Entire solutions of certain type of differential equations II ${ }^{\text {su}}$

Ping Li
Department of Mathematics, Univ. of Sci. Ev Tech. of China, Hefei, Anhui, 230026, PR China

ARTICLE INFO

Article history:

Received 25 July 2010
Available online 18 September 2010
Submitted by Steven G. Krantz

Keywords:

Differential equation
Transcendental entire solution
Nevanlinna theory

Abstract

We analyze the transcendental entire solutions of the following type of nonlinear differential equations: $f^{n}(z)+P(f)=p_{1} e^{\alpha_{1} z}+p_{2} e^{\alpha_{2} z}$ in the complex plane, where p_{1}, p_{2} and α_{1}, α_{2} are nonzero constants, and $P(f)$ denotes a differential polynomial in f of degree at most $n-1$ with small functions of f as the coefficients. © 2010 Elsevier Inc. All rights reserved.

1. Introduction and results

Let f be a transcendental meromorphic function on the complex plane \mathbb{C} throughout this paper. We assume that the reader is familiar with the standard notations used in the Nevanlinna's value distribution theory such as the characteristic function $T(r, f)$, the proximity function $m(r, f)$, and the counting function $N(r, f)$. We refer the reader to the book [5] for the details of the Nevanlinna's theory and the notations. We use $S(r, f)$ to denote any quantity that satisfies the condition: $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ outside possibly an exceptional set of finite linear measure. A meromorphic function $a(z)$ is called a small function of f, if and only if $T(r, a)=S(r, f)$. If $m(r, a)=S(r, f)$, then we say that $a(z)$ is a function of small proximity related to f. In recent years, Nevanlinna's value distribution theory has been used to study solvability and existence of entire or meromorphic solutions of differential equations in complex domains, see, e.g., $[3,4,6,7,10$, 12-14].

It is straightforward to show that the function $f_{1}(z)=\sin z$ is a solution of the nonlinear differential equation $4 f^{3}+3 f^{\prime \prime}=-\sin 3 z$. It was pointed out in [3] that $f_{2}(z)=-\frac{\sqrt{3}}{2} \cos z-\frac{1}{2} \sin z$ is also a solution of this equation. In [14], the authors proved that this equation admits exactly three entire solutions, namely $f_{1}(z), f_{2}(z)$ and $f_{3}(z)=$ $\frac{\sqrt{3}}{2} \cos z-\frac{1}{2} \sin z$. Note that the function $-\sin 3 z$ is a linear combinations of $e^{i 3 z}$ and $e^{-i 3 z}$. So, it is an interesting question to find all entire solutions of the following more general equation:

$$
\begin{equation*}
f^{n}(z)+P(f)=p_{1} e^{\lambda z}+p_{2} e^{-\lambda z} \tag{1}
\end{equation*}
$$

where p_{1}, p_{2} and λ are nonzero constants, and $P(f)$ denotes a differential polynomial in f of degree at most $n-1$. The following two theorems answered this question partially.

Theorem A. (See [14].) Let $n \geqslant 3$ be an integer, $P(f)$ be a differential polynomial in f of degree at most $n-3, b(z)$ be a meromorphic function, and λ, p_{1}, p_{2} be three nonzero constants. Then the differential equation:

$$
f^{n}(z)+P(f)=b(z)\left(p_{1} e^{\lambda z}+p_{2} e^{-\lambda z}\right)
$$

has no transcendental entire solutions $f(z)$ that satisfies $T(r, b)=S(r, f)$.

[^0]Theorem B. (See [8].) Let $n \geqslant 2$ be an integer, $P(f)$ be a differential polynomial in f of degree at most $n-2$, and λ, p_{1}, p_{2} be three nonzero constants. If f is an entire solution of Eq. (1), then $f(z)=c_{1} e^{\lambda z / n}+c_{2} e^{-\lambda z / n}$, where c_{1} and c_{2} are constants and $c_{i}^{n}=p_{i}$.

Remark. Theorem B is proved in [8]. From that proof we can see that Theorem B is still true if we suppose that f is a meromorphic function with $N(r, f)=S(r, f)$.

In [9], the authors also discussed the equation similar to the equation in (1) with the right-hand side replaced by a linear combinations of $e^{\alpha_{1} z}$ and $e^{\alpha_{2} z}$ for two nonzero constants α_{1} and α_{2} with some additional conditions. In the present paper, we weaken the condition on the degree of $P(f)$ in Theorem B and prove the following theorem.

Theorem 1. Let $n \geqslant 2$ be an integer, $P(f)$ be a differential polynomial in f of degree at most $n-1$, and λ, p_{1}, p_{2} be three nonzero constants. If f is a meromorphic solution of Eq. (1) and $N(r, f)=S(r, f)$, then there exist two nonzero constants $c_{1}, c_{2}\left(c_{j}^{n}=p_{j}\right)$, and a small function c_{0} of f such that

$$
\begin{equation*}
f=c_{0}+c_{1} e^{\lambda z / n}+c_{2} e^{-\lambda z / n} \tag{2}
\end{equation*}
$$

Corollary 1. Suppose that p_{1}, p_{2}, λ are nonzero constants, b_{0}, b_{1}, b_{2} and c are meromorphic functions. If f is a meromorphic solution of the following nonlinear differential equation

$$
\begin{equation*}
f^{2}+c+b_{0} f+b_{1} f^{\prime}+b_{2} f^{\prime \prime}=p_{1} e^{\lambda z}+p_{2} e^{-\lambda z} \tag{3}
\end{equation*}
$$

such that c, b_{0}, b_{1}, b_{2} are small function of f, and $N(r, f)=S(r, f)$, then $b_{1}=0$. In particular, if $c=b_{0}=0$, then b_{2} is a constant satisfying $b_{2}^{4} \lambda^{8}=2^{14} p_{1} p_{2}$.

For example, equation $f^{2}+8 f^{\prime \prime}=16 e^{2 z}+4 e^{-2 z}$ has exactly two entire solutions, namely $f_{1}(z)=4 e^{z}-2 e^{-z}-4$ and $f_{2}(z)=-4 e^{z}+2 e^{-z}-4$. In fact, from the proof of Corollary 1 , we can see that this equation has no other meromorphic solutions satisfying $N(r, f)=S(r, f)$.

By Theorem 1, we can also prove the following result on linear differential equations.
Corollary 2. Suppose that b_{1}, \ldots, b_{n-1} are polynomials, p_{1}, p_{1}, λ are nonzero constants. Then any non-trivial entire solutions of the linear differential equation

$$
\begin{equation*}
f^{(n)}+b_{1} f^{(n-1)}+\cdots+b_{n-1} f^{\prime}+\left(p_{1} e^{\lambda z}+p_{2} e^{-\lambda z}\right) f=0 \tag{4}
\end{equation*}
$$

must have infinitely many zeros.

If λ and $-\lambda$ are replaced by two constants α_{1} and α_{2}, respectively, then we have the following result.
Theorem 2. Let $n \geqslant 2$ be an integer, $P(f)$ be a differential polynomial in f of degree at most $n-2$, and $p_{1}, p_{2}, \alpha_{1}, \alpha_{2}$ be nonzero constants and $\alpha_{1} \neq \alpha_{2}$. If $f(z)$ is a transcendental meromorphic solution of the following equation

$$
\begin{equation*}
f^{n}+P(f)=p_{1} e^{\alpha_{1} z}+p_{2} e^{\alpha_{2} z} \tag{5}
\end{equation*}
$$

and satisfying $N(r, f)=S(r, f)$, then one of the following holds:
(i) $f(z)=c_{0}+c_{1} e^{\alpha_{1} z / n}$;
(ii) $f(z)=c_{0}+c_{2} e^{\alpha_{2} z / n}$;
(iii) $f(z)=c_{1} e^{\alpha_{1} z / n}+c_{2} e^{\alpha_{2} z / n}$, and $\alpha_{1}+\alpha_{2}=0$,
where c_{0} is a small function of $f(z)$ and c_{1}, c_{2} are constants satisfying $c_{1}^{n}=p_{1}, c_{2}^{n}=p_{2}$.
Remark. From the proof of Theorem 2, we can deduce that α_{1} / α_{2} must be a rational number under the assumption of Theorem 2.

For further study, we propose the following question.
Question. How to find the solutions of Eq. (5) under the condition $\operatorname{deg} P(f)=n-1$?

2. Some lemmas

The following lemmas will be used in the proofs of the theorems.
Lemma 1 (Clunie's lemma). (See [1,2].) Suppose that $f(z)$ is meromorphic and transcendental in the plane and that

$$
f^{n}(z) P(f)=Q(f)
$$

where $P(f)$ and $Q(f)$ are differential polynomials in f with functions of small proximity related to f as the coefficients and the degree of $Q(f)$ is at most n. Then

$$
m(r, P(f))=S(r, f)
$$

Lemma 2. (See [5].) Suppose that f is a nonconstant meromorphic function and $F=f^{n}+Q(f)$, where $Q(f)$ is a differential polynomial in f with degree $\leqslant n-1$. If $N(r, f)+N(r, 1 / F)=S(r, f)$, then $F=\left(f-c_{0}\right)^{n}$, where c_{0} is meromorphic and $T\left(r, c_{0}\right)=S(r, f)$.

Lemma 3. (See [14].) Let n be a positive integer, $a, b_{0}, b_{1}, \ldots, b_{n-1}$ be polynomials, and b_{n} be a nonzero constant. Let $L(f)=$ $\sum_{k=0}^{n} b_{k} f^{(k)}$. If $a(z) \not \equiv 0$, then the transcendental meromorphic solution of the following equation:

$$
f^{2}+(L(f))^{2}=a
$$

must have the form $f(z)=\frac{1}{2}\left(P(z) e^{R(z)}+Q(z) e^{-R(z)}\right)$, where P, Q, R are polynomials, and $P Q=a$. If furthermore all b_{k} are constants, then $\operatorname{deg} P+\operatorname{deg} Q \leqslant n-1$. Moreover, $R(z)=\lambda z$, where λ is a nonzero constant satisfying the following equations:

$$
\begin{aligned}
& \sum_{k=0}^{n} b_{k} \lambda^{k}=\frac{1}{i}, \quad \sum_{k=j}^{n} b_{k}\binom{k}{j} \lambda^{k-j}=0, \quad j=1, \ldots, \operatorname{deg} P \\
& \sum_{k=0}^{n} b_{k}(-\lambda)^{k}=-\frac{1}{i}, \quad \sum_{k=j}^{n} b_{k}\binom{k}{j}(-\lambda)^{k-j}=0, \quad j=1, \ldots, \operatorname{deg} Q .
\end{aligned}
$$

Lemma 4. (See [11].) Let n, m be positive integers satisfying $1 / n+1 / m<1$. Then there exist no transcendental entire solutions f and g that satisfy the equation $a f^{n}+b g^{m}=1$, with a, b being small functions of f and g, respectively.

Lemma 5. Let $n \geqslant 2$ be an integer, $P(f)$ be a differential polynomial in f of degree $\leqslant n-1$, and λ, p_{1}, p_{2} be three nonzero constants. If f is a meromorphic solution of Eq. (1) and $N(r, f)=S(r, f)$, then the function $\varphi=\lambda^{2} f-n^{2} f^{\prime \prime}$ is a small function of f. Furthermore,

$$
\begin{align*}
& \lambda^{2 k} f^{n}-n^{2 k} f^{n-2 k}\left(f^{\prime}\right)^{2 k} \in \mathcal{D}_{n-1}, \quad n \geqslant 2 k, \tag{6}\\
& \lambda^{2 k} f^{n-1} f^{\prime}-n^{2 k} f^{n-2 k-1}\left(f^{\prime}\right)^{2 k+1} \in \mathcal{D}_{n-1}, \quad n \geqslant 2 k+1 \tag{7}
\end{align*}
$$

where and in the sequel \mathcal{D}_{n-1} denotes the family of all differential polynomials in f of degree at most $n-1$ with coefficients being small functions of f.

Proof. Set $P=P(f)$. Suppose that f is a meromorphic solution of Eq. (1) and $N(r, f)=S(r, f)$. By differentiating (1), we get

$$
\begin{equation*}
n f^{n-1} f^{\prime}+P^{\prime}=\lambda p_{1} e^{\lambda z}-\lambda p_{2} e^{-\lambda z} \tag{8}
\end{equation*}
$$

Eliminating $e^{-\lambda z}$ from (1) and (8) yields

$$
\begin{equation*}
\lambda f^{n}+n f^{n-1} f^{\prime}+\lambda P+P^{\prime}=2 \lambda p_{1} e^{\lambda z} \tag{9}
\end{equation*}
$$

By taking the derivative of the above equation, we get

$$
\begin{equation*}
n \lambda f^{n-1} f^{\prime}+n(n-1) f^{n-2}\left(f^{\prime}\right)^{2}+n f^{n-1} f^{\prime \prime}+\lambda P^{\prime}+P^{\prime \prime}=2 \lambda^{2} p_{1} e^{\lambda z} \tag{10}
\end{equation*}
$$

Then eliminating $e^{\lambda z}$ from (9) and (10) gives

$$
\begin{equation*}
\lambda^{2} f^{n}-n(n-1) f^{n-2}\left(f^{\prime}\right)^{2}-n f^{n-1} f^{\prime \prime}+\lambda^{2} P-P^{\prime \prime}=0 \tag{11}
\end{equation*}
$$

By eliminating $e^{\lambda z}$ from (1) and (8), we have

$$
\begin{equation*}
\lambda f^{n}-n f^{n-1} f^{\prime}+\lambda P-P^{\prime}=2 \lambda p_{2} e^{-\lambda z} \tag{12}
\end{equation*}
$$

It follows from (9) and (12) that

$$
\begin{equation*}
\lambda^{2} f^{2 n}-n^{2} f^{2 n-2}\left(f^{\prime}\right)^{2}+2 \lambda^{2} f^{n} P-2 n f^{n-1} f^{\prime} P^{\prime}+\lambda^{2} P^{2}-\left(P^{\prime}\right)^{2}=4 \lambda^{2} p_{1} p_{2} \tag{13}
\end{equation*}
$$

Eliminating $\left(f^{\prime}\right)^{2}$ from (11) and (13) yields

$$
\begin{equation*}
\varphi f^{2 n-1}=(n-2) \lambda^{2} f^{n} P-2 n(n-1) f^{n-1} f^{\prime} P^{\prime}+n f^{n} P^{\prime \prime}+(n-1) \lambda^{2} P^{2}-(n-1)\left(P^{\prime}\right)^{2}-4(n-1) \lambda^{2} p_{1} p_{2} \tag{14}
\end{equation*}
$$

where $\varphi=\lambda^{2} f-n^{2} f^{\prime \prime}$. Since the right-hand side of the above equation is a differential polynomial in f of degree at most $2 n-1$, by Lemma 1, we get $m(r, \varphi)=S(r, f)$. By the assumption, we have $N(r, \varphi)=S(r, f)$ and thus $T(r, \varphi)=S(r, f)$, which means that φ is a small function of f. By substituting $f^{\prime \prime}=\left(\lambda^{2} f-\varphi\right) / n^{2}$ into (11), we get

$$
\begin{equation*}
\lambda^{2} f^{n}-n^{2} f^{n-2}\left(f^{\prime}\right)^{2}+\frac{\varphi}{n-1} f^{n-1}+\frac{n}{n-1} \lambda^{2} P-\frac{n}{n-1} P^{\prime \prime}=0 \tag{15}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\lambda^{2} f^{n}-n^{2} f^{n-2}\left(f^{\prime}\right)^{2} \in \mathcal{D}_{n-1} \tag{16}
\end{equation*}
$$

Differentiating the left-hand side of (16), and then replacing $f^{\prime \prime}$ by $\left(\lambda^{2} f-\varphi\right) / n^{2}$ in the result, we get

$$
\begin{equation*}
\lambda^{2} f^{n-1} f^{\prime}-n^{2} f^{n-3}\left(f^{\prime}\right)^{3} \in \mathcal{D}_{n-1}, \quad n \geqslant 3 \tag{17}
\end{equation*}
$$

Taking the derivative and then replacing $f^{\prime \prime}$ by $\left(\lambda^{2} f-\varphi\right) / n^{2}$ in the result, and combining (16), we derive

$$
\begin{equation*}
\lambda^{4} f^{n}-n^{4} f^{n-4}\left(f^{\prime}\right)^{4} \in \mathcal{D}_{n-1}, \quad n \geqslant 4 \tag{18}
\end{equation*}
$$

Formulas (6) and (7) can be derived by using mathematical induction.
Lemma 6. Suppose that $f(z)$ is a transcendental meromorphic function, $a(z), b(z), c(z)$ and $d(z)$ are small functions of $f(z)$, and acd $\not \equiv 0$. If

$$
\begin{equation*}
a f^{2}+b f f^{\prime}+c\left(f^{\prime}\right)^{2}=d \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
c\left(b^{2}-4 a c\right) \frac{d^{\prime}}{d}+b\left(b^{2}-4 a c\right)-c\left(b^{2}-4 a c\right)^{\prime}+\left(b^{2}-4 a c\right) c^{\prime}=0 \tag{20}
\end{equation*}
$$

In particular, if a, b, c, d are constants and $b^{2}-4 a c \neq 0$, then $b=0$, and

$$
f(z)=c_{1} e^{\lambda z}+c_{2} e^{-\lambda z}
$$

where c_{1}, c_{2} and λ are nonzero constants.
Proof. It is seen from (19) that the poles of f must be the poles of d if they are not the zeros or poles of a, b and c. Therefore, $N(r, f)=S(r, f)$. Eq. (19) can be written as

$$
\frac{1}{f^{2}}=\frac{a}{d}+\frac{b}{d} \frac{f^{\prime}}{f}+\frac{c}{d}\left(\frac{f^{\prime}}{f}\right)^{2}
$$

By the lemma of logarithmic derivative, we get $m(r, 1 / f)=S(r, f)$, and thus $T(r, f)=N(r, 1 / f)+S(r, f)$. Also we can see from (19) that the multiple zeros of f must be the zeros of d if they are not the poles of a, b and c. Hence $N(r, 1 / f)=$ $\bar{N}(r, 1 / f)+S(r, f)$. Differentiating (19) yields

$$
\begin{equation*}
a^{\prime} f^{2}+\left(2 a+b^{\prime}\right) f f^{\prime}+\left(b+c^{\prime}\right)\left(f^{\prime}\right)^{2}+b f f^{\prime \prime}+2 c f^{\prime} f^{\prime \prime}=d^{\prime} \tag{21}
\end{equation*}
$$

Suppose z_{0} is a simple zero of f that is not the pole of a and b. Then from (19) and (21), we get $c\left(f^{\prime}\right)^{2}\left(z_{0}\right)=d\left(z_{0}\right)$ and $\left(b+c^{\prime}\right)\left(f^{\prime}\right)^{2}\left(z_{0}\right)+2 c f^{\prime} f^{\prime \prime}\left(z_{0}\right)=d^{\prime}\left(z_{0}\right)$, which implies that z_{0} is a zero of $\left(c d^{\prime}-b d-d c^{\prime}\right) f^{\prime}-2 c d f^{\prime \prime}$. Let

$$
\begin{equation*}
\alpha=\frac{\left(c d^{\prime}-b d-d c^{\prime}\right) f^{\prime}-2 c d f^{\prime \prime}}{f} \tag{22}
\end{equation*}
$$

Then we have $T(r, \alpha)=S(r, f)$, i.e., α is a small function of f. It follows that

$$
\begin{equation*}
f^{\prime \prime}=\frac{c d^{\prime}-b d-d c^{\prime}}{2 c d} f^{\prime}-\frac{\alpha}{2 c d} f \tag{23}
\end{equation*}
$$

By substituting the above equation into (21), we get

$$
\begin{equation*}
\left(a^{\prime}-\frac{b \alpha}{2 c d}\right) f^{2}+\left(2 a+b^{\prime}+\frac{b\left(c d^{\prime}-b d-d c^{\prime}\right)}{2 c d}-\frac{\alpha}{d}\right) f f^{\prime}+c \frac{d^{\prime}}{d}\left(f^{\prime}\right)^{2}=d^{\prime} \tag{24}
\end{equation*}
$$

From this and (19) we get

$$
\begin{equation*}
\beta f+\gamma f^{\prime}=0 \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=a^{\prime}-\frac{b \alpha}{2 c d}-a \frac{d^{\prime}}{d} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=2 a+b^{\prime}-\frac{b d^{\prime}}{2 d}-\frac{b^{2}+b c^{\prime}}{2 c}-\frac{\alpha}{d} \tag{27}
\end{equation*}
$$

Note that β and γ are small functions of f. If $\gamma \not \equiv 0$, then it follows from (25) that $\bar{N}(r, f)=S(r, f)$, which is impossible. Hence $\gamma \equiv 0$, and thus $\beta \equiv 0$. By eliminating α from the above two equations, we can derive (20). In particular, if a, b, c, d are constants and $b^{2}-4 a c \neq 0$, then we get $b=0$. By Lemma 3 , we see that there exist nonzero constants c_{1}, c_{2} and λ such that $f(z)=c_{1} e^{\lambda z}+c_{2} e^{-\lambda z}$. This completes the proof of Lemma 6.

3. Proof of Theorem 1

First of all, we prove Theorem 1 in the special case that $P(z)=c f^{n-2} f^{\prime}+Q(f)$ where c is a small function of f and $Q(f) \in \mathcal{D}_{n-2}$. Set $P=P(f), Q=Q(f)$. By Lemma 5 , we see that $\varphi=\lambda^{2} f-n^{2} f^{\prime \prime}$ is a small function of f. By taking the derivatives of P and substituting $f^{\prime \prime}=\left(\lambda^{2} f-\varphi\right) / n^{2}$ into the results, we get

$$
\begin{aligned}
& P^{\prime}=c^{\prime} f^{n-2} f^{\prime}+c(n-2) f^{n-3}\left(f^{\prime}\right)^{2}+\frac{c \lambda^{2}}{n^{2}} f^{n-1}+Q_{1} \\
& P^{\prime \prime}=\left(c^{\prime \prime}+\frac{3 n-5}{n^{2}} c \lambda^{2}\right) f^{n-2} f^{\prime}+2(n-2) c^{\prime} f^{n-3}\left(f^{\prime}\right)^{2}+\frac{2 c^{\prime} \lambda^{2}}{n^{2}} f^{n-1}+c(n-2)(n-3) f^{n-4}\left(f^{\prime}\right)^{3}+Q_{2},
\end{aligned}
$$

where $Q_{1}=Q^{\prime}-\frac{c \varphi}{n^{2}} f^{n-2} \in \mathcal{D}_{n-2}$, and $Q_{2}=Q_{1}^{\prime}-\frac{c^{\prime} \varphi \lambda^{2}}{n^{2}} f^{n-2}-\frac{2 c(n-2) \varphi}{n^{2}} f^{n-3} f^{\prime} \in \mathcal{D}_{n-2}$. It is obviously that

$$
\begin{equation*}
f P=c f^{n-1} f^{\prime}+R_{1}, \tag{28}
\end{equation*}
$$

where $R_{1}=f Q \in \mathcal{D}_{n-1}$. By (16) and (17), we have

$$
\begin{equation*}
f P^{\prime \prime}=\left(c^{\prime \prime}+\frac{n^{2}-3 n+1}{n^{2}} c \lambda^{2}\right) f^{n-1} f^{\prime}+\frac{2(n-1)}{n^{2}} c^{\prime} \lambda^{2} f^{n}+R_{2} \tag{29}
\end{equation*}
$$

where R_{2} is a function in \mathcal{D}_{n-1}. Multiplying (15) by f and then substituting (28), (29) into the result, we get

$$
\begin{equation*}
f^{n-1} \psi=\frac{n}{n-1} R_{2}-\frac{n}{n-1} \lambda^{2} R_{1}, \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\lambda^{2} f^{2}-n^{2}\left(f^{\prime}\right)^{2}+\left(\frac{\varphi}{n-1}-\frac{2 c^{\prime}}{n} \lambda^{2}\right) f+\left(\frac{3 n-1}{n(n-1)} c \lambda^{2}-\frac{n}{n-1} c^{\prime \prime}\right) f^{\prime} \tag{31}
\end{equation*}
$$

Since the right-hand side of (30) is a function in \mathcal{D}_{n-1}, by Lemma 1 , we get $m(r, \psi)=S(r, f)$. And thus $T(r, \psi)=S(r, f)$, i.e., ψ is a small function of f. Let

$$
\begin{align*}
& \alpha=\frac{\varphi}{n-1}-\frac{2 c^{\prime}}{n} \lambda^{2} \tag{32}\\
& \beta=\frac{3 n-1}{n(n-1)} c \lambda^{2}-\frac{n}{n-1} c^{\prime \prime} . \tag{33}
\end{align*}
$$

We can write (31) as

$$
\begin{equation*}
\psi=\lambda^{2} f^{2}-n^{2}\left(f^{\prime}\right)^{2}+\alpha f+\beta f^{\prime} \tag{34}
\end{equation*}
$$

Taking the derivative of this equation and substituting $f^{\prime \prime}=\left(\lambda^{2} f-\varphi\right) / n^{2}$ into the result, we get

$$
\begin{equation*}
\left(2 \varphi+\alpha+\beta^{\prime}\right) f^{\prime}+\left(\alpha^{\prime}+\frac{\beta \lambda^{2}}{n^{2}}\right) f=\psi^{\prime}+\frac{\beta \varphi}{n^{2}} \tag{35}
\end{equation*}
$$

If $2 \varphi+\alpha+\beta^{\prime} \not \equiv 0$, then $f^{\prime}=\gamma_{1} f+\gamma_{2}$, where γ_{1} and γ_{2} are two small functions of f. Hence $P=c \gamma_{1} f^{n-1}+c \gamma_{2} f^{n-2}+Q$. Let $f_{1}=f+c \gamma_{1} / n$. Then Eq. (1) can be written as $f_{1}^{n}+\tilde{P}=p_{1} e^{\lambda z}+p_{2} e^{-\lambda z}$, where \tilde{P} is a differential polynomial in f of degree at most $n-2$. By Theorem B, there exist two nonzero constants c_{1} and $c_{2}\left(c_{j}^{n}=p_{j}\right)$ such that $f_{1}=c_{1} e^{\lambda z / n}+c_{2} e^{-\lambda z / n}$. Therefore, $f=c_{1} e^{\lambda z / n}+c_{2} e^{-\lambda z / n}-c \gamma_{1} / n$.

If $2 \varphi+\alpha+\beta^{\prime} \equiv 0$, then from (35) we get $\alpha^{\prime}+\beta \lambda^{2} / n^{2}=0$ and $\psi^{\prime}+\beta \varphi / n^{2}=0$. It follows that $\beta^{2}-4 n^{2} \psi-n^{2} \alpha^{2} / \lambda^{2}:=d$ is a constant. Eq. (34) can be written as

$$
\begin{equation*}
\left(f^{\prime}-\frac{\beta}{2 n^{2}}\right)^{2}-\left(\frac{\lambda}{n} f+\frac{\alpha}{2 n \lambda}\right)^{2}=\frac{d}{4 n^{4}} \tag{36}
\end{equation*}
$$

Let $h=\lambda f / n+\alpha /(2 n \lambda)$. By $\alpha^{\prime}+\beta \lambda^{2} / n^{2}=0$, we get $f^{\prime}-\beta / 2 n^{2}=n h^{\prime} / \lambda$. Therefore, $h^{2}-\left(n h^{\prime} / \lambda\right)^{2}=-d /\left(4 n^{4}\right)$. By Lemma 3, there exist two nonzero constants d_{1} and d_{2} such that $h(z) \equiv d_{1} e^{\lambda z / n}+d_{2} e^{-\lambda z / n}$. Hence there exist constants c_{1}, c_{2} and a small function c_{0} of f such that $f(z) \equiv c_{1} e^{\lambda z / n}+c_{2} e^{-\lambda z / n}+c_{0}$, which means that the conclusion of Theorem 1 is true in the special case.

Now we prove Theorem 1 in the general case. Since $P(z)$ is a differential polynomial in f of degree at most $n-1$, by using $f^{\prime \prime}=\left(\lambda^{2} f-\varphi\right) / n^{2}$, we see that $P(z)$ can be expressed as a polynomial in f and f^{\prime} with total degree at most $n-1$. Therefore,

$$
\begin{equation*}
P=\sum_{k=0}^{n-1} b_{k} f^{n-1-k}\left(f^{\prime}\right)^{k}+P_{1} \tag{37}
\end{equation*}
$$

where $P_{1} \in \mathcal{D}_{n-2}$, and $b_{k}(k=0,1, \ldots, n-1)$ are small functions of f. Squaring both sides of (1), we get

$$
f^{2 n}+2 f^{n} P+P^{2}-2 p_{1} p_{2}=p_{1}^{2} e^{2 \lambda z}+p_{2}^{2} e^{-2 \lambda z}
$$

That is

$$
f^{2 n}+\sum_{k=0}^{n-1} 2 b_{k} f^{2 n-1-k}\left(f^{\prime}\right)^{k}+Q_{1}=p_{1}^{2} e^{2 \lambda z}+p_{2}^{2} e^{-2 \lambda z}
$$

where Q_{1} is a function in $\mathcal{D}_{2 n-2}$. By (6) and (7), the above equation can be expressed as

$$
f^{2 n}+\alpha_{1} f^{2 n-1}+\alpha_{2} f^{2 n-2} f^{\prime}+Q_{2}=p_{1}^{2} e^{2 \lambda z}+p_{2}^{2} e^{-2 \lambda z}
$$

where α_{1}, α_{2} are small functions of f and $Q_{2} \in \mathcal{D}_{2 n-2}$. Let $g=f+\alpha_{1} /(2 n-1)$. It follows that

$$
g^{2 n}+c g^{2 n-2} g^{\prime}+Q_{3}=p_{1}^{2} e^{2 \lambda z}+p_{2}^{2} e^{-2 \lambda z}
$$

where c is small function of g, and Q_{3} is a differential polynomial in g with degree at most $2 n-2$. By the result of Theorem 1 in the special case, we conclude that Theorem 1 is still true in the general case.

4. Proof of Corollary 1

Suppose that f is a meromorphic solution of Eq. (3) and $N(r, f)=S(r, f)$. By Theorem 1, we have

$$
f(z)=c_{0}(z)+c_{1} e^{\lambda z / 2}+c_{2} e^{-\lambda z / 2}
$$

where c_{1} and c_{2} are constants satisfying $c_{j}^{2}=p_{j}$, and $c_{0}(z)$ is a small function of f. By substituting the above equation into (3) and noting that the coefficients of $e^{\lambda z / 2}$ and $e^{-\lambda z / 2}$ must vanish, we get

$$
\begin{align*}
& 2 c_{0}+b_{0}+\frac{\lambda}{2} b_{1}+\frac{\lambda^{2}}{4} b_{2}=0 \tag{38}\\
& 2 c_{0}+b_{0}-\frac{\lambda}{2} b_{1}+\frac{\lambda^{2}}{4} b_{2}=0 \tag{39}\\
& c_{0}^{2}+2 c_{1} c_{2}+c+b_{0} c_{0}+b_{1} c_{0}^{\prime}+b_{2} c_{0}^{\prime \prime}=0 \tag{40}
\end{align*}
$$

From (38) and (39), we get $b_{1}=0$ and $2 c_{0}+b_{0}+\frac{\lambda^{2}}{4} b_{2}=0$. In particular, if $c=b_{0}=0$, then $b_{2}=-\frac{8}{\lambda^{2}} c_{0}$. It follows from (40) that

$$
\begin{equation*}
c_{0}^{2}+2 c_{1} c_{2}-\frac{8}{\lambda^{2}} c_{0} c_{0}^{\prime \prime}=0 \tag{41}
\end{equation*}
$$

which implies that c_{0} has no zeros and poles. Therefore, $c_{0}=e^{h}$ for an entire function h. From the above equation, we have $\left(1-\frac{8}{\lambda^{2}}\left(h^{\prime \prime}+h^{\prime 2}\right)\right) e^{2 h}=-2 c_{1} c_{2}$. It follows that h, and thus c_{0}, is a constant. Hence $2 c_{1} c_{2}=-c_{0}^{2}$. Note that $c_{j}^{2}=p_{j}$ and $c_{0}=-\frac{\lambda^{2}}{8} b_{2}$. We can derive $\lambda^{8} b_{2}^{4}=2^{14} p_{1} p_{2}$ easily.

5. Proof of Corollary 2

If Eq. (4) has a non-trivial entire solution f with finitely many zeros, then $f=p e^{\alpha}$, where p is a polynomial and α is an entire function. Let $g=p^{\prime} / p+\alpha^{\prime}$. By a simple computation, we get $f^{\prime}=g f$ and

$$
\begin{equation*}
f^{(k)}=\left(g^{k}+\frac{k(k+1)}{2} g^{k-2} g^{\prime}+P_{k-2}(g)\right) f, \quad k \geqslant 2 \tag{42}
\end{equation*}
$$

where $P_{k-2}(g)$ is a differential polynomial in g of degree $k-2$. From (4) and the above equation, we get the following equation:

$$
\begin{equation*}
g^{n}+\frac{n(n+1)}{2} g^{n-2} g^{\prime}+b_{1} g^{n-1}+Q_{n-2}(g)=-p_{1} e^{\lambda z}-p_{2} e^{-\lambda z} \tag{43}
\end{equation*}
$$

where $Q_{n-2}(g)$ is a differential polynomial in g of degree $n-2$ with coefficients being polynomials. Since the righthand side of the above equation is transcendental, we see that g must be transcendental. It follows from $g=p^{\prime} / p+\alpha^{\prime}$ that $N(r, g)=S(r, g)$. By Theorem 1, there exist two nonzero constants c_{1}, c_{2} and a small function c_{0} such that $g=$ $c_{1} e^{\lambda z / n}+c_{2} e^{-\lambda z / n}+c_{0}$. Substitute this into (43) and compare the coefficients of $e^{\lambda z}, e^{-\lambda z}, e^{\frac{n-1}{n} \lambda z}$ and $e^{-\frac{n-1}{n} \lambda z}$ in the resulting equation, we have

$$
\begin{aligned}
& c_{1}^{n}=-p_{1}, \quad c_{2}^{n}=-p_{2}, \\
& n c_{0} c_{1}^{n-1}+\frac{n(n+1)}{2} \frac{\lambda}{n} c_{1}^{n-1}+b_{1} c_{1}^{n-1}=0, \\
& n c_{0} c_{2}^{n-1}-\frac{n(n+1)}{2} \frac{\lambda}{n} c_{2}^{n-1}+b_{1} c_{2}^{n-1}=0
\end{aligned}
$$

From these equations, we get $\lambda=0$, a contradiction. This also completes the proof of Corollary 2.

6. Proof of Theorem 2

Suppose that $f(z)$ is a transcendental meromorphic solution of Eq. (5) and satisfies $N(r, f)=S(r, f)$. By differentiating (5), we get

$$
\begin{equation*}
n f^{n-1} f^{\prime}+P^{\prime}=\alpha_{1} p_{1} e^{\alpha_{1} z}+\alpha_{2} p_{2} e^{\alpha_{2} z} \tag{44}
\end{equation*}
$$

Eliminating $e^{\alpha_{1} z}$ and $e^{\alpha_{2} z}$ from (5) and (44), respectively, we get

$$
\begin{align*}
& \alpha_{1} f^{n}-n f^{n-1} f^{\prime}+\alpha_{1} P-P^{\prime}=\left(\alpha_{1}-\alpha_{2}\right) p_{2} e^{\alpha_{2} z} \tag{45}\\
& \alpha_{2} f^{n}-n f^{n-1} f^{\prime}+\alpha_{2} P-P^{\prime}=\left(\alpha_{2}-\alpha_{1}\right) p_{1} e^{\alpha_{1} z} \tag{46}
\end{align*}
$$

Differentiating (46) yields

$$
\begin{equation*}
n \alpha_{2} f^{n-1} f^{\prime}-n(n-1) f^{n-2}\left(f^{\prime}\right)^{2}-n f^{n-1} f^{\prime \prime}+\alpha_{2} P^{\prime}-P^{\prime \prime}=\alpha_{1}\left(\alpha_{2}-\alpha_{1}\right) p_{1} e^{\alpha_{1} z} \tag{47}
\end{equation*}
$$

It follows from (46) and (47) that

$$
\begin{equation*}
f^{n-2} \varphi=-Q \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi=\alpha_{1} \alpha_{2} f^{2}-n\left(\alpha_{1}+\alpha_{2}\right) f f^{\prime}+n(n-1)\left(f^{\prime}\right)^{2}+n f f^{\prime \prime} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\alpha_{1} \alpha_{2} P-\left(\alpha_{1}+\alpha_{2}\right) P^{\prime}+P^{\prime \prime} \tag{50}
\end{equation*}
$$

Since Q is a differential polynomial in f of degree $\leqslant n-2$, from (48) and by Lemma 1 , we have $m(r, \varphi)=S(r, f)$. Therefore, $T(r, \varphi)=S(r, f)$. We distinguish two cases below.

Case 1. $\varphi \equiv 0$. In this case, we have $Q \equiv 0$, i.e.,

$$
\begin{equation*}
\alpha_{1} \alpha_{2} P-\left(\alpha_{1}+\alpha_{2}\right) P^{\prime}+P^{\prime \prime} \equiv 0 \tag{51}
\end{equation*}
$$

From (5) and by Lemma 4, we see that $P \not \equiv 0$. Therefore, $\alpha_{1} P-P^{\prime} \equiv 0$ and $\alpha_{2} P-P^{\prime} \equiv 0$ cannot hold simultaneously. Suppose $\alpha_{2} P-P^{\prime} \not \equiv 0$. By (51), we deduce that

$$
\begin{equation*}
\alpha_{2} P-P^{\prime}=A e^{\alpha_{1} z} \tag{52}
\end{equation*}
$$

where A is a nonzero constant. Combining this and (46), we get

$$
\begin{equation*}
f^{n-1}\left(\alpha_{2} f-n f^{\prime}\right)=\frac{\alpha_{2}\left(\alpha_{2}-\alpha_{1}-A\right)}{A} P+\left(1-\alpha_{2}+\alpha_{1}\right) P^{\prime} \tag{53}
\end{equation*}
$$

Note that the right-hand side of the above equation is a differential polynomial in f of degree $\leqslant n-2$. By Lemma 1 , we see that $\alpha_{2} f-n f^{\prime}$ and $f\left(\alpha_{2} f-n f^{\prime}\right)$ are small functions of f. Therefore, $\alpha_{2} f-n f^{\prime}=0$, which yields

$$
\begin{equation*}
f^{n}=\tilde{p}_{2} e^{\alpha_{2} z} \tag{54}
\end{equation*}
$$

where \tilde{p}_{2} is a nonzero constant. By this and (5), (52), we get

$$
\begin{equation*}
\left(1-\frac{p_{2}}{\tilde{p}_{2}}\right) f^{n}=\frac{-\alpha_{1}}{\alpha_{1}-\alpha_{2}} P+\frac{1}{\alpha_{1}-\alpha_{2}} P^{\prime} \tag{55}
\end{equation*}
$$

If $\tilde{p}_{2} \neq p_{2}$, then by the above equation and Lemma 1 we get $T(r, f)=S(r, f)$, which is impossible. Therefore, $\tilde{p}_{2}=p_{2}$, and thus $f=c_{2} e^{\alpha_{2} z / n}$, where c_{2} is a nonzero constant satisfying $c_{2}^{n}=p_{2}$.

If $\alpha_{1} P-P^{\prime} \not \equiv 0$, then by a similar method we can deduce that $f=c_{1} e^{\alpha_{1} z / n}$, where c_{1} is a nonzero constant satisfying $c_{1}^{n}=p_{1}$.

Case 2. $\varphi \not \equiv 0$. It follows from (49) that the multiple zero of f must be the zero of φ. Therefore, $N_{(2}(r, 1 / f)=S(r, f)$. By differentiating (49) we get

$$
\begin{equation*}
\varphi^{\prime}=2 \alpha_{1} \alpha_{2} f f^{\prime}-n\left(\alpha_{1}+\alpha_{2}\right)\left(f^{\prime}\right)^{2}-n\left(\alpha_{1}+\alpha_{2}\right) f f^{\prime \prime}+n(2 n-1) f^{\prime} f^{\prime \prime}+n f f^{\prime \prime \prime} \tag{56}
\end{equation*}
$$

If z_{0} is a simple zero of f, then it follows from (49) and (56) that z_{0} is a zero of $(2 n-1) \varphi f^{\prime \prime}-\left((n-1) \varphi^{\prime}+\left(\alpha_{1}+\alpha_{2}\right) \varphi\right) f^{\prime}$. Define

$$
\begin{equation*}
\psi:=\frac{(2 n-1) \varphi f^{\prime \prime}-\left((n-1) \varphi^{\prime}+\left(\alpha_{1}+\alpha_{2}\right) \varphi\right) f^{\prime}}{f} \tag{57}
\end{equation*}
$$

Then we have $T(r, \psi)=S(r, f)$. It follows that

$$
\begin{equation*}
f^{\prime \prime}=\gamma_{1} f^{\prime}+\gamma_{0} f \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}=\frac{n-1}{2 n-1} \frac{\varphi^{\prime}}{\varphi}+\frac{\alpha_{1}+\alpha_{2}}{2 n-1}, \quad \gamma_{0}=\frac{\psi}{(2 n-1) \varphi} \tag{59}
\end{equation*}
$$

By substituting (58) into (49), we have

$$
\begin{equation*}
a f^{2}+b f f^{\prime}+c\left(f^{\prime}\right)^{2}=\varphi \tag{60}
\end{equation*}
$$

where $a=\alpha_{1} \alpha_{2}+n \gamma_{0}, b=n \gamma_{1}-n\left(\alpha_{1}-\alpha_{2}\right)$, and $c=n(n-1)$. By Lemma 6 , we have

$$
\begin{equation*}
c\left(4 a c-b^{2}\right) \frac{\varphi^{\prime}}{\varphi}=c\left(4 a c-b^{2}\right)^{\prime}-b\left(4 a c-b^{2}\right) \tag{61}
\end{equation*}
$$

Now we distinguish two subcases below.
Subcase 2.1. Suppose $4 a c-b^{2}=0$. It follows from (60) that $c\left(f^{\prime}-\frac{b}{2 c} f\right)^{2}=\varphi$, which implies that $\beta=f^{\prime}+\frac{b}{2 c} f$ is a small function of f. By substituting $f^{\prime}=-\frac{b}{2 c} f+\beta$ into (45) and (46), respectively, we get

$$
\begin{align*}
& \left(\alpha_{1}+\frac{n b}{2 c}\right) f^{n}-n \beta f^{n-1}+\alpha_{1} P-P^{\prime}=\left(\alpha_{1}-\alpha_{2}\right) p_{2} e^{\alpha_{2} z} \tag{62}\\
& \left(\alpha_{2}+\frac{n b}{2 c}\right) f^{n}-n \beta f^{n-1}+\alpha_{2} P-P^{\prime}=\left(\alpha_{2}-\alpha_{1}\right) p_{2} e^{\alpha_{1} z} \tag{63}
\end{align*}
$$

and the left-hand sides of the above two equations are polynomials in f with coefficients being small functions of f. Since $\alpha_{1} \neq \alpha_{2}$, one of $\alpha_{1}+\frac{n b}{2 c}$ and $\alpha_{2}+\frac{n b}{2 c}$ is not zero.

Suppose $\alpha_{1}+\frac{n b}{2 c} \neq 0$. By Lemma 2, there exists a small function c_{0} of f such that

$$
\begin{equation*}
\left(\alpha_{1}+\frac{n b}{2 c}\right)\left(f-c_{0}\right)^{n}=\left(\alpha_{1}-\alpha_{2}\right) p_{2} e^{\alpha_{2} z} \tag{64}
\end{equation*}
$$

which implies that $f=c_{0}+c_{2} e^{\alpha_{2} z / n}$, and $c_{2}^{n}=\frac{\left(\alpha_{1}-\alpha_{2}\right) p_{2}}{\alpha_{1}+\frac{n b}{2 c}}$. Similarly, if $\alpha_{2}+\frac{n b}{2 c} \neq 0$, then we have $f=\tilde{c}_{0}+\tilde{c}_{2} e^{\alpha_{1} z / n}$. This cannot hold in such case. Therefore, $\alpha_{2}+\frac{n b}{2 c}=0$. Thus $c_{2}^{n}=p_{2}$.

Suppose $\alpha_{2}+\frac{n b}{2 c} \neq 0$. We can deduce that $f=c_{0}+c_{1} e^{\alpha_{1} z / n}$, and $c_{1}^{n}=p_{1}$, by a similar argument.
Subcase 2.2. Suppose $4 a c-b^{2} \neq 0$. From (61) and the definitions of γ_{1} and b, we get

$$
\begin{equation*}
\frac{2 n^{2}(n-1)}{2 n-1} \frac{\varphi^{\prime}}{\varphi}=\frac{2 n(n-1)}{2 n-1}\left(\alpha_{1}+\alpha_{2}\right)+\frac{\left(4 a c-b^{2}\right)^{\prime}}{4 a c-b^{2}} \tag{65}
\end{equation*}
$$

By integration, we see that there exists a nonzero constant B such that

$$
\begin{equation*}
\varphi^{2 n^{2}(n-1)}=B\left(4 a c-b^{2}\right)^{2 n-1} e^{2 n(n-1)\left(\alpha_{1}+\alpha_{2}\right) z}, \tag{66}
\end{equation*}
$$

which implies that $e^{2 n(n-1)\left(\alpha_{1}+\alpha_{2}\right) z}$ is small function of f. But from (5) we have $n T(r, f) \leqslant T\left(r, e^{\alpha_{1} z}\right)+T\left(r, e^{\alpha_{2} z}\right)+S(r, f)$. Therefore, $\alpha_{1}+\alpha_{2}=0$. It follows from (45) and (46) that

$$
\begin{equation*}
f^{2 n-2} \varphi_{1}+R=-\left(\alpha_{2}-\alpha_{1}\right)^{2} p_{1} p_{2}, \tag{67}
\end{equation*}
$$

where R is a differential polynomial in f of degree $\leqslant 2 n-2$, and $\varphi_{1}=\alpha_{1} \alpha_{2} f^{2}+n^{2}\left(f^{\prime}\right)^{2}$. By Lemma 1 we see that φ_{1} is small function of f. Combining (60), we get $\varphi_{1}=\frac{n}{n-1} \varphi$. Finally, by Lemma 6 , we can deduce that $f=c_{1} e^{\alpha_{1} z / n}+c_{2} e^{\alpha_{2} z / n}$, where c_{1} and c_{2} are nonzero constants satisfying $c_{i}^{n}=p_{i}$. This also completes the proof of Theorem 2 .

7. Concluding remark

By slightly modifying the proof of Theorem 1, we can prove the following result.

Theorem 3. Let $n \geqslant 2$ be an integer, and α a nonconstant entire function. Let $P(f)$ be a differential polynomial in f of degree at most $n-1$, and p_{1}, p_{2} be two nonzero constants. If f is a meromorphic solution of the equation

$$
\begin{equation*}
f^{n}+P(f)=p_{1} e^{\alpha}+p_{2} e^{-\alpha} \tag{68}
\end{equation*}
$$

and $N(r, f)=S(r, f)$, then

$$
\begin{equation*}
f=c_{0}+c_{1} e^{\alpha / n}+c_{2} e^{-\alpha / n} \tag{69}
\end{equation*}
$$

where c_{0} is a small function of f, and c_{1}, c_{2} are nonzero constants satisfying $c_{i}^{n}=p_{i}$.
Furthermore, if we suppose that the degree of $P(f)$ is at most $n-2$ in Theorem 3, then we can show $c_{0}=0$ in the following way. Let $g=c_{1} e^{\alpha / n}+c_{2} e^{-\alpha / n}$. We have

$$
e^{\alpha / n}=\frac{1}{2 c_{1}} g+\frac{n}{2 c_{1} \alpha^{\prime}} g^{\prime}, \quad e^{-\alpha / n}=\frac{1}{2 c_{2}} g-\frac{n}{2 c_{c} \alpha^{\prime}} g^{\prime},
$$

and $f=c_{0}+g$. Hence $f^{n}=g^{n}+n c_{0} g^{n-1}+P_{1}(g)$, where $P_{1}(g)$ is a polynomial in g of degree at most $n-2$. Note that

$$
g^{n}=p_{1} e^{\alpha}+p_{2} e^{-\alpha}+\sum_{k=1}^{n-1}\binom{n}{k}\left(c_{1} e^{\alpha / n}\right)^{k}\left(c_{2} e^{-\alpha / n}\right)^{n-k}
$$

And $\left(c_{1} e^{\alpha / n}\right)^{k}\left(c_{2} e^{-\alpha / n}\right)^{n-k}$ is a polynomial in $e^{\alpha / n}$ or in $e^{-\alpha / n}$ of degree at most $n-2$. Therefore, the last summation in the above equation is a differential polynomial in g of degree at most $n-2$. It follows from (68) that

$$
n c_{0} g^{n-1}+P_{2}(g)=0
$$

where $P_{2}(g)$ is a differential polynomial in g of degree at most $n-2$. Note that $N(r, g)=S(r, g)$. The above equation implies $c_{0}=0$.

References

[1] J. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37 (1962) 17-27.
[2] W. Doeringer, Exceptional value of differential polynomials, Pacific J. Math. 98 (1982) 55-62.
[3] J. Heittokangas, R. Korhonen, I. Laine, On meromorphic solutions of certain nonlinear differential equations, Bull. Austral. Math. Soc. 66 (2002) $331-343$.
[4] G. Junk, L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel/Boston, 1985.
[5] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[6] I. Laine, Nevanlinna Theory and Complex Differential Equations, Stud. Math., vol. 15, Walter de Gruyter, Berlin/New York, 1993.
[7] B.Q. Li, On certain non-linear differential equations in complex domains, Arch. Math. 91 (2008) 344-353.
[8] P. Li, Entire solutions of certain type of differential equations, J. Math. Anal. Appl. 344 (2008) 253-259.
[9] P. Li, C.C. Yang, On the non-existence of entire solutions of certain type of nonlinear differential equations, J. Math. Anal. Appl. 320 (2006) $827-835$.
[10] J.F. Tang, L.W. Liao, The transcendental meromorphic solutions of a certain type of nonlinear differential equations, J. Math. Anal. Appl. 334 (2007) 517-527.
[11] C.C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc. 26 (2) (1970) 332-334.
[12] C.C. Yang, On entire solutions of a certain type of nonlinear differential equations, Bull. Austral. Math. Soc. 64 (3) (2001) 377-380.
[13] C.C. Yang, I. Laine, On analogies between nonlinear difference and differential equations, Proc. Japan Acad. Ser. A Math. Sci. 86 (1) (2010) 10-14.
[14] C.C. Yang, P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math. 82 (2004) 442-448.

[^0]: 放 Project 10871089 supported by NSFC.
 E-mail address: pli@ustc.edu.cn.

