Resolution of an integral equation with the Thue-Morse sequence

Jean-François Bertazzon

Laboratoire d'Analyse, Topologie et Probabilités, Aix-Marseille Université, Avenue de l'escadrille Normandie-Niémen. 13397 Marseille, France

Received 22 July 2011; received in revised form 2 January 2012; accepted 9 January 2012

Communicated by S.J. van Strien

Abstract

It is a classical fact that the exponential function is a solution of the integral equation $\int_{0}^{X} f(x) d x+$ $f(0)=f(X)$. If we slightly modify this equation to $\int_{0}^{X} f(x) d x+f(0)=f(\alpha X)$ with $\left.\alpha \in\right] 0,1[$, it seems that no classical techniques apply to yield solutions. In this article, we consider the parameter $\alpha=1 / 2$. We will show the existence of a solution which takes the values of the Thue-Morse sequence on the odd integers.

(c) 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Integral equation; Thue-Morse sequence

1. Introduction

We consider the functional equation

$$
\begin{equation*}
\int_{0}^{X} f(x) d x+f(0)=f\left(\frac{X}{2}\right) . \tag{1}
\end{equation*}
$$

We can see that the set of continuous solutions is a closed vector space, containing the identically zero function. It is quite clear that any continuous function satisfying Eq. (1) is differentiable infinitely many times. So, Eq. (1) can be rewritten $f(X)=f^{\prime}(X / 2) / 2$.

[^0]

Fig. 1. Representation of the graph of f_{∞}.
We can easily verify that the nonzero solutions cannot be expanded in a series. In addition, two solutions equal in a neighborhood of 0 are equal everywhere.

We let τ denote the Thue-Morse substitution. It is a morphism of the free monoid generated by -1 and 1 , defined by $\tau(-1)=(-1) 1$ and $\tau(1)=1(-1)$ and let $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}=$ $(-1) 11(-1) 1(-1)(-1) 1 \cdots$ be the Thue-Morse sequence, one of the fixed points of this substitution. See [2,3,5] for details.

The aim of this work is to show the following result:
Theorem 1. There exists a continuous function f_{∞} valued in $[-1,1]$, solution of Eq. (1), such that (see Fig. 1)

- for each integer $n, f_{\infty}(2 n+1)=u_{n}$ and $f_{\infty}(2 n)=0$;
- for each negative real number $x, f_{\infty}(x)=0$;
- for each positive real number $x,\left|f_{\infty}(x)\right|=\left|f_{\infty}(x+2)\right|$.

2. Introduction of some combinatorial objects

For any integers $k \geq 0$ and $n \geq 1$, we define the quantities $\left(\sum_{n}^{k}\right)_{(k, n) \in \mathbb{N}^{2}}$ by

$$
\begin{equation*}
\Sigma_{0}^{k}=u_{k} \quad \text { and } \quad \Sigma_{n}^{0}=0 \tag{2}
\end{equation*}
$$

and by induction for any integers $k \geq 0$ and $n \geq 0$, by

$$
\begin{equation*}
\Sigma_{n+1}^{k+1}=\Sigma_{n}^{k}+\Sigma_{n+1}^{k} . \tag{3}
\end{equation*}
$$

In [7], Prunescu has studied the behavior of certain double sequences, called recurrent twodimensional sequences in a more general context. For example when the initialization of the induction given in Eq. (2) is

$$
\Sigma_{0}^{k}=v_{k} \quad \text { and } \quad \Sigma_{n}^{0}=w_{n}
$$

where $\left(v_{n}\right)_{n}$ and $\left(w_{n}\right)_{n}$ are sequences such that $v_{0}=w_{0}$. He is particularly interested in the case where $\boldsymbol{v}=\boldsymbol{w}=\boldsymbol{u}$.

If we cleverly renormalize the lines of the standard Pascal triangle, we can approximate a Gaussian curve. We will renormalize the columns of the Pascal triangle associated to the

Fig. 2. "Pascal's triangle" associated to the Thue-Morse sequence.

Fig. 3. Representation of graph of f_{4}, f_{6} and f_{∞}.

Thue-Morse sequence, to approximate the function f_{∞} (see Fig. 2). We will see that each column is uniformly bounded. This is a very special property of the Thue-Morse sequence.

This property does not hold for Sturmian words, for which the sequence $\left(\Sigma_{2}^{k}\right)_{k}$ is not bounded. More precisely, for each parameter $\alpha \in[0,1]$, we put $\boldsymbol{v}(\alpha)=\left(v_{n}(\alpha)\right)_{n}$ the sequence defined for each integer n by $v_{n}(\alpha)=\lfloor(n+1) \alpha\rfloor-\lfloor n \alpha\rfloor$. We associate to the sequence $\boldsymbol{v}(\alpha)$ the sequence $\boldsymbol{w}(\alpha)=\left(w_{n}(\alpha)\right)_{n}$ defined for each integer n by $w_{n}(\alpha)=\alpha$ if $v_{n}(\alpha)=0$, and $w_{n}(\alpha)=-(1-\alpha)$ otherwise. So, the sequence $\left(\Sigma_{1}^{k}\right)_{1}$ defined in (3) associated to the sequence $\boldsymbol{w}(\alpha)$ is bounded. But the sequence $\left(\Sigma_{2}^{k}\right)_{k}$ is not bounded. We refer to $[1,4,6]$.

For all integers n, we define a real function f_{n}, by $f_{n}(x)=0$ if $x \leq 0$, and

$$
f_{n}(x)=x_{n}^{k}+2^{n-1} \delta_{x}\left(x_{n}^{k+1}-x_{n}^{k}\right), \quad \text { if } x=\frac{k}{2^{n-1}}+\delta_{x} \text { and } 0 \leq \delta_{x}<2^{1-n}
$$

for an integer k, with the notation $x_{n}^{k}=2^{-(n-1)(n-2) / 2} \cdot \Sigma_{n}^{k}$ (see Fig. 3).
We may also approach this problem from a dynamical point of view. We define T, the application from the set of real sequences into itself by

$$
T\left(\left(y_{n}\right)_{n \geq 1}\right)=\left(y_{1}, y_{2}+y_{1}, y_{3}+\frac{y_{2}}{2^{1}}, \ldots, y_{n+1}+\frac{y_{n}}{2^{n-1}}, \ldots\right) .
$$

We must then consider the n-th coordinates of the sequence $\left(\boldsymbol{y}^{k}\right)_{k \geq 0}$ up to renormalization, where $\boldsymbol{y}^{k}=\left(y_{n}^{k}\right)_{n \geq 1}$, is defined by induction by $\boldsymbol{y}^{0}=\mathbf{0}=(0, \ldots, 0, \ldots)$, and for each integer $k \geq 1$,

$$
y^{k+1}=T\left(y^{k}\right)-\left(u_{k}, 0, \ldots, 0, \ldots\right)
$$

3. Calculation of points x_{n}^{k} for the first n

We calculate the initial values of sequences $\left(x_{n}^{k}\right)_{k}$. To do this, we note that for each integer k, $u_{2 k}=u_{k}=-u_{2 k+1}$.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \Sigma _ { 1 } ^ { 2 k } = 0 , } \\
{ \Sigma _ { 1 } ^ { 2 k + 1 } = u _ { 2 k } = u _ { k } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}^{2 k}=0, \\
x_{1}^{2 k+1}=u_{k} .
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ \Sigma _ { 2 } ^ { 4 k } = 0 , } \\
{ \Sigma _ { 2 } ^ { 4 k + 1 } = \Sigma _ { 2 } ^ { 4 k } + \Sigma _ { 1 } ^ { 4 k } = 0 , } \\
{ \Sigma _ { 2 } ^ { 4 k + 2 } = \Sigma _ { 2 } ^ { 4 k + 1 } + \Sigma _ { 1 } ^ { 4 k + 1 } = u _ { 2 k } = u _ { k } , } \\
{ \Sigma _ { 2 } ^ { 4 k + 3 } = \Sigma _ { 2 } ^ { 4 k + 2 } + \Sigma _ { 1 } ^ { 4 k + 2 } = u _ { 2 k } = u _ { k } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{2}^{4 k}=0, \\
x_{2}^{4 k+1}=0, \\
x_{2}^{4 k+2}=u_{k}, \\
x_{2}^{4 k+3}=u_{k} .
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ \Sigma _ { 3 } ^ { 8 k } = 0 , } \\
{ \Sigma _ { 3 } ^ { 8 k + 1 } = \Sigma _ { 3 } ^ { 8 k } + \Sigma _ { 2 } ^ { 8 k } = 0 , } \\
{ \Sigma _ { 3 } ^ { 8 k + 2 } = \Sigma _ { 3 } ^ { 8 k + 1 } + \Sigma _ { 2 } ^ { 8 k + 1 } = 0 , } \\
{ \Sigma _ { 3 } ^ { 8 k + 3 } = \Sigma _ { 3 } ^ { 8 k + 2 } + \Sigma _ { 2 } ^ { 8 k + 2 } = u _ { 4 k } = u _ { k } , } \\
{ \Sigma _ { 3 } ^ { 8 k + 4 } = \Sigma _ { 3 } ^ { 8 k + 3 } + \Sigma _ { 2 } ^ { 8 k + 3 } = 2 u _ { 4 k } = 2 u _ { k } , } \\
{ \Sigma _ { 3 } ^ { 8 k + 5 } = \Sigma _ { 3 } ^ { 8 k + 4 } + \Sigma _ { 2 } ^ { 8 k + 4 } = 2 u _ { 4 k } = 2 u _ { k } , } \\
{ \Sigma _ { 3 } ^ { 8 k + 6 } = \Sigma _ { 3 } ^ { 8 k + 5 } + \Sigma _ { 2 } ^ { 8 k + 5 } = 2 u _ { 4 k } = 2 u _ { k } , } \\
{ \Sigma _ { 3 } ^ { 8 k + 7 } = \Sigma _ { 3 } ^ { 8 k + 6 } + \Sigma _ { 2 } ^ { 8 k + 6 } = u _ { k } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{3}^{8 k}=0, \\
x_{3}^{8 k+1}=0, \\
x_{3}^{8 k+2}=0, \\
x_{3}^{8 k+3}=u_{k} / 2, \\
x_{3}^{8 k+4}=u_{k}, \\
x_{3}^{8 k+5}=u_{k}, \\
x_{3}^{8 k+6}=u_{k}, \\
x_{3}^{8 k+7}=u_{k} / 2 .
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ \Sigma _ { 4 } ^ { 1 6 k } = 0 , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 1 } = \Sigma _ { 4 } ^ { 1 6 k } + \Sigma _ { 3 } ^ { 1 6 k } = 0 , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 2 } = \Sigma _ { 4 } ^ { 1 6 k + 1 } + \Sigma _ { 3 } ^ { 1 6 k + 1 } = 0 , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 3 } = \Sigma _ { 4 } ^ { 1 6 k + 2 } + \Sigma _ { 3 } ^ { 1 6 k + 2 } = 0 , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 4 } = \Sigma _ { 4 } ^ { 1 6 k + 3 } + \Sigma _ { 3 } ^ { 1 6 k + 3 } = u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 5 } = \Sigma _ { 4 } ^ { 1 6 k + 4 } + \Sigma _ { 3 } ^ { 1 6 k + 4 } = 3 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 6 } = \Sigma _ { 4 } ^ { 1 6 k + 5 } + \Sigma _ { 3 } ^ { 1 6 k + 5 } = 5 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 7 } = \Sigma _ { 4 } ^ { 1 6 k + 6 } + \Sigma _ { 3 } ^ { 1 6 k + 6 } = 7 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 8 } = \Sigma _ { 4 } ^ { 1 6 k + 7 } + \Sigma _ { 3 } ^ { 1 6 k + 7 } = 8 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 9 } = \Sigma _ { 4 } ^ { 1 6 k + 8 } + \Sigma _ { 3 } ^ { 1 6 k + 8 } = 8 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 1 0 } = \Sigma _ { 4 } ^ { 1 6 k + 9 } + \Sigma _ { 3 } ^ { 1 6 k + 9 } = 8 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 1 1 } = \Sigma _ { 4 } ^ { 1 6 k + 1 0 } + \Sigma _ { 3 } ^ { 1 6 k + 1 0 } = 8 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 1 2 } = \Sigma _ { 4 } ^ { 1 6 k + 1 1 } + \Sigma _ { 3 } ^ { 1 6 k + 1 1 } = 7 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 1 3 } = \Sigma _ { 4 } ^ { 1 6 k + 1 2 } + \Sigma _ { 3 } ^ { 1 6 k + 1 2 } = 5 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 1 4 } = \Sigma _ { 4 } ^ { 1 6 k + 1 3 } + \Sigma _ { 3 } ^ { 1 6 k + 1 3 } = 3 u _ { k } , } \\
{ \Sigma _ { 4 } ^ { 1 6 k + 1 5 } = \Sigma _ { 4 } ^ { 1 6 k + 1 4 } + \Sigma _ { 3 } ^ { 1 6 k + 1 4 } = u _ { k } , }
\end{array} \quad \Longleftrightarrow \left\{\begin{array}{l}
x_{4}^{16 k}=0, \\
x_{4}^{16 k+1}=0, \\
x_{4}^{16 k+2}=0, \\
x_{4}^{16 k+3}=0, \\
x_{4}^{16 k+4}=u_{k} / 8, \\
x_{4}^{16 k+5}=3 u_{k} / 8, \\
x_{4}^{16 k+6}=5 u_{k} / 8, \\
x_{4}^{16 k+7}=7 u_{k} / 8, \\
x_{4}^{16 k+8}=u_{k}, \\
x_{4}^{16 k+9}=u_{k}, \\
x_{4}^{16 k+10}=u_{k}, \\
x_{4}^{16 k+11}=u_{k}, \\
x_{4}^{16 k+12}=7 u_{k} / 8, \\
x_{4}^{16 k+13}=5 u_{k} / 8, \\
x_{4}^{16 k+14}=3 u_{k} / 8, \\
x_{4}^{16 k+15}=u_{k} / 8 .
\end{array}\right.\right.
\end{aligned}
$$

4. First combinatorial results

Lemma 1. For any integers $n \geq 1, k \geq 0$ and $l \in\left\{0, \ldots, 2^{n}-1\right\}$, there exists $a(n, l)$, which does not depend on k, such that $\Sigma_{n}^{2^{n} k+l}=a(n, l) u_{k}$. In particular, $\Sigma_{n}^{2^{2} k}=a(n, 0)=0$. For any integer $n \geq 1$ and $l \in\left\{0, \ldots, 2^{n}-1\right\}$, the coefficients $a(n, l)$ satisfy the following relation:

$$
\begin{align*}
& a(n+1, l+1)=a(n+1, l)+a(n, l) \\
& \text { and } \quad a\left(n+1, l+2^{n}+1\right)=a\left(n+1, l+2^{n}\right)-a(n, l) . \tag{4}
\end{align*}
$$

We conclude that $a\left(n+1, l+2^{n}\right)=a\left(n+1,2^{n}\right)-a(n+1, l)$.
Proof. We have seen in Section 3, that this result is true for the first values of the integer n. We suppose that the result is true up to a rank $n-1$ and we will show that it is still true up to order n. We start by verifying that $\Sigma_{n+1}^{2^{n} k}$ is zero for each integer k :

$$
\begin{aligned}
\Sigma_{n}^{2^{n} k} & =\sum_{l=0}^{2^{n} k-1} \Sigma_{n-1}^{l}+\Sigma_{n+1}^{0}=\sum_{j=0}^{k-1} \sum_{l=0}^{2^{n}-1} \Sigma_{n-1}^{2^{n} j+l} \\
& =\sum_{j=0}^{k-1}\left(\sum_{l=0}^{2^{n-1}-1} \Sigma_{n-1}^{2^{n-1}(2 j)+l}+\sum_{l=0}^{2^{n-1}-1} \Sigma_{n-1}^{\left.2^{n-1}(2 j+1)+l\right)}\right. \\
& =\sum_{j=0}^{k-1}\left(u_{2 j} \sum_{l=0}^{2^{n-1}-1} a(n-1, l)+u_{2 j+1} \sum_{l=0}^{2^{n-1}-1} a(n-1, l)\right) \\
& =\left(\sum_{l=0}^{2^{n-1}-1} a(n-1, l)\right) \cdot\left(\sum_{j=0}^{k-1} u_{2 j}+u_{2 j+1}\right) \\
& =0
\end{aligned}
$$

Now, we focus on the recurrence relations verified by the coefficients $a(n, k)$. The integer n is already fixed, we show this result by induction on l and k. For $l=0$, we have seen that this result was true for all integers k. Suppose Eq. (4) holds for all k up to a rank l and show that it is still true for all k the rank $l+1$.

$$
\begin{aligned}
& \Sigma_{n}^{2^{n} k+l+1}=\Sigma_{n}^{2^{n} k+l}+\Sigma_{n-1}^{2^{n-1}}(2 k)+l=a(n, l) u_{k}+a(n-1, l) u_{2 k} \\
& =a(n, l) u_{k}+a(n-1, l) u_{k}=(a(n, l)+a(n-1, l)) u_{k} \\
& \begin{aligned}
\Sigma_{n}^{2^{n} k+2^{n-1}+l+1} & =\Sigma_{n}^{2^{n} k+2^{n-1}+l}+\Sigma_{n-1}^{2^{n-1}}(2 k+1)+l \\
& =a\left(n, l+2^{n-1}\right) u_{k}+a(n-1, l) u_{2 k+1} \\
& =a(n, l) u_{k}-a(n-1, l) u_{k} \\
& =\left(a\left(n+2^{n-1}, l\right)-a(n-1, l)\right) u_{k}
\end{aligned}
\end{aligned}
$$

Then, we verify the last relation of the lemma:

$$
\begin{aligned}
a\left(n+1, l+2^{n}\right) & =a\left(n+1, l+2^{n}-1\right)-a(n, l-1) \\
& =a\left(n+1, l+2^{n}-2\right)-a(n, l-2)-a(n, l-1) \\
& =a\left(n+1,2^{n}\right)-\sum_{j=0}^{l-1} a(n, j)
\end{aligned}
$$

We get $a\left(n+1, l+2^{n}\right)=a\left(n+1,2^{n}\right)-a(n+1, l)$.

Lemma 2. For any integer n, $a\left(n, 2^{n-1}\right)=2^{(n-1)(n-2) / 2}$.
Proof. Since $a(1,1)=1$, this result is immediate by induction from the relation:

$$
\begin{aligned}
a\left(n+1,2^{n}\right) & =\sum_{l=0}^{2^{n}-1} a(n, l)=\sum_{l=0}^{2^{n-1}-1} a(n, l)+\sum_{l=0}^{2^{n-1}-1} a\left(n, l+2^{n-1}\right) \\
& =\sum_{l=0}^{2^{n-1}-1} a(n, l)+\sum_{l=0}^{2^{n-1}-1}\left(a\left(n, 2^{n-1}\right)-a(n, l)\right) \\
& =\sum_{l=0}^{2^{n-1}-1} a\left(n, 2^{n-1}\right)=2^{n-1} a\left(n, 2^{n-1}\right)
\end{aligned}
$$

So, $a\left(n+1,2^{n}\right)=2^{n-1} \cdot 2^{(n-1)(n-2) / 2}=2^{(n+1-1)(n+1-2) / 2}$.
Lemma 3. For every integer n, and $l \in\left\{0, \ldots, 2^{n}-1\right\}$,

$$
\begin{equation*}
0 \leq a(n, l) \leq 2^{(n-1)(n-2) / 2} . \tag{5}
\end{equation*}
$$

Proof. We will show this by induction on the integer n. We initialized the recurrence. We suppose that the result is true up to the rank n and show that it is still true to the rank $n+1$.

Suppose then that for each integer $l \in\left\{0, \ldots, 2^{n}-1\right\}$, Eq. (5) holds. Since for every $l \in\left\{0, \ldots, 2^{n}-1\right\}$,

$$
a(n+1, l+1)=a(n, l)+a(n+1, l) \geq 0
$$

the sequence $(a(n+1, l))_{l \in\left\{0, \ldots, 2^{n}\right\}}$ increases from 0 to $2^{(n-1)(n-2) / 2}$ for $l=2^{n}$. We can then conclude because if $l \in\left\{0, \ldots, 2^{n}-1\right\}$,

$$
0 \leq a\left(n+1, l+2^{n}\right)=2^{(n-1)(n-2) / 2}-a(n+1, l) \leq 2^{(n-1)(n-2) / 2}
$$

Lemma 4. For every integer n, and $l \in\left\{0, \ldots, 2^{n-2}-1\right\}$,

$$
a(n, 2 l+1) \geq a(n, 2 l) \geq 2^{n-2} a(n, l)
$$

Proof. We prove this lemma by induction on n. For $n=1$, the result is immediate. We show that if the result is true up to the rank n, it is still true to the rank $n+1$. We show this by induction on l. From Lemma 1, this is true for $l=0$ and $l=1$. We suppose that the result is true for $2 l$ and $2 l+1$, and we show that it is still true for $2 l+2$ and $2 l+3$.
If $l \in\left\{0, \ldots, 2^{n-2}-1,\right\}$, then $a(n, 2 l) \leq a(n, 2 l+1)$ and

$$
\begin{aligned}
a(n+1,2(l+1)+1) & \geq a(n+1,2(l+1)) \\
& \geq a(n+1,2 l)+a(n, 2 l)+a(n, 2 l+1) \\
& \geq 2^{n-1} a(n, l)+a(n, 2 l)+a(n, 2 l+1) \\
& \geq 2^{n-1} a(n, l)+2 a(n, 2 l) \\
& \geq 2^{n-1} a(n, l)+22^{n-2} a(n-1, l) \\
& \geq 2^{n-1}(a(n, l)+a(n-1, l)) \\
& \geq 2^{n-1} a(n, l+1) .
\end{aligned}
$$

If $l \in\left\{2^{n-2}, \ldots, 2^{n-1}-1\right.$, $\}$, then $a(n, 2 l) \geq a(n, 2 l+1)$ and

$$
\begin{aligned}
a(n+1,2(l+1)+1) & \geq a(n+1,2(l+1)) \\
& \geq a(n+1,2 l)+a(n, 2 l)+a(n, 2 l+1) \\
& \geq 2^{n-1} a(n, l)+a(n, 2 l)+a(n, 2 l+1) \\
& \geq 2^{n-1} a(n, l)+2 a(n, 2 l+1) \\
& \geq 2^{n-1} a(n, l)+22^{n-2} a(n-1, l) \\
& \geq 2^{n-1}(a(n, l)+a(n-1, l)) \\
& \geq 2^{n-1} a(n, l+1) . \quad \square
\end{aligned}
$$

5. Proof of Theorem 1

Let us start by proving the following lemma.
Lemma 5. Let n be an integer greater than or equal to 1.

1. For each integer $m, f_{n}(2 m+1)=u_{m}$ and $f_{n}(2 m)=0$.
2. For each real $x, f_{n}(x) \in[-1,1]$.
3. For each integer m and for each $x \in[0,2]$,

$$
\begin{equation*}
f_{n}(x+2 m)=-f_{n}(x) u_{m} \tag{6}
\end{equation*}
$$

4. For each integer m, if $u_{m}=-1, f_{n}$ increases on $[m, m+1]$, and if $u_{m}=1, f_{n}$ decreases on [$m, m+1]$. In particular, f_{n} and u_{m} have the same sign on $[2 m, 2 m+2]$.
5. For each couple of reals $(x, y) \in[0,2]^{2}:\left|f_{n}(x)-f_{n}(y)\right| \leq|x-y|$.
6. For each real $x \in[0,1]$, the sequence $\left(f_{n}(x)\right)_{n}$ decreases.
7. For each real $x \in[2 m, 2 m+1],\left(f_{n}(x)\right)_{n}$ is decreasing if $u_{m}=-1$, and increasing otherwise. And for each real $x \in[2 m+1,2 m+2],\left(f_{n}(x)\right)_{n}$ is increasing if $u_{m}=-1$, and decreasing otherwise.

Proof of point 1 of Lemma 5. We fix an integer $n \geq 1$, and an integer m. By the definition of functions $f_{n}, f_{n}(2 m)=\Sigma_{n}^{2^{n} m} 2^{-(n-1)(n-2) / 2}=0$ and

$$
f_{n}(2 m)=\Sigma_{n}^{2^{n} m+2^{n-1}} 2^{-(n-1)(n-2) / 2}=2^{(n-1)(n-2) / 2} u_{m} 2^{-(n-1)(n-2) / 2}=u_{m}
$$

Proof of point 2 of Lemma 5. From Lemma 3, for each positive real x :

$$
\begin{aligned}
\left|f_{n}(x)\right| & \leq \sup \left\{\left|x_{n}^{2^{n} k+l}\right| ; k \in \mathbb{N} \text { and } l \in\left\{0, \ldots, 2^{n}\right\}\right\} \\
& \leq \sup \left\{\left|\Sigma_{n}^{2^{n} k+l} 2^{-(n-1)(n-2) / 2}\right| ; k \in \mathbb{N} \text { and } l \in\left\{0, \ldots, 2^{n}\right\}\right\} \\
& \leq \sup \left\{a(n, l) 2^{-(n-1)(n-2) / 2} ; l \in\left\{0, \ldots, 2^{n}\right\}\right\} .
\end{aligned}
$$

From Lemma 3, $\left|a(n, l) 2^{-(n-1)(n-2) / 2}\right| \leq 1$ and $\left|f_{n}(x)\right| \leq 1$.
Proof of point 3 of Lemma 5. We fix a real $x=\frac{k}{2^{n-1}}+\delta_{x} \in[0,2)$, and an integer m.

$$
\begin{aligned}
f_{n}(x+2 m) & =f_{n}\left(\frac{k+m 2^{n}}{2^{n-1}}+\delta_{x}\right)=x_{n}^{k+m 2^{n}}+\delta_{x}\left(x_{n}^{k+m 2^{n}+1}-x_{n}^{k+m 2^{n}}\right) \\
& =-u_{m}\left(x_{n}^{k+m 2^{n}}+\delta_{x}\left(x_{n}^{k+m 2^{n}+1}-x_{n}^{k+m 2^{n}}\right)\right)=-u_{m} f_{n}(x)
\end{aligned}
$$

We treat now the case where $x=2 m$. From Point $1, f_{n}(2 m)=f_{n}(0)=0$ and this point is demonstrated.

Proof of point 4 of Lemma 5. We verify this result by induction on n. For $n=1$, the result is true. Now, we verify that if it is true up to the rank $n-1$, it will be still true to the rank n. For any integer k,

$$
\begin{aligned}
f_{n}\left(\frac{k}{2^{n-1}}\right)-f_{n}\left(\frac{k+1}{2^{n-1}}\right) & =x_{n}^{k}-x_{n}^{k+1}=\left(\Sigma_{n}^{k}-\Sigma_{n}^{k+1}\right) 2^{-(n-1)(n-2) / 2} \\
& =\Sigma_{n-1}^{k} 2^{-(n-1)(n-2) / 2}=\Sigma_{n-1}^{k} 2^{-(n-1-1)(n-1-2) / 2} 2^{-n+1} \\
& =x_{n-1}^{k} 2^{-n+1}=f_{n-1}\left(\frac{k}{2^{n-2}}\right) 2^{-n+1} .
\end{aligned}
$$

So, if $k=m 2^{n-1}+l$, with $0 \leq l \leq 2^{n-1}-1$, then $\frac{k}{2^{n-2}}=\frac{l}{2^{n-2}}+2 m$, and $f_{n-1}\left(\frac{k}{2^{n-2}}\right)$ and u_{m} have the same sign. Then, f_{n} is decreasing on $[m, m+1]$ if $u_{m}=-1$, and increasing otherwise.

And if $k=(m+1) 2^{n-1}+l$, with $0 \leq l \leq 2^{n-1}-1$, then $\frac{k}{2^{n-2}}=\frac{l}{2^{n-2}}+2(m+1)$, and $f_{n-1}\left(\frac{k}{2^{n-2}}\right)$ have the same sign as u_{m+1}, and so f_{n} is decreasing on $[m, m+1]$ if $u_{m+1}=-1$, and increasing otherwise.

We suppose now that $u_{m}=u_{2 m}=-1$. The function f_{n} decreases from 0 to -1 on $[2 m, 2 m+1]$, and increases from -1 to 0 on $[2 m+1,2 m+2]$. So, the function is negative on $[2 m, 2 m+2]$. We can then use the same argument if $u_{m}=1$ to complete the proof of this point.

Proof of point 5 of Lemma 5. We fix two reals x and y, such that $x \leq y$, verifying:

$$
x=\frac{k}{2^{n-1}}+\delta_{x} \quad \text { and } \quad y=\frac{l}{2^{n-1}}+\delta_{y}
$$

where δ_{x} and δ_{y} are less than $1 / 2^{n-1}$.

$$
\begin{aligned}
f_{n}(x)-f_{n}(y)= & x_{n}^{k}+2^{n-1} \delta_{x}\left(x_{n}^{k+1}-x_{n}^{k}\right)-x_{n}^{l}-2^{n-1} \delta_{y}\left(x_{n}^{l+1}-x_{n}^{l}\right) \\
= & x_{n}^{k}-x_{n}^{k+1}+\cdots+x_{n}^{l-1}+x_{n}^{l}+2^{n-1} \delta_{x}\left(x_{n}^{k+1}-x_{n}^{k}\right) \\
& -2^{n-1} \delta_{y}\left(x_{n}^{l+1}-x_{n}^{l}\right) \\
= & \left(f_{n-1}\left(\frac{k}{2^{n-2}}\right)+\cdots+f_{n-1}\left(\frac{l-1}{2^{n-1}}\right)\right) 2^{1-n}-\delta_{x} f_{n-1}\left(\frac{k}{2^{n-2}}\right) \\
& +\delta_{y} f_{n-1}\left(\frac{l}{2^{n-2}}\right) .
\end{aligned}
$$

Since f_{n-1} is negative on $[0,1]$:

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq \frac{l-k}{2^{n-1}}+\delta_{y}-\delta_{x}=|x-y|
$$

Proof of point 6 of Lemma 5. We show that for each integer N and each integer $l \in\{0, \ldots$, $\left.2^{N-1}-1\right\}$, the sequence $\left(f_{n+N+1}\left(\frac{l}{2^{N-1}}\right)\right)_{n}$ is decreasing:

$$
\begin{aligned}
f_{n+N+1}\left(l / 2^{N-1}\right) & =f_{n+N+1}\left(\frac{l 2^{n}}{2^{N+n-1}}\right)=f_{n+N+1}\left(\frac{l 2^{n}-1}{2^{N+n-1}}\right)=x_{N+n+1}^{l 2^{n}} \\
& =\Sigma_{N+n+1}^{l 2^{n}} 2^{(N+n)(N+n-2)}=a\left(N+n+1, l 2^{n}\right) 2^{(N+n)(N+n-2)} u_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =-a\left(N+n+1, l 2^{n}\right) 2^{(N+n)(N+n-2)} \\
& \leq-2^{N+n-1} a\left(N+n, l 2^{n-1}\right) 2^{(N+n)(N+n-1) / 2}
\end{aligned}
$$

This result is then proved because

$$
\begin{aligned}
-2^{N+n-1} a\left(N+n, l 2^{n-1}\right) 2^{(N+n)(N+n-1) / 2} & =-a\left(N+n, l 2^{n-1}\right) 2^{(N+n-1)(N+n-2) / 2} \\
& =a\left(N+n, l 2^{n-1}\right) 2^{(N+n-1)(N+n-2) / 2} u_{0} \\
& =f_{n+N}\left(l / 2^{N-1}\right) .
\end{aligned}
$$

Then, $f_{N+n+1}\left(l / 2^{N-1}\right) \leq f_{N+n}\left(l / 2^{N-1}\right)$.
Proof of point 7 of Lemma 5. Let $x \in[0,1]$ and m be an integer. We deduce the proof of this point from the following remarks:

$$
f_{n}(x+1)=-1-f_{n}(x) \quad \text { and } \quad f_{n}(x+2 m)=-u_{m} \cdot f_{n}(x)
$$

Proof of Theorem 1. For each real number x, the sequence $\left(f_{n}(x)\right)_{n}$ is monotone and bounded, so it converges. Let $f_{\infty}(x)$ denote the limit. It is clear that the function f_{∞} is 1 -Lipschitz. The third point is proved from Eq. (6). With the previous lemma, we can deduce that the range of the function f_{∞} is included in $[-1,1]$ and that for each positive integer m :

$$
f_{\infty}(2 m)=0 \quad \text { and } \quad f_{\infty}(2 m+1)=u_{m}
$$

We need to verify that it is a solution of Eq. (1). We fix a positive real $X \in[2 m, 2 m+2[$ and an integer n such that $\left.\left[X, X+1 / 2^{n-1}\right] \subset\right] 2 m, 2 m+2[$. We fix l, the integer such that $0 \leq \delta_{X}=X-l / 2^{n-1} \leq 1 / 2^{n-1}$.

Then for any integer m sufficiently large:

$$
\begin{aligned}
f_{n+m+1}(X) & =f_{n+m+1}\left(\frac{l 2^{m}}{2^{n+m-1}}\right)+f_{n+m+1}(X)-f_{n+m+1}\left(\frac{l}{2^{n-1}}\right) \\
& =2^{1-n-m} \sum_{j=0}^{l 2^{m}-1} f_{n+m}\left(\frac{j}{2^{n+m}}\right)+f_{n+m+1}(X)-f_{n+m+1}\left(\frac{l}{2^{n-1}}\right) .
\end{aligned}
$$

Since for each real x, the sequence $\left(f_{n}(x)\right)_{n}$ is monotone, we let m tend to infinity to find:

$$
f_{\infty}(X)=\int_{0}^{2 \frac{l}{2^{n-1}}} f_{\infty}(x) d x+f_{\infty}(X)-f_{\infty}\left(\frac{l}{2^{n-1}}\right)
$$

We deduce therefore that

$$
\left|f_{\infty}(X)-\int_{0}^{2 X} f_{\infty}(x) d x\right| \leq 2\left|f_{\infty}(X)-f_{\infty}\left(\frac{l}{2^{n-1}}\right)\right| \leq \frac{1}{2^{n-2}}
$$

Then, when n goes to infinity, $f_{\infty}(X)=\int_{0}^{2 X} f_{\infty}(x) d x$.

References

[1] B. Adamczewski, Répartition des suites $(n \alpha)_{n \in \mathbb{N}}$ et substitutions, Acta Arith. 112 (1) (2004) 1-22.
[2] J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, B.E. Sagan, A relative of the Thue-Morse sequence, Discrete Math. 139 (1995) 446-455.
[3] J. Berstel, Axel Thue's work on repetitions in words, Invited Lecture at the 4th Conference on Formal Power Series and Algebraic Combinatorics, pp. 65-80, 1992.
[4] H. Kesten, Uniform distribution mod 1, Ann. Math. 71 (2) (1960) 445-471.
[5] A. de Luca, S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Comput. Sci. 63 (1989) 333-348.
[6] C.G. Pinner, On the one-sided boundedness of sums of fractional parts $\left(\{n \alpha+\gamma\}-\frac{1}{2}\right)$, J. Number Theory 81 (1) (2000) 170-204.
[7] M. Prunescu, The Thue-Morse-Pascal double sequence and similar structures, C. R. Acad. Sci. 349 (2011) 939-942.

[^0]: E-mail address: bertazzon@iml.univ-mrs.fr.
 0019-3577/\$ - see front matter © 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
 doi:10.1016/j.indag.2012.01.003

