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Much of the work in systems neuroscience thus far has focused on the brain’s parts studied individually. The
past 20 years has seen the advent, rise, and application of multiple-electrode technology. This allows the
study of the activity of many neurons simultaneously, which in turn has provided insight into how different
neuron populations interact and collaborate to produce thought and action.
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Introduction
Many of our current views of brain function center around

hypotheses of interactions within and between different levels

of networks: neurons, brain areas, systems. For example, the

hippocampus is thought to consolidate memories in the cerebral

cortex, top-down signals are thought to feedback to and modu-

late sensory cortex activity, etc. However, this is still mostly

conjecture, inferred largely from indirect evidence such as

anatomical connections and properties of the brain’s individual

parts studied in isolation.

This modular understanding stands to reason. Identifying and

characterizing the brain’s components is prerequisite to any

integrated understanding of the whole, and technological limita-

tions have largely restricted us to piecemeal investigation. But

technical and methodological advancements over the past

20 years have led to increasing investigations on the network

level. One new technique is human functional imaging. This pro-

vides a ‘‘big picture’’ of patterns of blood flow and, by examining

their fluctuations, identifies putative large-scale, brain-wide

networks (Dosenbach et al., 2007; Fox and Raichle, 2007).

Another recent advance is multiple-electrode neurophysiol-

ogy, the implantation of up to 100 or more electrodes to study

the activity of many neurons simultaneously, often in different

brain regions. This adds to the long-standing single-electrode

approach. It maintains the spatial and temporal precision

needed to eavesdrop on brain function at the level of one of its

elemental units, the neuron, but at the same time, it has the reach

to examine neurons in a global context: the functioning of other

neurons. This has led to new insights that would not otherwise

have been possible. Here, we review this approach and some

of its new insights into brain function.

Comparing Different Brain Areas
Multiple- and single-electrode approaches complement each

other because each is well suited for different levels of investiga-

tion. With single electrodes, the focus is necessarily on the

properties of each neuron. Investigators typically select only

the most active neurons with properties of interest and tailor

the experimental factors for those neurons. This is ideal for study-

ing the unique characteristics of single neurons. With multiple

electrodes, one loses this level of individualized detail. It is
impractical and/or impossible to select individual neurons on

the basis of a particular property on each of many electrodes

and optimize conditions for each one simultaneously. But, in

return, one gains greater sensitivity at comparing different neuron

populations because the neurons can be compared under iden-

tical conditions. The painstaking nature of the single-electrode

approach means that different investigators tend to study

neurons in different brain areas with different experimental para-

digms in different animals with different training histories. All of

this can affect neural activity and thus confounds comparisons

across areas, potentially producing spurious differences and/or

obscuring real ones. Also, preselecting neurons for a particular

property or response strength can normalize the neurons

sampled and make neurons from different areas seem more alike

than they actually are. With multiple electrodes, neurons typically

are selected more randomly; any neuron encountered is studied.

This approach is well suited for characterizing neuron properties

at the population level: how a whole neuron population contrib-

utes to function, with a few neurons strongly activated and oper-

ating optimally, but many less strongly activated and operating

under nonoptimal conditions.

Single-electrode studies have made important contributions

to a global view of brain function. They have provided maps of

sensory, memory, and motor functions and have allowed us to

identify basic behavioral correlates and response properties of

neurons across many regions of the brain. They can also uncover

more shaded differences between brain areas if potential

confounds are mitigated by using the exact same experimental

paradigm. In an elegant series of studies, Romo and colleagues

used the same somatosensory discrimination task to record

individual neurons in multiple cortical areas. They found different

degrees of strength and incidence of the sensory, memory, and

motor signals. For example, de Lafuente and Romo (2006) found

a progressive increase in the strength of correlation between

activity and perceptual judgments from the parietal to frontal

cortex. Likewise, Logothetis and colleagues recorded from indi-

vidual neurons throughout visual cortex and found a stronger

correlation between activity and perception in anterior areas

(e.g., Sheinberg and Logothetis, 1997). This approach, however,

is relatively rare because it is very labor intensive. Furthermore,

because single-electrode data acquisition is slow, there can be
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differences in the animal’s level of experience and ongoing

performance between data collected from different brain areas,

confounding comparisons. As a result, single electrodes may

miss more subtle, but important, differences that can be better

detected with the high fidelity of simultaneous recording from

different brain regions under completely identical conditions.

Take, for example, a recent multiple-electrode study of top-

down signals in monkey cortex. Top-down signals are derived

from internal information, the current goal and the knowledge

of the task demands needed to reach it. It is widely assumed

that these signals arise in anterior cortical areas and flow to

posterior cortex to modulate the processing of the bottom-up

(sensory) signals. But there is almost no direct evidence for

this—it is inferred from cortical connections and that more

anterior cortical areas seem to have more complex, multimodal

properties.

Buschman and Miller (2007) tested this by recording from up to

60 electrodes simultaneously implanted in frontal and parietal

cortices. They found that bottom-up (automatic) shifts of atten-

tion to a salient sensory stimulus were registered with a shorter

latency in the parietal than frontal cortex, first in the lateral intra-

parietal area (LIP), then in the lateral prefrontal cortex, and finally

in the frontal eye fields, as if the bottom-up signals from the salient

stimulus flowed through them in succession (Figure 1). By con-

trast, when monkeys had to search for a visual target based solely

on memory, these top-down shifts of attention showed the oppo-

site pattern, registering first in frontal cortex and then parietal

cortex, suggesting that internal shifts of attention originate in

the frontal cortex and are imposed on the posterior cortex.

Figure 1. Timing of the Shift of Top-Down and
Bottom-Up Attention
Bottom-up (pop-out) attention is shown in the left panels (A
and C) and top-down (search) attention in the right panels (B
and D) for the lateral prefrontal cortex (LPFC), frontal eye fields
(FEF), and lateral intraparietal area (LIP).
(A and B) Distribution of times at which each neuron first began
to carry significant information about the target location, rela-
tive to a saccade to the target (at 0 ms). Vertical black line in-
dicates saccade; gray shaded regions indicate mean and ±
one standard deviation of distribution of visual array onset.
(C and D) Normalized cumulative sum of the histograms
shown in (A) and (B), respectively. During bottom-up task
(pop-out), LIP neurons reflected the attention shift before
LPFC and FEF neurons, whereas the opposite was found
during top-down task (search). This suggests that top-down
and bottom-up attention signals flow in opposite directions.
(Reprinted from Buschman and Miller, 2007.)

Multiple electrodes can also give insight into the

transformation of neural signals between areas. A

powerful example is a study by Fyhn et al. (2007).

The investigators found that spatial mapping prop-

erties of neuronal ensembles in the hippocampus

were related to spatial phase relationships between

neurons in the medial entorhinal cortex. This

suggests that coordinated input from the entorhinal

cortex converges onto hippocampal neurons to

produce their place selectivity. Establishing the

nature of such input-output transformations is

essential to understanding the nature of neural

computation. Because the spatial-behavioral correlates of neu-

rons in these regions vary between animals and environments,

this could only have been detected via simultaneous recording

in both areas.

Multiple electrodes can also help compare learning-related

neural activity across brain areas because there is often a high de-

gree of variance in learning. Sometimes we may learn a new task

quickly; other times more sluggishly. Multiple electrodes minimize

this variance by allowing neurons to be compared under identical

learning rates.For example, Pasupathy and Miller (2005) recorded

simultaneously from the lateral prefrontal cortex (PFC) and the

striatum of the basal ganglia (BG) during learning of new arbitrary

rules (akin to ‘‘stop at red’’). They found that learning-related

changes in the striatum preceded those in the PFC. This suggests

that the simple, arbitrary rules were first learned in the BG, which

then trained slower learning mechanisms in the frontal cortex.

These are a few examples of how multiple electrodes can be

used to compare and contrast neuron properties to gain insight

into how information flows and is transformed between brain

areas. Multiple electrodes can also capture more precise tempo-

ral dynamics, synchronous rhythms between neurons on the

millisecond level. These rhythms are often not time-locked to

external events—they rely on internal, not external, clocks—and

thus can only be investigated by simultaneous recording from

multiple brain sites. We discuss this next.

Synchronous Oscillations between Neurons
It has long been known that ‘‘brain waves’’ recorded from the

human scalp exhibit a wide range of rhythmic oscillations (from
484 Neuron 60, November 6, 2008 ª2008 Elsevier Inc.
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<1 to >100 Hz). There is a rich history linking changes in these os-

cillations to cognitive functions like attention and memory. Using

multiple intracranial electrodes adds to this work because it can

offer greater fidelity in detecting and localizing such activity.

Interest in this technique began to grow about 20 years ago

with evidence for a role for synchronized oscillatory activity in

perceptual organization (Gray et al., 1989; Eckhorn et al., 1988).

Gray et al. (1989) found that neurons in visual cortex of cats were

synchronized at about 40–60 Hz when they were activated by

attributes of the same visual stimulus. By contrast, synchrony

was lower or absent when different neurons were activated

simultaneously by different stimuli, suggesting a role for neural

synchronization in feature binding. The idea was that the average

activity of neurons represents stimulus features, while synchroni-

zation between neurons binds those features together (Singer

and Gray, 1995). These findings inspired hypotheses that syn-

chronized oscillations play a role in consciousness (e.g., Crick

and Koch, 1990; Llinás et al., 1998; Buzsáki and Draguhn, 2004).

Synchrony can be useful because it can enhance neural

representations. Spikes arriving simultaneously at downstream

neurons have a greater impact than unsynchronized spikes.

This seems ideal for focal attention. Attention involves enhancing

some stimulus representations at the expense of others. Evi-

dence for this was reported by Desimone and colleagues. Fries

et al. (2001) recorded local field potentials (LFPs) and spiking

activity from recording sites in area V4 that had overlapping

receptive fields. LFPs are often used to detect oscillations

because they reflect coordinated activity across large numbers

of neurons. When monkeys’ attention was directed to a particular

visual stimulus, neurons activated by the stimulus showed in-

creased synchronized gamma band (30–90 Hz) oscillations and

a reduction in low-frequency (<17 Hz) synchronization relative

to V4 sites activated by an unattended stimulus. As the authors

pointed out, this synchronization could effectively increase the

gain at the postsynaptic targets of these neurons. When mon-

keys searched for a particular visual feature (e.g., a color), V4

neurons whose receptive field contained that feature showed

gamma band oscillatory synchronization (Bichot et al., 2005).

Synchrony can also enhance neural processing by putting the

brain and the external world in lockstep. Lakatos et al. (2008)

presented monkeys with a stream of sequential visual and audi-

tory stimuli. The exact timing of their presentation was jittered

a bit, but their average within each stimulus stream was at about

1.5 Hz, and the two streams were out of phase with each other.

When monkeys attended to the visual or auditory stream, LFPs

and spikes in visual cortex synchronized to the rhythm of that

stream and not to the rhythm of the unattended stream. Thus,

attention can also amplify the gain of neural processing of stimuli

by matching the brain’s rhythms to those of the external world.

Oscillatory synchronization may also regulate communication

between brain areas. When neurons are simultaneously depolar-

ized, they are more susceptible to influence from each other.

(Conversely, when they are out of phase, they are less likely to

communicate.) Evidence for this comes from a number of stud-

ies. Bressler et al. (1993) found increased broad-band coherence

between LFPs in visual, motor, and prefrontal cortex of monkeys

during performance of a visual discrimination task. Roelfsema

et al. (1997) observed that patterns of synchrony between areas
depend on task and function. Cats were trained to respond to

a change in a visual stimulus. During the task, visual cortex areas

synchronized more strongly to other visual areas, and motor

areas to other motor areas. Furthermore, changes in the visual

stimulus were associated with increased synchrony between

visual, but not motor, areas. This suggests task-dependent

dynamic coupling between functionally related brain areas.

Pesaran et al. (2008) trained monkeys to alternate between an

instructed choice and free choice of one of three different visual

targets and found increased correlations between spikes and

LFPs between the parietal cortex and premotor cortex during

the free choice. This suggested a free-choice circuit that coordi-

nates activity between these areas to influence the choice.

Saalmann et al. (2007) recorded simultaneously from area LIP

and area MT, a more posterior visual cortical area that is earlier

in the visual cortical pathway. These areas synchronized during

a visual motion matching task, with the LIP leading MT. This, like

the Buschman and Miller (2007) study cited above, suggests an

anterior-to-posterior flow of top-down signals.

Communication between areas may also be regulated by de-

tails of how oscillations match up. Womelsdorf et al. (2007) found

variability in the phase offset between synchronized oscillations

from different visual cortical areas in cats and monkeys. The

authors sorted oscillatory spiking and LFP activity according to

their phase offset and found stronger synchrony between areas

at specific offsets between their oscillations, suggesting that

changes in the phase offset of the oscillations could dynamically

weight the strength of connection between brain areas.

The frequency of the oscillations may also matter for commu-

nication. Buschman and Miller (2007), in their study of top-down

versus bottom-up shifts in attention (see above), found in-

creased synchrony between LFPs in the frontal and parietal cor-

tex in two distinct frequency bands. There was a greater increase

in the lower band (22–34 Hz) for top-down shifts of attention and

a greater increase of synchrony in a higher band (35–55 Hz)

for bottom-up shifts (Figure 2). The authors noted that lower-

frequency synchrony is more forgiving of the exact timing of

spikes and suggested that it may thus reflect the ‘‘broadcast’’

of the top-down signal on a wide anatomical scale. By contrast,

the higher-frequency synchrony may reflect local interactions

that enhance the representation of the salient stimulus for

bottom-up shifts in attention. In any case, these results suggest

that the brain can use different frequency bands, like two differ-

ent spots on the radio dial, for communication related to two

different cognitive functions.

Rhythmic synchrony is not only a cortical phenomenon.

Siapas and Wilson (1998) found evidence for synchrony in aiding

communication between the hippocampus and cortex. During

slow-wave sleep, hippocampal ripples, which are a prominent

LFP signature of offline hippocampal activity, were found to be

correlated with the onset of neocortical spindles, a prominent

LFP signature of offline neocortical activity (Siapas and Wilson,

1998; Sirota et al., 2003). Because sleep (as well as other brain

states) involves neural processing that is largely governed by in-

ternally controlled variables, there is no behavioral measure that

could have been used to detect this synchrony; it could only have

been found by simultaneously recording activity in the hippo-

campus and neocortex. Siapas et al. (2005) also found neuron
Neuron 60, November 6, 2008 ª2008 Elsevier Inc. 485
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activity in the rat prefrontal cortex phase-locked to the theta

oscillations (6–12 Hz) that are prominent in the hippocampus.

Jones and Wilson (2005) further discovered that this phase-lock-

ing was selectively engaged during the choice phase of a spatial

working memory task and was correlated with subsequent

correct choice behavior. The correct-choice effect was not

evident in the activity of single neurons alone.

Rhythmic synchrony can also occur between different subcor-

tical structures. DeCoteau et al. (2007) recorded from the rat hip-

pocampus and striatum during learning of a T maze. They found

increased coherence between hippocampal and striatal theta

rhythms that was stronger in rats that successfully learned the

task. Interestingly, in the successful rats, these oscillations had

an antiphase relationship in proportion to the level of learning.

This suggests that learning may involve changes in the precise

coordination of rhythmic activity between the hippocampus and

striatum in addition to the well-known signal-neuron correlates.

These and other studies raise the possibility that anatomy

offers the scaffolding for potential communication between

areas. Synchronized, rhythmic activity between areas may

regulate their effective connectivity, dynamically controlling

communication by opening preferred channels between areas

only when they need to communicate (Engel et al., 2001; Salinas

and Sejnowski, 2001). Next, we illustrate how precise timing of

neural activity may also play a role in representing information.

Detailed Timing of Activity within Neural Ensembles
It is widely accepted that information is encoded in the brain by

distributed activity across ensembles of neurons both within and

between brain areas. There is increasing evidence that within

these ensembles, information is encoded in patterns of activity

of neurons on the time scale of individual action potentials

(milliseconds) as well as on the time scale of firing rate changes

over time (seconds). Multiple electrodes afford the ability to ex-

amine more complex, dynamic, higher-order structures in neural

activity in which correlations and timing are preserved across the

large-scale ensembles that are believed to underlie the actual

coding of information within the brain. The ability to decode

behavioral neural correlates in the hippocampus was demon-

strated by Wilson and McNaughton (1993), who used the activity

Figure 2. Differences in Local Field Potential
Coherence between LIP and Frontal Cortex during
Top-Down and Bottom-Up Attention
Coherence during the shift of attention (perisaccade, green)
compared to a baseline from the intertrial interval (black) is
plotted. Bottom-up coherence was subtracted from top-
down coherence. Dotted lines indicate significance levels
(p < 0.05, corrected for multiple comparisons). Differences
above the upper dotted line indicate significantly more coher-
ence during top-down than bottom-up attention, and differ-
ences below the lower dotted line indicate significantly more
coherence during bottom-up than top-down attention.
(Modified from Buschman and Miller, 2007.)

of approximately 100 simultaneously recorded

place cells to reconstruct behavioral trajectories

during spatial exploration and identify rapid

changes in neural coding during novel exposure

to an environment.

The ability to identify patterns on the time scale of milliseconds

was demonstrated by Lee and Wilson (2002). The investigators

found that precise activity patterns of multiple hippocampal

place cells during movement was evident during subsequent

periods of non-REM sleep, as if the experience were being re-

played in proper sequential order but at a compressed time scale

(Figure 3). Previous work relied on the use of lower-order corre-

lation methods to search for signatures of memory reactivation

(Wilson and McNaughton, 1994; Skaggs and McNaughton,

1996; Hoffman and McNaughton, 2002). Lee and Wilson were

able to demonstrate the power of multiple-electrode methods

to detect the higher-order structure of temporal relationships

across neurons by explicitly comparing the statistical power of

pairwise correlation methods with higher-order sequence detec-

tion measures. The reactivated patterns were barely detectable

using simple pairwise correlations. By contrast, the use of

higher-order structure increased the power of detection by five

orders of magnitude. This allowed analysis of the content, struc-

ture, and significance of individual reactivation events lasting on

the order of 100 ms. Buzsáki and colleagues found similar results

using a template matching procedure to identify recurring spike

sequences during awake and sleep states (Nadasdy et al., 1999).

This was extended in a study by Foster and Wilson (2006).

They, like Lee and Wilson, found that precisely timed sequential

patterns of hippocampal neural activity that were initially

expressed as an animal ran down a simple linear track were

replayed. These replayed events occurred not during sleep but

rather when the animal stopped at the end of the track for food

reward. But there was a critical difference: the patterns were re-

played in reversed time order, that is, backward. Because many

single neurons could be simultaneously sampled, these reverse

replay events could be detected immediately following the first

lap down the track. The ability to analyze activity patterns follow-

ing a single novel exposure was critical in linking these events to

memory of recent experience. The authors suggested that the

reversal may be useful for linking memory patterns to the conse-

quence of the behaviors they represent: in this case, a reward.

Subsequent studies by Diba and Buzsáki (2007) found that

both forward and reverse sequences could be replayed during

quiet wakefulness, and Johnson and Redish (2007) were able
486 Neuron 60, November 6, 2008 ª2008 Elsevier Inc.
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Figure 3. Replay of Neural Firing Patterns during Sleep
Upper panel shows the average firing rate of eight simultaneously recorded hippocampal place cells as a function of location of the place field (ticks indicate lo-
cation of peak firing) along a linear track (shown to the right). As the animal walks along the track from left to right, the neurons fire in order from 1 to 8 over the course
of the approximately 5 s that it takes to traverse the track. Lower panels display three examples of brief events that occur during subsequent slow-wave sleep in
which the order of neuronal firing recapitulates the previous behavioral sequence, but in a compressed form. (Modified from Lee and Wilson, 2002.)
to correlate sequence patterns during running with future choice

behavior. In each of these cases, the ability to simultaneously

record ensembles of single neurons allowed evaluation of neural

activity patterns that may contribute to discrete learning or

behavioral events.

Replay of sequential patterns of activity at an intermediate

time scale of about one second has also been observed in

both the hippocampus and sensory cortex during periods of

slow-wave sleep. Ji and Wilson (2007) used multiple electrodes

to record from both hippocampus and visual cortex of rats and

found replay of sequential patterns of activity associated with

previous behavior in both areas. Furthermore, the replay in these

brain areas was coordinated: it occurred when both areas were

in an excited ‘‘up-state.’’ The simultaneous monitoring of multi-

ple neurons in each area allowed the content of reactivated

sequences to be evaluated and compared across areas. Based

upon the relative timing of events in both areas, the authors con-

cluded that the visual cortex initiated the reactivation of memory

sequences in the hippocampus that were followed by sequence

memory reactivation in the cortex, thus providing a detailed

picture of the dialog between the hippocampus and neocortex

during slow-wave sleep.

The ability to identify higher-order temporal structure of neural

ensembles at longer time scales during REM sleep was demon-

strated in a study by Louie and Wilson (2001). The investigators

used a template approach to match the activity patterns of many

neurons in the hippocampus across entire REM episodes with

corresponding patterns expressed during periods of running

on a circular track. They concluded that behavioral sequences

spanning minutes, expressed in the patterns of hippocampal

place cells, were replayed during individual REM sleep episodes,

each lasting a similar amount of time.

While these studies interpreted the structure of relative timing

relationships with respect to previously measured behavioral

correlates to establish their significance and to allow reconstruc-
tion of coded content, it is also possible to use the consistency of

patterns independent of any obvious behavioral correlates to

identify potentially meaningful internal representations. Buzsáki

and colleagues have described such patterns as the product

of cell assemblies (Harris et al., 2003; Pastalkova et al., 2008).

Summary
In this short review, we have focused on multiple-electrode stud-

ies that have yielded new insight into brain function. Multiple

electrodes have also been used for the rapid online decoding

of neural signals needed to control prosthetics (e.g., Carmena

et al., 2003; Hochberg et al., 2006; Fetz, 2007; Mulliken et al.,

2008). But all of this is just a step in the right direction. Under-

standing neural circuits will depend on more than just observing

neural activity and correlating it with behavior. Ultimately, it will

depend on establishing cause-and-effect relationships within

the brain by direct perturbation of the circuits. Combining multi-

ple-electrode technology with new molecular genetic techniques

holds great promise. We will be able to precisely manipulate the

activity of specific populations of neurons while recording from

multiple electrodes in order to measure the consequences

across the brain. This will no doubt provide exciting new insights

into functioning neural circuits. We look forward to the progress

to come over the next 20 years.
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nization of cell assemblies in the hippocampus. Nature 424, 552–556.

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan,
A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P. (2006). Neuronal
ensemble control of prosthetic devices by a human with tetraplegia. Nature
442, 164–171.

Hoffman, K.L., and McNaughton, B.L. (2002). Coordinated reactivation of
distributed memory traces in primate neocortex. Science 297, 2070–2073.

Ji, D., and Wilson, M.A. (2007). Coordinated memory replay in the visual cortex
and hippocampus during sleep. Nat. Neurosci. 10, 100–107.
488 Neuron 60, November 6, 2008 ª2008 Elsevier Inc.
Johnson, A., and Redish, A.D. (2007). Neural ensembles in CA3 transiently
encode paths forward of the animal at a decision point. J. Neurosci. 27,
12176–12189.

Jones, M.W., and Wilson, M.A. (2005). Theta rhythms coordinate hippocam-
pal-prefrontal interactions in a spatial memory task. PLoS Biol. 3, e402.

Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., and Schroeder, C.E. (2008).
Entrainment of neuronal oscillations as a mechanism of attentional selection.
Science 320, 110–113.

Lee, A.K., and Wilson, M.A. (2002). Memory of sequential experience in the
hippocampus during slow wave sleep. Neuron 36, 1183–1194.

Llinás, R., Ribary, U., Contreras, D., and Pedroarena, C. (1998). The neuronal
basis for consciousness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353,
1841–1849.

Louie, K., and Wilson, M.A. (2001). Temporally structured REM sleep replay of
awake hippocampal ensemble activity. Neuron 29, 145–156.

Mulliken, G.H., Musallam, S., and Andersen, R.A. (2008). Forward estimation of
movement state in posterior parietal cortex. Proc. Natl. Acad. Sci. USA 105,
8170–8177.

Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., and Buzsáki, G. (1999).
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