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Abstract

It is a classical fact that the exponential function is a solution of the integral equation
 X

0 f (x) dx +

f (0) = f (X). If we slightly modify this equation to
 X

0 f (x) dx + f (0) = f (αX) with α ∈]0, 1[, it seems
that no classical techniques apply to yield solutions. In this article, we consider the parameter α = 1/2.
We will show the existence of a solution which takes the values of the Thue–Morse sequence on the odd
integers.
c⃝ 2012 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider the functional equation X

0
f (x)dx + f (0) = f


X

2


. (1)

We can see that the set of continuous solutions is a closed vector space, containing the
identically zero function. It is quite clear that any continuous function satisfying Eq. (1) is
differentiable infinitely many times. So, Eq. (1) can be rewritten f (X) = f ′ (X/2) /2.
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Fig. 1. Representation of the graph of f∞.

We can easily verify that the nonzero solutions cannot be expanded in a series. In addition,
two solutions equal in a neighborhood of 0 are equal everywhere.

We let τ denote the Thue–Morse substitution. It is a morphism of the free monoid generated
by −1 and 1, defined by τ(−1) = (−1)1 and τ(1) = 1(−1) and let u = (un)n≥0 =

(−1)11(−1)1(−1)(−1)1 · · · be the Thue–Morse sequence, one of the fixed points of this
substitution. See [2,3,5] for details.

The aim of this work is to show the following result:

Theorem 1. There exists a continuous function f∞ valued in [−1, 1], solution of Eq. (1), such
that (see Fig. 1)

• for each integer n, f∞(2n + 1) = un and f∞(2n) = 0;
• for each negative real number x, f∞(x) = 0;
• for each positive real number x, | f∞(x)| = | f∞(x + 2)|.

2. Introduction of some combinatorial objects

For any integers k ≥ 0 and n ≥ 1, we define the quantities (Σ k
n )(k,n)∈N2 by

Σ k
0 = uk and Σ 0

n = 0, (2)

and by induction for any integers k ≥ 0 and n ≥ 0, by

Σ k+1
n+1 = Σ k

n + Σ k
n+1. (3)

In [7], Prunescu has studied the behavior of certain double sequences, called recurrent two-
dimensional sequences in a more general context. For example when the initialization of the
induction given in Eq. (2) is

Σ k
0 = vk and Σ 0

n = wn,

where (vn)n and (wn)n are sequences such that v0 = w0. He is particularly interested in the case
where v = w = u.

If we cleverly renormalize the lines of the standard Pascal triangle, we can approximate
a Gaussian curve. We will renormalize the columns of the Pascal triangle associated to the
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Fig. 2. “Pascal’s triangle” associated to the Thue–Morse sequence.
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Fig. 3. Representation of graph of f4, f6 and f∞.

Thue–Morse sequence, to approximate the function f∞ (see Fig. 2). We will see that each column
is uniformly bounded. This is a very special property of the Thue–Morse sequence.

This property does not hold for Sturmian words, for which the sequence (Σ k
2 )k is not bounded.

More precisely, for each parameter α ∈ [0, 1], we put v(α) =

vn(α)


n the sequence defined for

each integer n by vn(α) = ⌊(n + 1)α⌋ − ⌊nα⌋. We associate to the sequence v(α) the sequence
w(α) =


wn(α)


n defined for each integer n by wn(α) = α if vn(α) = 0, and wn(α) = −(1−α)

otherwise. So, the sequence

Σ k

1


1 defined in (3) associated to the sequence w(α) is bounded.

But the sequence (Σ k
2 )k is not bounded. We refer to [1,4,6].

For all integers n, we define a real function fn , by fn(x) = 0 if x ≤ 0, and

fn(x) = xk
n + 2n−1δx (xk+1

n − xk
n ), if x =

k

2n−1 + δx and 0 ≤ δx < 21−n

for an integer k, with the notation xk
n = 2−(n−1)(n−2)/2

· Σ k
n (see Fig. 3).

We may also approach this problem from a dynamical point of view. We define T , the
application from the set of real sequences into itself by

T

(yn)n≥1


=


y1, y2 + y1, y3 +

y2

21 , . . . , yn+1 +
yn

2n−1 , . . .


.

We must then consider the n-th coordinates of the sequence (yk)k≥0 up to renormalization, where
yk

= (yk
n )n≥1, is defined by induction by y0

= 0 = (0, . . . , 0, . . .), and for each integer k ≥ 1,

yk+1
= T (yk) − (uk, 0, . . . , 0, . . .).
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3. Calculation of points xk
n for the first n

We calculate the initial values of sequences (xk
n )k . To do this, we note that for each integer k,

u2k = uk = −u2k+1.
Σ 2k

1 = 0,

Σ 2k+1
1 = u2k = uk,

⇐⇒


x2k

1 = 0,

x2k+1
1 = uk .

Σ 4k
2 = 0,

Σ 4k+1
2 = Σ 4k

2 + Σ 4k
1 = 0,

Σ 4k+2
2 = Σ 4k+1

2 + Σ 4k+1
1 = u2k = uk,

Σ 4k+3
2 = Σ 4k+2

2 + Σ 4k+2
1 = u2k = uk,

⇐⇒


x4k

2 = 0,

x4k+1
2 = 0,

x4k+2
2 = uk,

x4k+3
2 = uk .

Σ 8k
3 = 0,

Σ 8k+1
3 = Σ 8k

3 + Σ 8k
2 = 0,

Σ 8k+2
3 = Σ 8k+1

3 + Σ 8k+1
2 = 0,

Σ 8k+3
3 = Σ 8k+2

3 + Σ 8k+2
2 = u4k = uk,

Σ 8k+4
3 = Σ 8k+3

3 + Σ 8k+3
2 = 2u4k = 2uk,

Σ 8k+5
3 = Σ 8k+4

3 + Σ 8k+4
2 = 2u4k = 2uk,

Σ 8k+6
3 = Σ 8k+5

3 + Σ 8k+5
2 = 2u4k = 2uk,

Σ 8k+7
3 = Σ 8k+6

3 + Σ 8k+6
2 = uk,

⇐⇒



x8k
3 = 0,

x8k+1
3 = 0,

x8k+2
3 = 0,

x8k+3
3 = uk/2,

x8k+4
3 = uk,

x8k+5
3 = uk,

x8k+6
3 = uk,

x8k+7
3 = uk/2.

Σ 16k
4 = 0,

Σ 16k+1
4 = Σ 16k

4 + Σ 16k
3 = 0,

Σ 16k+2
4 = Σ 16k+1

4 + Σ 16k+1
3 = 0,

Σ 16k+3
4 = Σ 16k+2

4 + Σ 16k+2
3 = 0,

Σ 16k+4
4 = Σ 16k+3

4 + Σ 16k+3
3 = uk,

Σ 16k+5
4 = Σ 16k+4

4 + Σ 16k+4
3 = 3uk,

Σ 16k+6
4 = Σ 16k+5

4 + Σ 16k+5
3 = 5uk,

Σ 16k+7
4 = Σ 16k+6

4 + Σ 16k+6
3 = 7uk,

Σ 16k+8
4 = Σ 16k+7

4 + Σ 16k+7
3 = 8uk,

Σ 16k+9
4 = Σ 16k+8

4 + Σ 16k+8
3 = 8uk,

Σ 16k+10
4 = Σ 16k+9

4 + Σ 16k+9
3 = 8uk,

Σ 16k+11
4 = Σ 16k+10

4 + Σ 16k+10
3 = 8uk,

Σ 16k+12
4 = Σ 16k+11

4 + Σ 16k+11
3 = 7uk,

Σ 16k+13
4 = Σ 16k+12

4 + Σ 16k+12
3 = 5uk,

Σ 16k+14
4 = Σ 16k+13

4 + Σ 16k+13
3 = 3uk,

Σ 16k+15
4 = Σ 16k+14

4 + Σ 16k+14
3 = uk,

⇐⇒



x16k
4 = 0,

x16k+1
4 = 0,

x16k+2
4 = 0,

x16k+3
4 = 0,

x16k+4
4 = uk/8,

x16k+5
4 = 3uk/8,

x16k+6
4 = 5uk/8,

x16k+7
4 = 7uk/8,

x16k+8
4 = uk,

x16k+9
4 = uk,

x16k+10
4 = uk,

x16k+11
4 = uk,

x16k+12
4 = 7uk/8,

x16k+13
4 = 5uk/8,

x16k+14
4 = 3uk/8,

x16k+15
4 = uk/8.
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4. First combinatorial results

Lemma 1. For any integers n ≥ 1, k ≥ 0 and l ∈ {0, . . . , 2n
− 1}, there exists a(n, l), which

does not depend on k, such that Σ 2nk+l
n = a(n, l)uk . In particular, Σ 2nk

n = a(n, 0) = 0. For any
integer n ≥ 1 and l ∈ {0, . . . , 2n

− 1}, the coefficients a(n, l) satisfy the following relation:

a(n + 1, l + 1) = a(n + 1, l) + a(n, l)

and a(n + 1, l + 2n
+ 1) = a(n + 1, l + 2n) − a(n, l).

(4)

We conclude that a(n + 1, l + 2n) = a(n + 1, 2n) − a(n + 1, l).

Proof. We have seen in Section 3, that this result is true for the first values of the integer n. We
suppose that the result is true up to a rank n − 1 and we will show that it is still true up to order
n. We start by verifying that Σ 2nk

n+1 is zero for each integer k:

Σ 2nk
n =

2nk−1
l=0

Σ l
n−1 + Σ 0

n+1 =

k−1
j=0

2n
−1

l=0

Σ 2n j+l
n−1

=

k−1
j=0

2n−1
−1

l=0

Σ 2n−1(2 j)+l
n−1 +

2n−1
−1

l=0

Σ 2n−1(2 j+1)+l
n−1


=

k−1
j=0

u2 j

2n−1
−1

l=0

a(n − 1, l) + u2 j+1

2n−1
−1

l=0

a(n − 1, l)


=

2n−1
−1

l=0

a(n − 1, l)

 ·


k−1
j=0

u2 j + u2 j+1


= 0.

Now, we focus on the recurrence relations verified by the coefficients a(n, k). The integer n
is already fixed, we show this result by induction on l and k. For l = 0, we have seen that this
result was true for all integers k. Suppose Eq. (4) holds for all k up to a rank l and show that it is
still true for all k the rank l + 1.

Σ 2nk+l+1
n = Σ 2nk+l

n + Σ 2n−1(2k)+l
n−1 = a(n, l)uk + a(n − 1, l)u2k

= a(n, l)uk + a(n − 1, l)uk = (a(n, l) + a(n − 1, l)) uk .

Σ 2nk+2n−1
+l+1

n = Σ 2nk+2n−1
+l

n + Σ 2n−1(2k+1)+l
n−1

= a(n, l + 2n−1)uk + a(n − 1, l)u2k+1
= a(n, l)uk − a(n − 1, l)uk

=


a(n + 2n−1, l) − a(n − 1, l)


uk .

Then, we verify the last relation of the lemma:

a(n + 1, l + 2n) = a(n + 1, l + 2n
− 1) − a(n, l − 1)

= a(n + 1, l + 2n
− 2) − a(n, l − 2) − a(n, l − 1),

= a(n + 1, 2n) −

l−1
j=0

a(n, j).

We get a(n + 1, l + 2n) = a(n + 1, 2n) − a(n + 1, l). �
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Lemma 2. For any integer n, a(n, 2n−1) = 2(n−1)(n−2)/2.

Proof. Since a(1, 1) = 1, this result is immediate by induction from the relation:

a(n + 1, 2n) =

2n
−1

l=0

a(n, l) =

2n−1
−1

l=0

a(n, l) +

2n−1
−1

l=0

a(n, l + 2n−1)

=

2n−1
−1

l=0

a(n, l) +

2n−1
−1

l=0


a(n, 2n−1) − a(n, l)



=

2n−1
−1

l=0

a(n, 2n−1) = 2n−1a(n, 2n−1).

So, a(n + 1, 2n) = 2n−1
· 2(n−1)(n−2)/2

= 2(n+1−1)(n+1−2)/2. �

Lemma 3. For every integer n, and l ∈ {0, . . . , 2n
− 1},

0 ≤ a(n, l) ≤ 2(n−1)(n−2)/2. (5)

Proof. We will show this by induction on the integer n. We initialized the recurrence. We suppose
that the result is true up to the rank n and show that it is still true to the rank n + 1.

Suppose then that for each integer l ∈ {0, . . . , 2n
− 1}, Eq. (5) holds. Since for every

l ∈ {0, . . . , 2n
− 1},

a(n + 1, l + 1) = a(n, l) + a(n + 1, l) ≥ 0,

the sequence (a(n + 1, l))l∈{0,...,2n} increases from 0 to 2(n−1)(n−2)/2 for l = 2n . We can then
conclude because if l ∈ {0, . . . , 2n

− 1},

0 ≤ a(n + 1, l + 2n) = 2(n−1)(n−2)/2
− a(n + 1, l) ≤ 2(n−1)(n−2)/2. �

Lemma 4. For every integer n, and l ∈ {0, . . . , 2n−2
− 1},

a(n, 2l + 1) ≥ a(n, 2l) ≥ 2n−2a(n, l).

Proof. We prove this lemma by induction on n. For n = 1, the result is immediate. We show that
if the result is true up to the rank n, it is still true to the rank n + 1. We show this by induction on
l. From Lemma 1, this is true for l = 0 and l = 1. We suppose that the result is true for 2l and
2l + 1, and we show that it is still true for 2l + 2 and 2l + 3.

If l ∈ {0, . . . , 2n−2
− 1, }, then a(n, 2l) ≤ a(n, 2l + 1) and

a(n + 1, 2(l + 1) + 1) ≥ a(n + 1, 2(l + 1))

≥ a(n + 1, 2l) + a(n, 2l) + a(n, 2l + 1)

≥ 2n−1a(n, l) + a(n, 2l) + a(n, 2l + 1)

≥ 2n−1a(n, l) + 2a(n, 2l)

≥ 2n−1a(n, l) + 22n−2a(n − 1, l)

≥ 2n−1 (a(n, l) + a(n − 1, l))

≥ 2n−1a(n, l + 1).
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If l ∈ {2n−2, . . . , 2n−1
− 1, }, then a(n, 2l) ≥ a(n, 2l + 1) and

a(n + 1, 2(l + 1) + 1) ≥ a(n + 1, 2(l + 1))

≥ a(n + 1, 2l) + a(n, 2l) + a(n, 2l + 1)

≥ 2n−1a(n, l) + a(n, 2l) + a(n, 2l + 1)

≥ 2n−1a(n, l) + 2a(n, 2l + 1)

≥ 2n−1a(n, l) + 22n−2a(n − 1, l)

≥ 2n−1 (a(n, l) + a(n − 1, l))

≥ 2n−1a(n, l + 1). �

5. Proof of Theorem 1

Let us start by proving the following lemma.

Lemma 5. Let n be an integer greater than or equal to 1.

1. For each integer m, fn(2m + 1) = um and fn(2m) = 0.
2. For each real x, fn(x) ∈ [−1, 1].
3. For each integer m and for each x ∈ [0, 2],

fn(x + 2m) = − fn(x)um . (6)

4. For each integer m, if um = −1, fn increases on [m, m + 1], and if um = 1, fn decreases on
[m, m + 1]. In particular, fn and um have the same sign on [2m, 2m + 2].

5. For each couple of reals (x, y) ∈ [0, 2]
2: | fn(x) − fn(y)| ≤ |x − y|.

6. For each real x ∈ [0, 1], the sequence ( fn(x))n decreases.
7. For each real x ∈ [2m, 2m+1], ( fn(x))n is decreasing if um = −1, and increasing otherwise.

And for each real x ∈ [2m + 1, 2m + 2], ( fn(x))n is increasing if um = −1, and decreasing
otherwise.

Proof of point 1 of Lemma 5. We fix an integer n ≥ 1, and an integer m. By the definition of
functions fn , fn(2m) = Σ 2nm

n 2−(n−1)(n−2)/2
= 0 and

fn(2m) = Σ 2nm+2n−1

n 2−(n−1)(n−2)/2
= 2(n−1)(n−2)/2um2−(n−1)(n−2)/2

= um . �

Proof of point 2 of Lemma 5. From Lemma 3, for each positive real x :

| fn(x)| ≤ sup

|x2nk+l

n |; k ∈ N and l ∈ {0, . . . , 2n
}


≤ sup


|Σ 2nk+l

n 2−(n−1)(n−2)/2
|; k ∈ N and l ∈ {0, . . . , 2n

}


≤ sup


a(n, l)2−(n−1)(n−2)/2

; l ∈ {0, . . . , 2n
}


.

From Lemma 3, |a(n, l)2−(n−1)(n−2)/2
| ≤ 1 and | fn(x)| ≤ 1. �

Proof of point 3 of Lemma 5. We fix a real x =
k

2n−1 + δx ∈ [0, 2), and an integer m.

fn(x + 2m) = fn


k + m2n

2n−1 + δx


= xk+m2n

n + δx (xk+m2n
+1

n − xk+m2n

n )

= −um


xk+m2n

n + δx (xk+m2n
+1

n − xk+m2n

n )


= −um fn(x).
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We treat now the case where x = 2m. From Point 1, fn(2m) = fn(0) = 0 and this point is
demonstrated. �

Proof of point 4 of Lemma 5. We verify this result by induction on n. For n = 1, the result is
true. Now, we verify that if it is true up to the rank n − 1, it will be still true to the rank n. For
any integer k,

fn


k

2n−1


− fn


k + 1

2n−1


= xk

n − xk+1
n = (Σ k

n − Σ k+1
n )2−(n−1)(n−2)/2

= Σ k
n−12−(n−1)(n−2)/2

= Σ k
n−12−(n−1−1)(n−1−2)/22−n+1

= xk
n−12−n+1

= fn−1


k

2n−2


2−n+1.

So, if k = m2n−1
+ l, with 0 ≤ l ≤ 2n−1

− 1, then k
2n−2 =

l
2n−2 + 2m, and fn−1(

k
2n−2 ) and um

have the same sign. Then, fn is decreasing on [m, m + 1] if um = −1, and increasing otherwise.
And if k = (m + 1)2n−1

+ l, with 0 ≤ l ≤ 2n−1
− 1, then k

2n−2 =
l

2n−2 + 2(m + 1), and

fn−1(
k

2n−2 ) have the same sign as um+1, and so fn is decreasing on [m, m + 1] if um+1 = −1,
and increasing otherwise.

We suppose now that um = u2m = −1. The function fn decreases from 0 to −1 on
[2m, 2m + 1], and increases from −1 to 0 on [2m + 1, 2m + 2]. So, the function is negative
on [2m, 2m + 2]. We can then use the same argument if um = 1 to complete the proof of this
point. �

Proof of point 5 of Lemma 5. We fix two reals x and y, such that x ≤ y, verifying:

x =
k

2n−1 + δx and y =
l

2n−1 + δy,

where δx and δy are less than 1/2n−1.

fn(x) − fn(y) = xk
n + 2n−1δx (xk+1

n − xk
n ) − x l

n − 2n−1δy(x l+1
n − x l

n)

= xk
n − xk+1

n + · · · + x l−1
n + x l

n + 2n−1δx (xk+1
n − xk

n )

− 2n−1δy(x l+1
n − x l

n)

=


fn−1


k

2n−2


+ · · · + fn−1


l − 1

2n−1


21−n

− δx fn−1


k

2n−2


+ δy fn−1


l

2n−2


.

Since fn−1 is negative on [0, 1]:

| fn(x) − fn(y)| ≤
l − k

2n−1 + δy − δx = |x − y|. �

Proof of point 6 of Lemma 5. We show that for each integer N and each integer l ∈ {0, . . . ,

2N−1
− 1}, the sequence


fn+N+1


l

2N−1


n

is decreasing:

fn+N+1(l/2N−1) = fn+N+1


l2n

2N+n−1


= fn+N+1


l2n

− 1

2N+n−1


= x l2n

N+n+1

= Σ l2n

N+n+12(N+n)(N+n−2)
= a(N + n + 1, l2n)2(N+n)(N+n−2)u0
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= −a(N + n + 1, l2n)2(N+n)(N+n−2)

≤ −2N+n−1a(N + n, l2n−1)2(N+n)(N+n−1)/2.

This result is then proved because

−2N+n−1a(N + n, l2n−1)2(N+n)(N+n−1)/2
= −a(N + n, l2n−1)2(N+n−1)(N+n−2)/2

= a(N + n, l2n−1)2(N+n−1)(N+n−2)/2u0

= fn+N (l/2N−1).

Then, fN+n+1(l/2N−1) ≤ fN+n(l/2N−1). �

Proof of point 7 of Lemma 5. Let x ∈ [0, 1] and m be an integer. We deduce the proof of this
point from the following remarks:

fn(x + 1) = −1 − fn(x) and fn(x + 2m) = −um · fn(x). �

Proof of Theorem 1. For each real number x , the sequence ( fn(x))n is monotone and bounded,
so it converges. Let f∞(x) denote the limit. It is clear that the function f∞ is 1-Lipschitz. The
third point is proved from Eq. (6). With the previous lemma, we can deduce that the range of the
function f∞ is included in [−1, 1] and that for each positive integer m:

f∞(2m) = 0 and f∞(2m + 1) = um .

We need to verify that it is a solution of Eq. (1). We fix a positive real X ∈ [2m, 2m + 2[

and an integer n such that [X, X + 1/2n−1
] ⊂ ]2m, 2m + 2[. We fix l, the integer such that

0 ≤ δX = X − l/2n−1
≤ 1/2n−1.

Then for any integer m sufficiently large:

fn+m+1(X) = fn+m+1


l2m

2n+m−1


+ fn+m+1(X) − fn+m+1


l

2n−1


= 21−n−m

l2m
−1

j=0

fn+m


j

2n+m


+ fn+m+1(X) − fn+m+1


l

2n−1


.

Since for each real x , the sequence ( fn(x))n is monotone, we let m tend to infinity to find:

f∞(X) =

 2 l
2n−1

0
f∞(x)dx + f∞(X) − f∞


l

2n−1


.

We deduce therefore that f∞(X) −

 2X

0
f∞(x)dx

 ≤ 2

 f∞(X) − f∞


l

2n−1

 ≤
1

2n−2 .

Then, when n goes to infinity, f∞(X) =
 2X

0 f∞(x)dx . �
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