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a b s t r a c t

A random geometric graph G(n, r) is obtained by spreading n points uniformly at random
in a unit square, and by associating a vertex to each point and an edge to each pair of points
at Euclidian distance at most r . Such graphs are extensively used to model wireless ad-hoc
networks, and in particular sensor networks. It is well known that, over a critical value of
r , the graph is connected with high probability.
In this paper we study the robustness of the connectivity of random geometric graphs

in the supercritical phase, under deletion of edges. In particular, we show that, for a
sufficiently large r , any cutwhich separates two components ofΘ(n) vertices each contains
Ω(n2r3) edges with high probability. We also present a simple algorithm that, again with
high probability, computes one such cut of size O(n2r3). From these two results we derive
a constant expected approximation algorithm for the β-balanced cut problem on random
geometric graphs: find an edge cut of minimum size whose two sides contain at least β n
vertices each.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider a wireless network of sensors on a terrain, where the sensors communicate by radio frequency, using an
omnidirectional antenna. Each sensor broadcasts with the same power to the same distance. Two sensors can communicate
if and only if they are within the transmission radius of each other. Sensor networks, and more in general ad-hoc wireless
networks, are often modelled via random geometric graphs [1,6]. A random geometric graph G(n, r) [10] is a graph resulting
from placing a set V of n vertices uniformly at random on the unit square [0, 1]2, and connecting two vertices if and only if
their Euclidean distance is at most the given radius r .
Random geometric graphs in general, and in particular their connectivity properties, have been intensively studied, both

from the theoretical and from the empirical point of view. For the present paper, the most interesting result on random
geometric graphs is the fact that, for r = r(n) =

√
(ln n+ c(n))/(πn), for any c(n) such that c(n) → ∞ when n → ∞,

G(n, r) is connected whp1 [14] (see also [12] for sharp connectivity thresholds). Once the connectivity is achieved, it is
natural to wonder how robust it is: how many edges does one need to remove in order to disconnect the graph? In most
applications the disconnection of one vertex, or of a few vertices, does not significantly affect the behavior of the network.
So we can reformulate the question above in the following more general way: given β ∈ [0, 1/2], how many edges does
one need to remove in order to isolate two components (not necessarily connected) of β n vertices each?

I A preliminary version of this paper appeared in ISAAC’06.
∗ Corresponding author. Tel.: +39 06 7259 7725; fax: +39 06 7259 7460.
E-mail addresses: diaz@lsi.upc.edu (J. Diaz), grandoni@disp.uniroma2.it, fabrizio.grandoni@gmail.com (F. Grandoni),

alberto.marchetti@dis.uniroma1.it (A.M. Spaccamela).
1 Throughout this paper, ‘‘whp’’ will abbreviate with high probability, that is with probability tending to 1 as n goes to∞.
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Our results. We can formalize the question above in the following way. A cut of a graph is a partition of its vertices into
two subsets W and B, the sides of the cut. The size of cut (W , B) is the number of edges δ(W , B) between W and B. Given
β ∈ [0, 1/2], β n ∈ N, a β-balanced cut is a cut where both sides contain at least β n vertices. The β-balanced cut problem
is to compute a β-balanced cut of minimum size. xHere we prove that, if r = r(n) =

√
R ln n/n for R ≥ R∗, with R∗ > 1

a sufficiently large constant, with high probability any β-balanced cut of G(n, r) has sizeΩ(min{βnR log n,
√
βnR3 log3 n})

(see Section 2).
We also present a simple algorithm thatwith high probability computes a cut of sizeO(min{β n R log n,

√
β n R3 log3 n}),

thus matching the lower bound (see Section 3). The two mentioned results imply a probabilistic constant approximation
algorithm for the β-balanced cut problem. We eventually show how to extend such a result to a constant expected
approximation algorithm (see Section 3.1).
We observe that the minimum in the expressions above is given by the first term for R > β n/ log n, and by the second

term for R < β n/ log n. With the threshold value R = β n/ log n, the expected number of neighbors of a node isΘ(β n).
We remark that the above results hold also if R is a function of n, and that the hidden constants in the O andΩ notations

do not depend on n, R and β .

Related work. One of the first papers to study the β-balanced cut problem (for general graphs) is [3]. In this paper, the
authors show that given a constant ε > 0, it is NP-hard to approximate the β-balanced cut problemwithin an additive term
of n2−ε . Theβ-balanced cut problem admits a PTAS forβ ≤ 1/3, if the graph is dense, i.e. each vertex has degreeΘ(n) [2]. For
planar graphs there is a 2-approximation for the β-balanced cut, if β ≤ 1/3 [8]. For β = 1/2, the β-balanced cut problem is
the well-knownminimum edge bisection problem. Minimum edge bisection is a difficult problem which has received a lot of
attention due to its numerous applications (see e.g. [11]). It is known to be NP-Hard for general graphs [9], and in such case
there is a O(log1.5 n) approximation [7]. In the same paper, the authors prove that if the graph is planar, the approximation
can be reduced to O(log n). In the case of random geometric graphs, it is known how to obtain a constant approximation to
minimum edge bisection whp for the special case R = R(n)→∞ for n→∞ [5]. Our approximation algorithm improves
on the algorithm in [5] in several ways: (i) it holds for arbitrary values of β (not only for β = 1/2), including the non-trivial
special case that β = o(1); (ii) it holds for constant values of R as well; (iii) the value of the approximation ratio is constant
in expectation, not only with high probability. These improvements are achieved by exploiting new and simpler techniques.
The deterministic counterpart of randomgeometric graphs are unit disk graphs [4]. A undirected graph is a unit disk graph

if its vertices can be put in one-to-one correspondence with the centers of circles of equal radius in the plane in such a way
that two vertices are joined by an edge if and only if the corresponding circles intersect. It is an open problem to prove the
hardness of minimum edge bisection and β-balanced cut for unit disk graphs.

Preliminaries. Given a region Q of the unit square, |Q | denotes the area of Q , and ‖Q‖ the number of points falling in Q .
Note that ‖Q‖ is a Binomial random variable of parameters n and |Q |, for which the following standard Chernoff’s Bounds
hold [13]. Let µ = E[‖Q‖] = |Q | n. Then:

Pr[‖Q‖ < (1− δ)µ] ≤ e−δ
2µ/2 for δ ∈ [0, 1); (1)

Pr[‖Q‖ > (1+ δ)µ] ≤ e−δ
2µ/3 for δ ∈ [0, 1); (2)

Pr[‖Q‖ > (1+ δ)µ] ≤ e−δ
2µ/4 for δ ∈ [1, 2e− 1); (3)

Pr[‖Q‖ > (1+ δ)µ] ≤ e−δµ ln 2 for δ ≥ 2e− 1. (4)

From now on r = r(n) =
√
R ln n/n. For the sake of simplicity, we will assume R = o(n/ log n). For R = Ω(n/ log n), the

problems considered here become trivial. In particular, for R ≥ 2n/ ln n the graph is a clique (deterministically). Moreover,
we omit floors and ceilings when their role is not crucial. Without loss of generality, we assume that n is lower bounded by
a sufficiently large constant.

2. A lower bound

In this section we show that, for any β ∈ [0, 1/2], β n ∈ N, and for R ≥ 240, the size of any β-balanced cut for G(n, r) is
Ω(min{βnR log n,

√
β nR3 log3 n})with high probability.

In order to prove thementioned lower bound, we consider a partition of the unit square into 5n/(R ln n) non-overlapping
square cells of the same size. Each cell is adjacent to the cells to its right, left, top, and bottom. Observe that, since the side
of each cell has length L =

√
R ln n/(5n), a vertex is adjacent to all the vertices in the same cell and in all the adjacent cells:

In fact, the maximum distance between two vertices in two adjacent cells (or in the same cell) is
√
5L ≤

√
R ln n/n = r ,

where r is the transmission radius. This property is crucial in the analysis. The number of points ‖C‖ in each cell C satisfies
the following probabilistic bounds.

Lemma 1. For any R ≥ 240, with probability 1 − o(1/n2) all the cells C of the partition above satisfy R ln n/10 ≤ ‖C‖ ≤
3 R ln n/10.
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Fig. 1. Example of configuration of black and white cells. There are 3 black clusters and 1 white cluster.

Fig. 2. For h = 4, the white cluster C (touching two consecutive sides of the square) has 3h − 3 cells on its frontier ∂C, of which h are good. Hence
|∂Cgood|/|∂C| = 1/3+ 1/(3h− 3). The same example can be generalized to an arbitrarily large value of h.

Proof. Consider any cell C . Observe that E[‖C‖] = R ln n/5. By Chernoff’s Bounds (1) and (3),

Pr
(
‖C‖ /∈

[
R ln n
10

,
3 R ln n
10

])
≤ e−(1/2)

2R ln n/10
+ e−(1/2)

2R ln n/20
= O(1/n3).

The claim follows by applying the union bound to the 5n/(R ln n) ≤ n/(48 ln n) cells. �

Let (W , B) be any given cut, with |W | = β n. Let us call the vertices in W white, and the vertices in B black. A cell is
white if at least one half of its points are white, otherwise the cell is black. We define a cluster C to be a maximal connected
component of cells of the same color, with respect to the adjacency between cells defined above. The frontier ∂C of C is the
subset of its cells which either touch the border of the unit square, or are adjacent to a cell of different color. We call good
the cells of ∂C which are adjacent to a cell of different color, and bad the other cells of ∂C. Observe that a cell is bad if it
touches the border of the unit square and it is surrounded by cells of the same cluster (see Fig. 1).
In order to prove the lower bound, we need the following two lemmas.

Lemma 2. Given a cluster of k cells, its frontier contains at least
√
π k/4 cells.

Proof. Suppose that the frontier contains h <
√
π k/4 cells. Thus the perimeter of the cluster has length at most 4hL, where

L =
√
R ln n/(5n) is the length of the side of one cell. Such perimeter can enclose an area of size at most (4hL)2/(4π) (case

of a disk of radius 4hL/(2π)), and thus at most 4h2/π < k cells, which is a contradiction. �

Lemma 3. Consider a cluster touching either 0, or 1, or 2 consecutive sides of the square. Then at least one third of the cells on its
frontier are good.

Proof. Consider any cluster C. Without loss of generality, let C be white. If C does not touch any side of the square, all the
cells of ∂C are good. Thus the claim is trivially true.
Now suppose C touches one or two consecutive sides of the square, say the left side and possibly the top side. Let ∂Cgood

be the good cells of ∂C, and ∂Cbad = ∂C \ ∂Cgood the bad ones. Moreover, let ∂Cout be the cells of ∂C touching the border of
the square, and ∂C in = ∂C \ ∂Cout . Note that ∂C in ⊆ ∂Cgood since the cells in ∂C in do not touch any side of the square.
At least one half ∂C ′ of the cells of ∂Cout touches one between the left and the top side of the square, say the left

one. Consider any cell C ′ ∈ ∂C ′. If C ′ is bad, we can univocally associate to C ′ a good cell C ′′ ∈ ∂C in in the following
way. Consider the sequence of consecutive white cells at the right of C ′ (there must be at least one such cell, since C ′ is
bad). We let C ′′ be the rightmost of such cells. As a consequence, the number of good cells is lower bounded by |∂C ′|, and
|∂Cgood| ≥ |∂C

′
| ≥ |∂Cout |/2. Thus

|∂C| = |∂C in| + |∂Cout | ≤ |∂Cgood| + |∂C
out
| ≤ 3|∂Cgood|.

The claim follows. �

We remark that Lemma 3 is asymptotically tight, as the example in Fig. 2 shows.
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Theorem 1. With probability 1− o(1/n2), for any β ∈ [0, 1/2], β n ∈ N, and for any R ≥ 240, the size of any β-balanced cut
of G(n, r) is

Ω(min{β n R log n,
√
β n R3 log3 n}).

Proof. By Lemma 1, with probability 1− o(1/n2) for each cell C ,

‖C‖ ∈
[
R ln n
10

,
3R ln n
10

]
. (5)

Thus it is sufficient to show that, given (5), the lower bound holds (deterministically) for any β ∈ [0, 1/2] and for any cut
(W , B)with |W | = β n.
We need some notation. By W and B we denote the set of white and black cells respectively. Moreover, Wblack ⊆ W

(Bwhite ⊆ B) is the subset of white (black) vertices in black (white) cells.
Since each vertex is adjacent to all the other vertices in the same cell, each vertexw ∈ Wblack contained into a (black) cell

C contributes with at least ‖C‖/2 ≥ R ln n/20 edges to the edges of the cut. It follows that, if |Wblack| ≥ |W |/2 = β n/2, the
size of the cut is at least

|Wblack|
R ln n
20
≥
β n R ln n
40

= Ω(β n R log n).

Analogously, if |Bwhite| ≥ |B|/2 = (1− β) n/2, then the size of the cut is at least

|Bwhite|
R ln n
20
≥
(1− β) n R ln n

40
= Ω(β n R log n).

Thus, let us assume |Wblack| < |W |/2 and |Bwhite| < |B|/2. Observe that, from this assumption and Eq. (5),

|W | ≥
β n/2

3R ln n/10
=
5β n
3R ln n

and |B| ≥
(1− β)n/2
3R ln n/10

=
5(1− β)n
3R ln n

. (6)

In particular, there is at least one black cell and one white cell.
By (5), since all the vertices in adjacent cells are adjacent, each pair of adjacent (good) cells (C ′, C ′′), with C ′ ∈ W and

C ′′ ∈ B contributes with at least

‖C ′‖
2
‖C ′′‖
2
≥
R2 ln2 n
400

= Ω(R2 log2 n)

distinct edges to the total number of edges in the cut. Since theremust be at least one such pair (C ′, C ′′), if β = O(R log n/n),
trivially the size of the cut isΩ(R2 log2 n) = Ω(β n R log n).
For β = Ω(R log n/n) we need to bound the number of distinct pairs of type (C ′, C ′′) in a more sophisticated way. In

particular, we will show that the number of good cells, either white or black, is Ω(
√
β n/(R log n)), from which it follows

that the size of the cut is at least

Ω(R2 log2 n)Ω(
√
β n/(R log n)) = Ω(

√
β n R3 log3 n).

We distinguish three sub-cases, depending on the existence of white clusters with some properties (see also Fig. 3).

(i) There is a white cluster C touching either 3 or 2 opposite sides of the square (but not 4). Without loss of generality,
let the right side of the square be untouched. Consider all the cells of C which have no cell of the same cluster to their right.
Note that such cells belong to the frontier ∂C of the cluster. Moreover, they are all good (they have a black cell to their right).
The number of such cells is

√
5n/(R ln n) = Ω(

√
β n/(R log n)).

(ii) Every white cluster touches 0, 1, or 2 consecutive sides of the square. Recall that the white cells are |W | ≥
5β n/(3R ln n) by (6). Let C1,C2, . . . ,Cp be the p white clusters. It follows by Lemmas 2 and 3, that the total number of
white good cells is at least

p∑
i=1

1
3

√
π |Ci|

4
≥
1
3

√
π |W |

4
≥
1
3

√
π 5β n
12R ln n

= Ω(
√
β n/(R log n)).

(iii) There is a white cluster touching the 4 sides of the square. It follows that each black cluster touches 0, 1, or 2
consecutive sides of the square. Thus, by basically the same argument as in case (ii), the number of black good cells is at
least

1
3

√
π |B|

4
≥
1
3

√
π 5 (1− β) n
12R ln n

= Ω(
√
β n/(R log n)).

This concludes the proof. �
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Fig. 3. Example of cases (i), (ii) and (iii) in the proof of Theorem 1.

Fig. 4. The white disk D contains one sideW of the cut, ‖W‖ = β n. The annulus A of D, of width
√
R ln n/n, is drawn in gray.

3. A simple cutting algorithm

In this section we describe a simple algorithm simpleCut which, for a given input β ∈ [0, 1/2], β n ∈ N, computes a
β-balanced cut. We will show that, for R ≥ 3/π , the size of the cut computed is O(min{βnR log n,

√
βnR3 log3 n})with high

probability. This, together with Theorem 1, implies that simpleCut is a probabilistic constant approximation algorithm for
the β-balanced cut problem for R ≥ 240. We later show how to convert such result into a constant expected approximation
algorithm.

Algorithm 1 (simpleCut). Take the β n vertices which are closest to (1/2, 1/2) (breaking ties arbitrarily). Such vertices
form one sideW of the cut.

Observe that simpleCut can be easily implemented in polynomial time.
In order to bound the size of the cut produced by simpleCut, we need the following simple probabilistic bound on the

degree of the vertices.

Lemma 4. For R > 3/π , the degree of all vertices of G(n, r) is upper bounded by (3πR ln n) with probability 1− o(1/n2).

Proof. Consider the ball Bv of radius
√
R ln n/n centered at a random vertex v. Clearly the degree of v is ‖Bv‖ − 1. We will

show that Pr(‖Bv‖ − 1 > 3πR ln n) = o(1/n3). Then the lemma follows from the union bound. Observe that Bv might
not be entirely contained in the unit square (if v is sufficiently close to the border). Let B′ be a ball centered in v such that
its intersection with the unit square has area πR ln n/n. Note that Bv ⊆ B′. Moreover, E[‖B′‖] = 1 + (n − 1)πR ln nn =

πR ln n+ 1− o(1). By a simple coupling argument, and Chernoff’s Bound (3),

Pr(‖Bv‖ − 1 > 3πR ln n) ≤ Pr(‖B′‖ − 1 > 3πR ln n)
≤ Pr(‖B′‖ − 1 > 3(E[‖B′‖] − 1))

≤ e−2
2(E[‖B′‖]−1)/4

= e−πR ln n+o(1) = o(1/n3). �

Theorem 2. For any β ∈ [0, 1/2], β n ∈ N, and for R > 3/π , the size of the cut of G(n, r) computed by simpleCut is
O(min{β n R log n,

√
β n R3 log3 n }) with probability 1− o(1/n2).

Proof. Consider the cut (W , B) computed by the algorithm, with |W | = β n. Trivially, the total degree of the edges incident
toW is an upper bound on the size of the cut. Hence, by Lemma 4, with probability 1−o(1/n2) the size of the cut is at most:

βn · 3π R ln n = O(β n R log n).

So, it is sufficient to show that, for β = Ω(R log n/n), the size of the cut is O(
√
β n R3 log3 n ). In particular, β ≥ 8π R ln n/n

is sufficient for our purposes.
Recall that, for a given region Q of the unit square, |Q | denotes the area of Q , and ‖Q‖ the number of points inside Q .

Let us denote by D the disk centered in (1/2, 1/2), of minimum possible radius ρ, which contains all the vertices inW (see
Fig. 4). In the followingwewill assume ‖D‖ = β n, i.e. there is exactly one vertex at distance ρ from (1/2, 1/2): this happens
with probability one. Let A denote the annulus of width

√
R ln n/n surrounding D. The edges of the cut are a subset of the

edges incident to the vertices in A: In fact, any vertex outside A ∪ D is at distance larger than
√
R ln n/n from any vertex of
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D, and hence the corresponding edges cannot be part of the cut. Therefore, from Lemma 4, it is sufficient to show that the
number ‖A‖ of vertices in A is O(

√
β n R log n)with probability 1− o(1/n2). From that we can conclude that the size of the

cut is at most:

3π R ln n · O(
√
β n R log n) = O(

√
β n R3 log3 n).

Consider the disk D′ centered in (1/2, 1/2) of radius ρ ′ =
√
(3/2)β/π , and let A′ be the annulus of width

√
R ln n/n

surrounding D′. Since ρ ′ ≤
√
3/(4π) < 1/2, for n large enough D′ and A′ are entirely contained in the unit square.

Observe that, given ρ ≤ ρ ′, the density of points in both A and A′ is the same, that is (n−β n)/(1−|D|). Under the same
assumption, this density is maximized when ρ = ρ ′ (and hence |D| is the largest possible). Thus, for any c > 0,

Pr[‖A‖ > c | ρ ≤ ρ ′] ≤ Pr[‖A′‖ > c | ρ ≤ ρ ′] ≤ Pr[‖A′‖ > c | ρ = ρ ′].

We remark that the upper bound above holds even if the event ρ = ρ ′ happens with probability zero. For ρ = ρ ′,
|D| = π(3/2)β/π and hence n−β n1−|D| =

n−β n
1−3β/2 .We also observe that

|A′| = π

(√
3β
2π
+

√
R ln n
n

)2
− π

(√
3β
2π

)2
= π

√
R ln n
n

(
2

√
3β
2π
+

√
R ln n
n

)
.

Therefore, multiplying the density of points in A′ by its area,

µ := E[‖A′‖ | ρ = ρ ′] =
n− β n
1− 3β/2

π

√
R ln n
n

(
2

√
3β
2π
+

√
R ln n
n

)
.

In particular
√
108 ln n ≤

√
(3/2)πβRn ln n ≤ µ ≤ 12

√
(3/2)πβRn ln n.

It follows from Chernoff’s Bound (3) that

Pr[‖A′‖ > 2µ | ρ = ρ ′] ≤ e−µ/4 ≤ e−
√
108 ln n/4

= o(1/n2).

Moreover, being E[‖D′‖] = (3/2) β n, from Chernoff’s Bound (1),

Pr[ ρ > ρ ′ ] = Pr[‖D′‖ < β n] ≤ e−(1/3)
2(3/2)β n/2

≤ e−β n/12 = o(1/n2).

Altogether

Pr[‖A‖ > 2µ] ≤ Pr[ ρ > ρ ′ ] + Pr[‖A‖ > 2µ | ρ ≤ ρ ′] Pr[ ρ ≤ ρ ′ ]
≤ o(1/n2)+ Pr[‖A′‖ > 2µ | ρ = ρ ′]
= o(1/n2).

It follows that ‖A‖ ≤ 2µ = O(
√
β n R log n)with probability 1− o(1/n2). �

Corollary 1. For anyβ ∈ [0, 1/2],β n ∈ N, and for any R ≥ 240, with probability 1−o(1/n2) Algorithm simpleCut computes
a constant approximation for the β-balanced cut problem on G(n, r).

Proof. It follows immediately from Theorems 1 and 2. �

3.1. From probabilistic to expected approximation

We have shown that Algorithm simpleCut is a probabilistic constant approximation algorithm for the β-balanced cut
problem. We next show how to extend this result to a constant expected approximation algorithm for the same problem.
Under the assumption that the optimal cut has size at least one, Algorithm simpleCut has the desired properties. In

fact, in that case, any cut (including the one returned by simpleCut), is a O(n2) approximation of the optimum in the worst
case. Hence, the unlikely event that one of the bounds given by Theorems 1 and 2 does not hold contributes only with a
term o(1) to the approximation factor of simpleCut. However, this argument does not work when the optimal cut has size
zero (event which happens with positive probability). For this reason, we introduce the following algorithm zeroCut to
compute a cut of size zero, if any. Compute the connected components of G(n, r). For any integerm, βn ≤ m ≤ n/2, check
whether there is a subset of components whose total size is m. If yes, return such subset of components as one side of the
partition. Note that for each of the O(n) possible values ofm, we have to solve an instance of the subset sum problem (where
the sizes of the components form the input list, and the target value ism). The subset sum problem is NP-hard in general, but
it can be solved in polynomial time via dynamic programming when the input values are polynomially-bounded integers
[9]. This is the case here (all the sizes are integers between 1 and n). Combining zeroCut and simpleCut, one obtains the
desired constant expected approximation algorithm.
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Algorithm 2 (refinedCut). If zeroCut returns a solution, return it. Otherwise, return the solution computed by
simpleCut.

Theorem 3. For any β ∈ [0, 1/2], β n ∈ N, and for any R ≥ 240, refinedCut is a constant expected approximation algorithm
for the β-balanced cut problem on G(n, r).

Proof. Let zH and z∗ denote the size of the solution found by refinedCut and the size of the optimum cut, respectively.
Let moreoverA denote the event that

z∗ ≥ cmin{β n R log n,
√
β n R3 log n3}

and

zH ≤ C min{β n R log n,
√
β n R3 log n3},

where the constants c and C are as in the proofs of Theorems 1 and 2. Note that Pr[A] = 1 − o(1/n2). Given A, the
approximation ratio of refinedCut is at most C/c = O(1). Given A, if the size of the optimum cut is zero, zeroCut
computes the optimum solution and the approximation ratio is 1 by definition. Otherwise, any cut, and hence also the cut
computed by simpleCut, is a O(n2) approximation. Altogether the expected approximation ratio is

E(zH/z∗) = Pr[A]O(1)+ Pr[A]O(n2) = O(1). �

Remark 1. The threshold 240 can be reduced to a value arbitrarily close to 30 by adapting the constants in Lemma 1.
However, this would increase the approximation ratio. If we only desire a probabilistic constant approximation, such
threshold can be made arbitrarily close to 10, with the same drawback as above.
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