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0. Introduction

Simple rings, like fields, are literally ‘simple’ in many ways. Hence quite a few
invariants of rings become ftrivial for simple rings. We show that this principle
applies to the derived Picard group, which classifies dualizing complexes over
aring.

In this paper all rings are algebras over a base fieldng homomorphisms
are all overk, and bimodules are all-central. The symbo® denotes®y. For
aring B, B° denotes the opposite ring.

We shall writeMod A for the category of leftd-modules, andP(Mod A) will
stand for the bounded derived category. A brief review of key definitions such as
dualizing complexes, two-sided tilting complexes and the derived Picard group
DPic(A) is included in the body of the paper.

Theorem 0.1. Let A and B be rings and lef” € D°(Mod(A ® B®)) be a two-sided
tilting complex. Suppose eithdror B is a Goldie simple ring.

E-mail addressesamyekut@math.bgu.ac.il (A. Yekutieli), zhang@math.washington.edu
(J.J. Zhang).

0021-8693/02/$ — see front mattér 2002 Elsevier Science (USA). All rights reserved.
Pll: S0021-8693(02)00005-4


https://core.ac.uk/display/81978723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Yekutieli, J.J. Zhang / Journal of Algebra 256 (2002) 556-567 557

(1) T = P[n] for some integern and some invertibleA—B-bimodule P.
ThereforeA and B are Morita equivalent, and in particular both are Goldie
simple rings.

(2) The structure of the derived Picard group 4fis DPic(A) = Z x Pic(A).

An algebrais calle@Gorensteirif it has finite left and right injective dimension.

Theorem 0.2. Let A be a left noetherian ring and I&& be a right noetherian ring.
Let R be a dualizing complex ovérA, B). Assume either of the two conditions
below hold.

(i) A and B are both Goldie simple rings.
(i) Either A or B is a Goldie simple ring, and eithet or B is noetherian and
admits some dualizing complex.

ThenR = P[n] for some integen and some invertibleA—B-bimodule P, the
rings A and B are Morita equivalent, and both are noetherian Gorenstein simple
rings.

One motivating question is to classify all dualizing and tilting complexes
over the Weyl algebras. When the base field has characteristic zero, this
guestion is answered by Theorems 0.1 and 0.2. When the base field has positive
characteristic, the same answer is given in Section 5.

Theorem 0.2 also has a surprising consequence.

Corollary 0.3. Let A be afiltered ring such that the associated graded gdng is
connected graded and noetherian. Suppose either one of the following conditions
holds

() grA is commutative.
(i) grAisPl.
(iii) gr A is FBN.
(iv) gr A has enough normal elements in the sensplpp. 36]
(v) grA is afactor ring of a graded AS-Gorenstein ring.

If A is simple, thenA is Gorenstein. In casef)—(iv), A is also Auslander—
Gorenstein and Cohen—Macaulay.

For example, every simple factor ring of the enveloping algebrd&/ (L)
of a finite dimensional Lie algebrd is Auslander—Gorenstein and Cohen—
Macaulay. This is also true for simple factor rings of many quantum algebras
listed in [2].
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In Section 1 we review some basic facts about bimodules over simple rings.
Theorem 0.1 is proved at the end of Section 2. Theorem 0.2 is proved in Section 3,
and Corollary 0.3 is proved in Section 4. In Section 5 we prove statements
analogous to Theorems 0.1 and 0.2 wheis a Weyl algebra over a base field
k of positive characteristic. In Section 6 we discuss an example of Goodearl and
Warfield which shows that not every noetherian simple ring is Gorenstein.

1. Preliminaries

Let A be aring (i.e., &-algebra). By am-module we mean a lefAi-module.

With this convention am °-module means a right-module. A finitely generated
A-module is calledinite.

Our reference for derived categories is [3]. As for derived categories and
derived functors of bimodules, such as RHom @®ld the reader is referred to
[4,5].

The following elementary facts will be used later.

Lemma 1.1. Let A be a ring and letB be a(left and righ) Goldie simple ring.
Let M be a nonzerA—B-bimodule finite on both sides. Then

(1) M is a generator oMod B°.

(2) If the canonical homomorphis — Endg-(M) is bijective, thenM is
projective asA-module.

(3) Suppose thaA is also a Goldie simple ring, and that both— Endg. (M)
and B° — End4 (M) are bijective. TherM is an invertible bimodule.

Proof. (1) Suppose/ =Y, A-m; and letN; := Anng-(m;). Then

p
Annge M = "] Ni.
i=1
SinceB is a simple ring and/ # 0 we must have Angr M = 0. Hence for some
i therightidealv; C B is not essential. This implies the elementis not torsion,
and so theB°-moduleM is not torsion.

At this point we can forget thed-module structure onV. So let M be
a finite B°-module that is not torsion. We will show that Hgn{M, B) # 0.
ReplacingM by a quotient of it we may assunmé is a finite uniform torsion-
free B°-module. In this case we have injectiols— M ®p O — Q whereQ is
the total ring of fractions oB3.

Without loss of generality we can assumgis a finite B°-submodule ofQ.
ThusM = Z?zlslflx,» - B° for certains;, x; € B with s; regular elements. Passing
to a left common denominator we havlélxi = s~ 1y, for suitables, y; € B.
Therefore left multiplication by is a nonzeras°-linear mapx; : M — B.
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Finally we reduce to the case of a finB&-moduleM such that Horg- (M, B)
# 0. Let I C B be the union of the images of alt°-linear homomorphisms
M — B. This is a nonzero two-sided ideal, and hente= B. So there
are some homomorphismgs : M — B such that 1 > /_; ¢;(M) C B. Thus
> ¢i:M" — B is surjective, proving tha¥ is a generator oflod B°.

(2) Since M is a generator oMod B° and A — Endg-(M) is bijective,
a theorem of Morita [6] (see [7, 17.8]) says thidtis a finite projectiveA-module.

(3) By parts (1) and (2), thda-moduleM is also a finite projective generator.
By Morita’s theorem the bimodul®/ is invertible. O

Lemma 1.2. Let M be a bounded complex aB°-modules with nonzero
cohomology such thaExt‘éo(M, M) =0 for all i < 0. Let ip := min{i |
H'M # 0} and jo :=maxX,j | H/M # 0}. If ig # jo (i.e., ip < jo), then
Homg. (H/o M, HoM) = 0.

Proof. This is true because a nonzero morphism froffl to HoM gives rise
to a nonzero elementin EX’°(M, M). O

Lemma 1.3. Let M be a bounded complex of—B-bimodules with nonzero
cohomology. Suppose the following conditions hold

() Bis Goldie and simple.
(i) Exty.(M,M)=0foralli #0.
(iif) H/oM is finite on both sides, wherg is as in Lemmd..2

ThenM = (H/oM)[— jo] in D(Mod(A ® B®)).

Proof. By Lemma 1.1(1), ¥ M is a generator oMod B°. Let ip be as in
Le_mma 1.2. Ifig < jo then the conclusion of Lemma 1.2 contradicts the fact that
H/0M is a generator oflod B°. Thereforeg = jp and the assertion follows.O

2. Two-sided tilting complexes

The following definition is due to Rickard [8,9] and Keller [10]. Recall that
“ring” means ‘k-algebra”.

Definition 2.1. Let A andB be rings and leT’ € D°(Mod(A ® B°)) be a complex.
We sayT is atwo-sided tilting complexver (A, B) if there exists a complex
TV € D’(Mod(B ® A°)) such thatT ®'§ TV = A in D(Mod(A ® A°)) and
TV ®Y4 T = B in D(Mod(B ® B°)).
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The complexT’, when considered as a complex of ldftmodules, is perfect,
and the seadd T c DP(Mod A), namely the direct summands of finite direct sums
of T, generates the categob(Mod A)perf Of perfect complexes. The formula
for TV is TY = RHomy (T, A). The canonical morphism® — RHomy (T, T)
in D(Mod(B ® B°)) is an isomorphism. The functodf — T ®'§ M is an
equivalenc®(Mod B) — D(Mod A) preserving boundedness. By symmetry there
are three more variations of all these assertions (€.4is a perfect complex of
A°-modules). See [5] for proofs.

The next definition is due to the first author [5]. Whéh= A we write
A®:=A® A°.

Definition 2.2. Let A be ring. Thederived Picard groumf A is defined to be

{two-sided tilting complexe¥ DP(Mod A®)}

DPic(A) :=
Io(4) isomorphism

bl

with operation(7, §) — T ®Y S.

Clearly the definition of the group DRig) is relative to the base field. For
instance, ifA = K is a field extension of then DPi¢K) = Z x Gal(K / k), where
Gal(K / k) is the Galois group (cf. [5, 3.4]).

The derived Picard group was computed in various cases, see [5,11]. As shown
in [5], the derived Picard group classifies the isomorphism classes of dualizing
complexes (cf. next section).

There are some obvious tilting complexes Afis an invertibleA-bimodule
andn is an integer, thef := P[n] is a two-sided tilting complex. Recall that the
(noncommutative) Picard group Rit) of A is the group of isomorphism classes
of invertible bimodules. It follows that DP{d) contains a subgroup x Pic(A).

Proof of Theorem 0.1. (1) Assume thaB is simple and Goldie. Let
jo:=max{i | H'(T) #0}.

Without loss of generality we may assume tliat O (after a complex shift). As
in [5, 1.1], H(T) is finite on both sides. By Lemma 1.3 it follows thAt= P
whereP := HO(T).

SinceP is a two-sided tilting complex we have

Endg- (P) = H'R Homg- (T, T) = A.

By Lemma 1.1(2),P is a projectiveA-module. According to [5, 2.2]P is an
invertible A—B-bimodule. The functoM — P ®p M is then an equivalence
Mod B — Mod A.

(2) TakeA = B. By part (1) every tilting complex is isomorphic ®[n]. The
assertion follows. O
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3. Dualizing complexes

The definition of a dualizing complex over a noncommutative graded ring is
due to the first author [4]. The following more general definition appeared in [1].

Definition 3.1. AssumeA is a left noetherian ring an8l is a right noetherian ring.
A complexR € DP(Mod(A ® B°)) is called adualizing complex ovefA, B) if it
satisfies the following conditions:

(i) R has finite injective dimension over and overB°.
(ii) R has finite cohomology modules ovérand overB®.
(iii) The canonical morphism® — RHomy (R, R) in D(Mod(B ® B°)) and
A — RHomg-(R, R) in D(Mod(A ® A°)) are both isomorphisms.

If moreoverA = B, we sayR is adualizing complex oveA.

Whenever we sayR is a dualizing complex ovefA, B) we are tacitly
assuming thad is left noetherian an@® is right noetherian.

Recall that an algebrd is Gorenstein if it has finite left and right injective
dimension. Hence a noetherian ridgis Gorenstein if and only if the bimodule
R := A is a dualizing complex. Existence of dualizing complexes for non-
Gorenstein rings is studied in [1,12].

If A is noetherian and has at least one dualizing complex then the derived
Picard group DPicA) classifies the isomorphism classes of dualizing complexes.
Indeed, given a dualizing compleR, any other dualizing complext’ is
isomorphic toR ®';‘ T for some two-sided tilting compleX, and T is unique
up to isomorphism.

Proof of Theorem 0.2. By Lemma 1.3,R = P[n] for some bimoduleP and
some integen.

Since R is dualizing the canonical homomorphisms— Endg. (P) and
B° — Endy (P) are isomorphisms. When both and B are Goldie and simple
(condition (i)), Lemma 1.1(3) implies that is invertible.

Now assumeA is noetherian, and it has some dualizing complex
(condition (ii)). Then by the proof of [5, 4.5]—suitably modified to fit our
situation—the complef := RHomy (R1, R) € DP(Mod(A ® B°)) is a two-sided
tilting complex. Since eithed or B is a Goldie simple ring, it follows from
Theorem 0.1 that botlh and B are Goldie simple rings. As above we deduce
that P is an invertible bimodule.

Under both conditions the ringd and B are Morita equivalent. Since the
bimoduleP is a dualizing complex ovetA, B), it has finite injective dimension
on both sides. But on the other haritljs a progenerator on both sides; herce
has finite injective dimension on the left addhas finite injective dimension on
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the right. By Morita equivalence, both and B are (two-sided) noetherian and
have finite left and right injective dimensionsC

Remark 3.2. One can define dualizing complexes in a slightly more general
situation, by replacing the noetherian condition with the weaker coherence
condition (see [4, 3.3]). Thus in Definition 3A4lis a left coherentringB is a right
coherent ring, and in condition (ii) the word ‘finite’ is replaced with ‘coherent’. It

is not hard to check that a “coherent” version of Theorem 0.2 holds.

Example 3.3. Let A be limA,, whereA,, is thenth Weyl algebra with its natural
—

embedding in4,1. Using the method of faithful flatness (see [13, Section 7.2]
and [14]) we see that has the following properties:

(i) A is neither left nor right noetherian.

(i) A has infinite Krull, Gelfand—Kirillov, injective, and global dimensions.
(iii) A is a Goldie domain (i.e., a left and right Ore domain).
(iv) Ais acoherentring.

Suppose now char= 0. ThenA is a simple ring. Therefore Theorem 0.1
holds. For instance, the derived Picard group Afis Z x Pic(A). By the
“coherent” version of Theorem 0.2 (see Remark 3 2Joes not admit a dualizing
complex, becausa is not Gorenstein.

Examples of noetherian simple rings with infinite Krull dimension were given
by Shamsuddin [15] and Goodearl-Warfield [16]. It is not hard to show that these
simple rings also have infinite injective dimension (see Section 6).

4, The Auslander condition

Let R be a dualizing complex ovdiA, B) and letM be anA-module. The
gradeof M with respect taR is defined to be
Jjr(M)=min{q | Exti (M, R) # 0}.

The grade of &°-module is defined similarly.
We recall the definitions of the Auslander condition and the Cohen—Macaulay
condition. Gelfand—Kirillov dimension is denoted by GKdim.

Definition 4.1. Let R be a dualizing complex ovéd, B).
(1) R is calledAuslandeiif the two conditions below hold.

(i) For every finiteA-module M, everyq, and everyB°-submoduleN C
Ext} (M, R) one hasjg(N) >gq.
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(i) The same holds after exchangidgand B°.
(2) If there is a constantsuch that

jrR(M) +GKdimM = s

for all finite A-modules or finiteB°-modulesM, then R is called Cohen—
Macaulay

Thecanonical dimensiowith respect to an Auslander dualizing compRxs
defined to be

Cdimg M = — jr(M)

for all finite A-modules orB°-modulesM. By [1, 2.10], Cdiny is a finitely
partitive, exact dimension function. See [13, 6.8.4] for the definition of dimension
function.

When A is a Gorenstein ring and the bimoduke:= A is an Auslander
dualizing complex thenA is called anAuslander—-Gorensteiming. If A is
an Auslander—Gorenstein ring such thRt:= A is also Cohen—-Macaulay,
then A is called anAuslander—Gorenstein Cohen—Macaulay ririchis is the
usage in [17,18]. We remind the critical reader that unlike commutative rings,
a noncommutative Gorenstein ring need not be either Auslander or Cohen—
Macaulay.

The following is easy.

Lemma 4.2. Let A, B, C be rings. LetL, M, N be bounded complexes over
B°, A, A ® B° respectively, and leP be a invertibleB—C-bimodule.

(1) For everyi there is an isomorphism of-modules
Exty. (L, N) = Ext..(L ®p P, N ®p P).

(2) Supposé is left noetherian andZ’/ M is finite overA for all j. Then, for
everyi there is an isomorphism @f°-modules

Ext,(M, N ®p P) = Ext,(M, N) @3 P.

Proof. (1) This follows from the fact that ® 5 P induces a Morita equivalence.

(2) This is obvious whei = A[i]. Then the assertion follows from the facts
that M has a bounded above resolution by finite freenodules andP is a flat
B°-module. O

Proposition 4.3. Let A, B, C be rings. LetP be an invertibleB—C-bimodule
andn an integer. Suppos® is a dualizing complex oveiA, B), and letR; =

R ®p P[n], which is a dualizing complex ovéi, C). ThenR is Auslander
(respectively Cohen—Macaulgiy and only if Ry is.
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Proof. Without loss of generality we may assume- 0.

Let us assume is Auslander; we will prove thaR is also Auslander. Given
a finite A-moduleM and an integer, let N be aB°-submodule of E)Q(M, R).
ThenN ®p P is aC°-submodule of

Ext,(M, R) ®p P = Ext,(M, R ®p P) =Ext,(M, Ry).

By the Auslander condition faR1, we have E)@O(N ®p P, R1)=0forall j <i.

Hence Exﬁo (N, R) =0byLemma4.2(1). This is the Auslander condition for
The converse follows from the fa®t = R1 ®c P".
The argument above also shows that

Cdimg(M) = Cdimg, (M) and Cdink(N) = Cdimg, (N ®p P)

for all finite A-modulesM and finite B°-modulesN. Since GKdim is preserved
by Morita equivalenceR is Cohen—Macaulay if and only Ry is. O

Proof of Corollary 0.3. By [1], A has a dualizing complexX in all cases.
Furthermore in cases (i)—(ivR is Auslander and Cohen—Macaulay. By Theo-
rem 0.2,R = P[n] for some invertibleA-bimodule P and some integet, and

A is a Gorenstein ring. In cases (i)—(iv) the Auslander—-Gorenstein and Cohen—
Macaulay properties of follow from Proposition 4.3. O

5. Weyl algebrasin positive characteristics

In this section we study dualizing complexes and two-sided tilting complexes
over the Weyl algebrag, when chak > 0.

Proposition 5.1. Let B be an Azumaya algebra over its cenf&B), and suppose
Spec4B) is connected. Le#t be another ring and” € D(Mod(A ® B°)) a two-
sided tilting complex. Theff = P[n] for some integen and some invertible
A—B-bimoduleP.

Proof. Use the proof of [5, 2.7], noting that for a prime idgalc Z(B), the
localizationB ®z(p) Z(B)y is alocal ring. O

The following lemma takes care of dualizing complexes.
Lemmab5.2. Let A be a left noetherian ring an® a right noetherian ring.
() If A has finite injective dimension as left module, ahdhas finite injective

dimension as right module, then every two-sided tilting comflesver
(A, B) is also a dualizing complex ovéA, B).
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(2) If A or B is noetherian and Gorenstein, then every dualizing complex over
(A, B) is also a two-sided tilting complex.

Proof. (1) By [5, 1.6 and 1.7] the cohomologies @f are finite modules on
both sides and the morphisms — RHomy (7, T) and A — RHomg- (T, T)
are isomorphisms. Sincg has finite projective dimension over and the left
moduleA has finite injective dimension it follows thét also has finite injective
dimension over. Likewise on the right.

(2) If A is a noetherian Gorenstein ring then the bimoddlles a dualizing
complex overA. Let R be any dualizing complex ovdiA, B). As mentioned
earlier, the proof of [5, 4.5]—suitably modified to fit our situation—shows that
the complex RHom(A, R) is a two-sided tilting complex ovetA, B). But
RZ=RHomy(A,R). O

Proposition 5.3. Let B be an Azumaya algebra over its cen#&B). Suppose
Z(B) is a noetherian Gorenstein ring arf®pec 4 B) is connected. LeA be a left
noetherian ring andR a dualizing complex oveiA, B). ThenR = P[n] for some
integern and some invertiblet—B-bimoduleP.

Proof. First we show thaB is also Gorenstein. Let be the injective dimension
of C := Z(B). For any prime ideap of C the local rmng is Gorenstein, of
|nject|ve dlmensmrg d, and hence also the compleud\a Now the completion
Bp =B®c Cp is isomorphic to a matrix ring MCp) so by Morita equivalence
B,g is Gorenstein. Faithful flatness (going over all pripgshows the vanishing
of Ext, (M, B) and Ex,. (N, B) for all finite modules\ andN and alli > d; so
we deduce thaB is Gorenstein.
Now we may use Proposition 5.1 and Lemma 5.2(2).

Corollary 5.4. Let B be thenth Weyl algebra ovet, with chark > 0. Let A be any
left noetheriank-algebra, and letR be any dualizing complex, or any two-sided
tilting complex, ovelA, B). ThenR = P[n] for some invertibleA—B-bimodule

P and integem.

Proof. By a result of Revoy [19], the Weyl algebi is Azumaya with center
a polynomial algebra over. Now use the Propositions 5.1 and 5.31
6. Goodear|-Warfield'sexample
We use an example of Goodearl-Warfield [16, 4.6] to show that not every

noetherian simple ring has finite injective dimension. This can also be done for
the example of Shamsuddin [15].
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Example 6.1. Let R[0; 3] be the noetherian simple domain of infinite Krull
dimension constructed in [16, 4.6]. In this example the base fiédan infinite
extension ofQ. The ring R is a noetherian regular commutatikealgebra of
infinite Krull dimension obtained by localizing a polynomial ring of countably
many variables, which is essentially the example of Nagata [20, Example 1,
p. 203].

Let d be any positive integer. By the construction®fthere is a prime ideal
p C R such that the height gf is at least/. ThenR;, has finite global dimension
> d. HenceR,[6; 8] has finite global dimensiox: d and has finite injective
dimension> d over itself. SinceR,[6; 8] is a localization ofR[#; §] [16, 1.1],
the injective dimension oR[0; ] is at leastd. Sinced is arbitrarily chosen, the
injective dimension ofRR[6; 8] is infinite.

By Theorem 0.2 there is no dualizing complex o¥gé; 3].

We conclude this paper by the following question.

Question 6.2. Does every noetherian finitely generated simple ring of finite Krull
(or Gelfand—Kirillov) dimension have finite left and right injective dimension?
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