countably
many variables, which is essentially the example of Nagata [20, Example 1,
p. 203].

Let d be any positive integer. By the construction ofR, there is a prime ideal
p ⊂ R such that the height ofp is at leastd . ThenRp has finite global dimension
� d . HenceRp[θ; δ] has finite global dimension� d and has finite injective
dimension� d over itself. SinceRp[θ; δ] is a localization ofR[θ; δ] [16, 1.1],
the injective dimension ofR[θ; δ] is at leastd . Sinced is arbitrarily chosen, the
injective dimension ofR[θ; δ] is infinite.

By Theorem 0.2 there is no dualizing complex overR[θ; δ].

We conclude this paper by the following question.

Question 6.2. Does every noetherian finitely generated simple ring of finite Krull
(or Gelfand–Kirillov) dimension have finite left and right injective dimension?
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