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p2 and α1, α2 are nonzero constants, and P ( f ) denotes a differential polynomial in f of
degree at most n − 1 with small functions of f as the coefficients.
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1. Introduction and results

Let f be a transcendental meromorphic function on the complex plane C throughout this paper. We assume that
the reader is familiar with the standard notations used in the Nevanlinna’s value distribution theory such as the character-
istic function T (r, f ), the proximity function m(r, f ), and the counting function N(r, f ). We refer the reader to the book [5]
for the details of the Nevanlinna’s theory and the notations. We use S(r, f ) to denote any quantity that satisfies the con-
dition: S(r, f ) = o(T (r, f )) as r → ∞ outside possibly an exceptional set of finite linear measure. A meromorphic function
a(z) is called a small function of f , if and only if T (r,a) = S(r, f ). If m(r,a) = S(r, f ), then we say that a(z) is a function
of small proximity related to f . In recent years, Nevanlinna’s value distribution theory has been used to study solvabil-
ity and existence of entire or meromorphic solutions of differential equations in complex domains, see, e.g., [3,4,6,7,10,
12–14].

It is straightforward to show that the function f1(z) = sin z is a solution of the nonlinear differential equation

4 f 3 + 3 f ′′ = − sin 3z. It was pointed out in [3] that f2(z) = −
√

3
2 cos z − 1

2 sin z is also a solution of this equation.
In [14], the authors proved that this equation admits exactly three entire solutions, namely f1(z), f2(z) and f3(z) =√

3
2 cos z − 1

2 sin z. Note that the function − sin 3z is a linear combinations of ei3z and e−i3z. So, it is an interesting question
to find all entire solutions of the following more general equation:

f n(z) + P ( f ) = p1eλz + p2e−λz, (1)

where p1, p2 and λ are nonzero constants, and P ( f ) denotes a differential polynomial in f of degree at most n − 1.

The following two theorems answered this question partially.

Theorem A. (See [14].) Let n � 3 be an integer, P ( f ) be a differential polynomial in f of degree at most n − 3, b(z) be a meromorphic
function, and λ, p1 , p2 be three nonzero constants. Then the differential equation:

f n(z) + P ( f ) = b(z)
(

p1eλz + p2e−λz)
has no transcendental entire solutions f (z) that satisfies T (r,b) = S(r, f ).
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Theorem B. (See [8].) Let n � 2 be an integer, P ( f ) be a differential polynomial in f of degree at most n − 2, and λ, p1 , p2 be three
nonzero constants. If f is an entire solution of Eq. (1), then f (z) = c1eλz/n + c2e−λz/n, where c1 and c2 are constants and cn

i = pi .

Remark. Theorem B is proved in [8]. From that proof we can see that Theorem B is still true if we suppose that f is a
meromorphic function with N(r, f ) = S(r, f ).

In [9], the authors also discussed the equation similar to the equation in (1) with the right-hand side replaced by a linear
combinations of eα1z and eα2z for two nonzero constants α1 and α2 with some additional conditions. In the present paper,
we weaken the condition on the degree of P ( f ) in Theorem B and prove the following theorem.

Theorem 1. Let n � 2 be an integer, P ( f ) be a differential polynomial in f of degree at most n − 1, and λ, p1 , p2 be three nonzero
constants. If f is a meromorphic solution of Eq. (1) and N(r, f ) = S(r, f ), then there exist two nonzero constants c1 , c2 (cn

j = p j), and
a small function c0 of f such that

f = c0 + c1eλz/n + c2e−λz/n. (2)

Corollary 1. Suppose that p1 , p2 , λ are nonzero constants, b0 , b1 , b2 and c are meromorphic functions. If f is a meromorphic solution
of the following nonlinear differential equation

f 2 + c + b0 f + b1 f ′ + b2 f ′′ = p1eλz + p2e−λz, (3)

such that c, b0 , b1 , b2 are small function of f , and N(r, f ) = S(r, f ), then b1 = 0. In particular, if c = b0 = 0, then b2 is a constant
satisfying b4

2λ
8 = 214 p1 p2.

For example, equation f 2 + 8 f ′′ = 16e2z + 4e−2z has exactly two entire solutions, namely f1(z) = 4ez − 2e−z − 4 and
f2(z) = −4ez + 2e−z − 4. In fact, from the proof of Corollary 1, we can see that this equation has no other meromorphic
solutions satisfying N(r, f ) = S(r, f ).

By Theorem 1, we can also prove the following result on linear differential equations.

Corollary 2. Suppose that b1, . . . ,bn−1 are polynomials, p1 , p1 , λ are nonzero constants. Then any non-trivial entire solutions of the
linear differential equation

f (n) + b1 f (n−1) + · · · + bn−1 f ′ + (
p1eλz + p2e−λz) f = 0, (4)

must have infinitely many zeros.

If λ and −λ are replaced by two constants α1 and α2, respectively, then we have the following result.

Theorem 2. Let n � 2 be an integer, P ( f ) be a differential polynomial in f of degree at most n − 2, and p1 , p2 , α1 , α2 be nonzero
constants and α1 �= α2 . If f (z) is a transcendental meromorphic solution of the following equation

f n + P ( f ) = p1eα1z + p2eα2z, (5)

and satisfying N(r, f ) = S(r, f ), then one of the following holds:

(i) f (z) = c0 + c1eα1z/n;
(ii) f (z) = c0 + c2eα2z/n;

(iii) f (z) = c1eα1z/n + c2eα2z/n, and α1 + α2 = 0,

where c0 is a small function of f (z) and c1 , c2 are constants satisfying cn
1 = p1 , cn

2 = p2.

Remark. From the proof of Theorem 2, we can deduce that α1/α2 must be a rational number under the assumption of
Theorem 2.

For further study, we propose the following question.

Question. How to find the solutions of Eq. (5) under the condition deg P ( f ) = n − 1?



312 P. Li / J. Math. Anal. Appl. 375 (2011) 310–319
2. Some lemmas

The following lemmas will be used in the proofs of the theorems.

Lemma 1 (Clunie’s lemma). (See [1,2].) Suppose that f (z) is meromorphic and transcendental in the plane and that

f n(z)P ( f ) = Q ( f )

where P ( f ) and Q ( f ) are differential polynomials in f with functions of small proximity related to f as the coefficients and the degree
of Q ( f ) is at most n. Then

m
(
r, P ( f )

) = S(r, f ).

Lemma 2. (See [5].) Suppose that f is a nonconstant meromorphic function and F = f n + Q ( f ), where Q ( f ) is a differential polyno-
mial in f with degree � n −1. If N(r, f )+ N(r,1/F ) = S(r, f ), then F = ( f − c0)

n, where c0 is meromorphic and T (r, c0) = S(r, f ).

Lemma 3. (See [14].) Let n be a positive integer, a,b0,b1, . . . ,bn−1 be polynomials, and bn be a nonzero constant. Let L( f ) =∑n
k=0 bk f (k). If a(z) �≡ 0, then the transcendental meromorphic solution of the following equation:

f 2 + (
L( f )

)2 = a,

must have the form f (z) = 1
2 (P (z)eR(z) + Q (z)e−R(z)), where P , Q , R are polynomials, and P Q = a. If furthermore all bk are

constants, then deg P + deg Q � n − 1. Moreover, R(z) = λz, where λ is a nonzero constant satisfying the following equations:

n∑
k=0

bkλ
k = 1

i
,

n∑
k= j

bk

(
k

j

)
λk− j = 0, j = 1, . . . ,deg P ,

n∑
k=0

bk(−λ)k = −1

i
,

n∑
k= j

bk

(
k

j

)
(−λ)k− j = 0, j = 1, . . . ,deg Q .

Lemma 4. (See [11].) Let n, m be positive integers satisfying 1/n + 1/m < 1. Then there exist no transcendental entire solutions f and
g that satisfy the equation af n + bgm = 1, with a, b being small functions of f and g, respectively.

Lemma 5. Let n � 2 be an integer, P ( f ) be a differential polynomial in f of degree � n−1, and λ, p1 , p2 be three nonzero constants. If
f is a meromorphic solution of Eq. (1) and N(r, f ) = S(r, f ), then the function ϕ = λ2 f −n2 f ′′ is a small function of f . Furthermore,

λ2k f n − n2k f n−2k( f ′)2k ∈ Dn−1, n � 2k, (6)

λ2k f n−1 f ′ − n2k f n−2k−1( f ′)2k+1 ∈ Dn−1, n � 2k + 1, (7)

where and in the sequel Dn−1 denotes the family of all differential polynomials in f of degree at most n − 1 with coefficients being
small functions of f .

Proof. Set P = P ( f ). Suppose that f is a meromorphic solution of Eq. (1) and N(r, f ) = S(r, f ). By differentiating (1), we
get

nf n−1 f ′ + P ′ = λp1eλz − λp2e−λz. (8)

Eliminating e−λz from (1) and (8) yields

λ f n + nf n−1 f ′ + λP + P ′ = 2λp1eλz. (9)

By taking the derivative of the above equation, we get

nλ f n−1 f ′ + n(n − 1) f n−2( f ′)2 + nf n−1 f ′′ + λP ′ + P ′′ = 2λ2 p1eλz. (10)

Then eliminating eλz from (9) and (10) gives

λ2 f n − n(n − 1) f n−2( f ′)2 − nf n−1 f ′′ + λ2 P − P ′′ = 0. (11)

By eliminating eλz from (1) and (8), we have

λ f n − nf n−1 f ′ + λP − P ′ = 2λp2e−λz. (12)
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It follows from (9) and (12) that

λ2 f 2n − n2 f 2n−2( f ′)2 + 2λ2 f n P − 2nf n−1 f ′ P ′ + λ2 P 2 − (
P ′)2 = 4λ2 p1 p2. (13)

Eliminating ( f ′)2 from (11) and (13) yields

ϕ f 2n−1 = (n − 2)λ2 f n P − 2n(n − 1) f n−1 f ′ P ′ + nf n P ′′ + (n − 1)λ2 P 2 − (n − 1)
(

P ′)2 − 4(n − 1)λ2 p1 p2, (14)

where ϕ = λ2 f − n2 f ′′. Since the right-hand side of the above equation is a differential polynomial in f of degree at most
2n − 1, by Lemma 1, we get m(r,ϕ) = S(r, f ). By the assumption, we have N(r,ϕ) = S(r, f ) and thus T (r,ϕ) = S(r, f ),
which means that ϕ is a small function of f . By substituting f ′′ = (λ2 f − ϕ)/n2 into (11), we get

λ2 f n − n2 f n−2( f ′)2 + ϕ

n − 1
f n−1 + n

n − 1
λ2 P − n

n − 1
P ′′ = 0, (15)

which implies that

λ2 f n − n2 f n−2( f ′)2 ∈ Dn−1. (16)

Differentiating the left-hand side of (16), and then replacing f ′′ by (λ2 f − ϕ)/n2 in the result, we get

λ2 f n−1 f ′ − n2 f n−3( f ′)3 ∈ Dn−1, n � 3. (17)

Taking the derivative and then replacing f ′′ by (λ2 f − ϕ)/n2 in the result, and combining (16), we derive

λ4 f n − n4 f n−4( f ′)4 ∈ Dn−1, n � 4. (18)

Formulas (6) and (7) can be derived by using mathematical induction. �
Lemma 6. Suppose that f (z) is a transcendental meromorphic function, a(z), b(z), c(z) and d(z) are small functions of f (z), and
acd �≡ 0. If

af 2 + bf f ′ + c
(

f ′)2 = d, (19)

then

c
(
b2 − 4ac

)d′

d
+ b

(
b2 − 4ac

) − c
(
b2 − 4ac

)′ + (
b2 − 4ac

)
c′ = 0. (20)

In particular, if a, b, c, d are constants and b2 − 4ac �= 0, then b = 0, and

f (z) = c1eλz + c2e−λz,

where c1 , c2 and λ are nonzero constants.

Proof. It is seen from (19) that the poles of f must be the poles of d if they are not the zeros or poles of a, b and c.
Therefore, N(r, f ) = S(r, f ). Eq. (19) can be written as

1

f 2
= a

d
+ b

d

f ′

f
+ c

d

(
f ′

f

)2

.

By the lemma of logarithmic derivative, we get m(r,1/ f ) = S(r, f ), and thus T (r, f ) = N(r,1/ f ) + S(r, f ). Also we can see
from (19) that the multiple zeros of f must be the zeros of d if they are not the poles of a, b and c. Hence N(r,1/ f ) =
N(r,1/ f ) + S(r, f ). Differentiating (19) yields

a′ f 2 + (
2a + b′) f f ′ + (

b + c′)( f ′)2 + bf f ′′ + 2cf ′ f ′′ = d′. (21)

Suppose z0 is a simple zero of f that is not the pole of a and b. Then from (19) and (21), we get c( f ′)2(z0) = d(z0) and
(b + c′)( f ′)2(z0) + 2cf ′ f ′′(z0) = d′(z0), which implies that z0 is a zero of (cd′ − bd − dc′) f ′ − 2cdf ′′ . Let

α = (cd′ − bd − dc′) f ′ − 2cdf ′′

f
. (22)

Then we have T (r,α) = S(r, f ), i.e., α is a small function of f . It follows that

f ′′ = cd′ − bd − dc′
f ′ − α

f . (23)

2cd 2cd
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By substituting the above equation into (21), we get

(
a′ − bα

2cd

)
f 2 +

(
2a + b′ + b(cd′ − bd − dc′)

2cd
− α

d

)
f f ′ + c

d′

d

(
f ′)2 = d′. (24)

From this and (19) we get

β f + γ f ′ = 0, (25)

where

β = a′ − bα

2cd
− a

d′

d
, (26)

and

γ = 2a + b′ − bd′

2d
− b2 + bc′

2c
− α

d
. (27)

Note that β and γ are small functions of f . If γ �≡ 0, then it follows from (25) that N(r, f ) = S(r, f ), which is impossible.
Hence γ ≡ 0, and thus β ≡ 0. By eliminating α from the above two equations, we can derive (20). In particular, if a, b, c,
d are constants and b2 − 4ac �= 0, then we get b = 0. By Lemma 3, we see that there exist nonzero constants c1, c2 and λ

such that f (z) = c1eλz + c2e−λz. This completes the proof of Lemma 6. �
3. Proof of Theorem 1

First of all, we prove Theorem 1 in the special case that P (z) = cf n−2 f ′ + Q ( f ) where c is a small function of f and
Q ( f ) ∈ Dn−2. Set P = P ( f ), Q = Q ( f ). By Lemma 5, we see that ϕ = λ2 f − n2 f ′′ is a small function of f . By taking the
derivatives of P and substituting f ′′ = (λ2 f − ϕ)/n2 into the results, we get

P ′ = c′ f n−2 f ′ + c(n − 2) f n−3( f ′)2 + cλ2

n2
f n−1 + Q 1,

P ′′ =
(

c′′ + 3n − 5

n2
cλ2

)
f n−2 f ′ + 2(n − 2)c′ f n−3( f ′)2 + 2c′λ2

n2
f n−1 + c(n − 2)(n − 3) f n−4( f ′)3 + Q 2,

where Q 1 = Q ′ − cϕ
n2 f n−2 ∈ Dn−2, and Q 2 = Q ′

1 − c′ϕλ2

n2 f n−2 − 2c(n−2)ϕ
n2 f n−3 f ′ ∈ Dn−2. It is obviously that

f P = cf n−1 f ′ + R1, (28)

where R1 = f Q ∈ Dn−1. By (16) and (17), we have

f P ′′ =
(

c′′ + n2 − 3n + 1

n2
cλ2

)
f n−1 f ′ + 2(n − 1)

n2
c′λ2 f n + R2 (29)

where R2 is a function in Dn−1. Multiplying (15) by f and then substituting (28), (29) into the result, we get

f n−1ψ = n

n − 1
R2 − n

n − 1
λ2 R1, (30)

where

ψ = λ2 f 2 − n2( f ′)2 +
(

ϕ

n − 1
− 2c′

n
λ2

)
f +

(
3n − 1

n(n − 1)
cλ2 − n

n − 1
c′′

)
f ′. (31)

Since the right-hand side of (30) is a function in Dn−1, by Lemma 1, we get m(r,ψ) = S(r, f ). And thus T (r,ψ) = S(r, f ),
i.e., ψ is a small function of f . Let

α = ϕ

n − 1
− 2c′

n
λ2, (32)

β = 3n − 1
cλ2 − n

c′′. (33)

n(n − 1) n − 1
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We can write (31) as

ψ = λ2 f 2 − n2( f ′)2 + α f + β f ′. (34)

Taking the derivative of this equation and substituting f ′′ = (λ2 f − ϕ)/n2 into the result, we get

(
2ϕ + α + β ′) f ′ +

(
α′ + βλ2

n2

)
f = ψ ′ + βϕ

n2
. (35)

If 2ϕ + α + β ′ �≡ 0, then f ′ = γ1 f + γ2, where γ1 and γ2 are two small functions of f . Hence P = cγ1 f n−1 + cγ2 f n−2 + Q .

Let f1 = f + cγ1/n. Then Eq. (1) can be written as f n
1 + P̃ = p1eλz + p2e−λz , where P̃ is a differential polynomial in f of

degree at most n−2. By Theorem B, there exist two nonzero constants c1 and c2 (cn
j = p j) such that f1 = c1eλz/n +c2e−λz/n.

Therefore, f = c1eλz/n + c2e−λz/n − cγ1/n.

If 2ϕ +α +β ′ ≡ 0, then from (35) we get α′ +βλ2/n2 = 0 and ψ ′ +βϕ/n2 = 0. It follows that β2 − 4n2ψ −n2α2/λ2 := d
is a constant. Eq. (34) can be written as

(
f ′ − β

2n2

)2

−
(

λ

n
f + α

2nλ

)2

= d

4n4
. (36)

Let h = λ f /n +α/(2nλ). By α′ + βλ2/n2 = 0, we get f ′ −β/2n2 = nh′/λ. Therefore, h2 − (nh′/λ)2 = −d/(4n4). By Lemma 3,
there exist two nonzero constants d1 and d2 such that h(z) ≡ d1eλz/n + d2e−λz/n. Hence there exist constants c1, c2 and a
small function c0 of f such that f (z) ≡ c1eλz/n + c2e−λz/n + c0, which means that the conclusion of Theorem 1 is true in
the special case.

Now we prove Theorem 1 in the general case. Since P (z) is a differential polynomial in f of degree at most n − 1, by
using f ′′ = (λ2 f − ϕ)/n2, we see that P (z) can be expressed as a polynomial in f and f ′ with total degree at most n − 1.

Therefore,

P =
n−1∑
k=0

bk f n−1−k( f ′)k + P1, (37)

where P1 ∈ Dn−2, and bk (k = 0,1, . . . ,n − 1) are small functions of f . Squaring both sides of (1), we get

f 2n + 2 f n P + P 2 − 2p1 p2 = p2
1e2λz + p2

2e−2λz.

That is

f 2n +
n−1∑
k=0

2bk f 2n−1−k( f ′)k + Q 1 = p2
1e2λz + p2

2e−2λz,

where Q 1 is a function in D2n−2. By (6) and (7), the above equation can be expressed as

f 2n + α1 f 2n−1 + α2 f 2n−2 f ′ + Q 2 = p2
1e2λz + p2

2e−2λz,

where α1, α2 are small functions of f and Q 2 ∈ D2n−2. Let g = f + α1/(2n − 1). It follows that

g2n + cg2n−2 g′ + Q 3 = p2
1e2λz + p2

2e−2λz,

where c is small function of g , and Q 3 is a differential polynomial in g with degree at most 2n − 2. By the result of
Theorem 1 in the special case, we conclude that Theorem 1 is still true in the general case.

4. Proof of Corollary 1

Suppose that f is a meromorphic solution of Eq. (3) and N(r, f ) = S(r, f ). By Theorem 1, we have

f (z) = c0(z) + c1eλz/2 + c2e−λz/2,

where c1 and c2 are constants satisfying c2
j = p j , and c0(z) is a small function of f . By substituting the above equation into

(3) and noting that the coefficients of eλz/2 and e−λz/2 must vanish, we get

2c0 + b0 + λ

2
b1 + λ2

4
b2 = 0, (38)

2c0 + b0 − λ

2
b1 + λ2

4
b2 = 0, (39)

c2 + 2c1c2 + c + b0c0 + b1c′ + b2c′′ = 0. (40)
0 0 0
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From (38) and (39), we get b1 = 0 and 2c0 +b0 + λ2

4 b2 = 0. In particular, if c = b0 = 0, then b2 = − 8
λ2 c0. It follows from (40)

that

c2
0 + 2c1c2 − 8

λ2
c0c′′

0 = 0, (41)

which implies that c0 has no zeros and poles. Therefore, c0 = eh for an entire function h. From the above equation, we
have (1 − 8

λ2 (h′′ + h′ 2))e2h = −2c1c2. It follows that h, and thus c0, is a constant. Hence 2c1c2 = −c2
0. Note that c2

j = p j and

c0 = − λ2

8 b2. We can derive λ8b4
2 = 214 p1 p2 easily.

5. Proof of Corollary 2

If Eq. (4) has a non-trivial entire solution f with finitely many zeros, then f = peα , where p is a polynomial and α is
an entire function. Let g = p′/p + α′. By a simple computation, we get f ′ = g f and

f (k) =
(

gk + k(k + 1)

2
gk−2 g′ + Pk−2(g)

)
f , k � 2, (42)

where Pk−2(g) is a differential polynomial in g of degree k − 2. From (4) and the above equation, we get the following
equation:

gn + n(n + 1)

2
gn−2 g′ + b1 gn−1 + Q n−2(g) = −p1eλz − p2e−λz, (43)

where Q n−2(g) is a differential polynomial in g of degree n − 2 with coefficients being polynomials. Since the right-
hand side of the above equation is transcendental, we see that g must be transcendental. It follows from g = p′/p + α′
that N(r, g) = S(r, g). By Theorem 1, there exist two nonzero constants c1, c2 and a small function c0 such that g =
c1eλz/n +c2e−λz/n +c0. Substitute this into (43) and compare the coefficients of eλz , e−λz , e

n−1
n λz and e− n−1

n λz in the resulting
equation, we have

cn
1 = −p1, cn

2 = −p2,

nc0cn−1
1 + n(n + 1)

2

λ

n
cn−1

1 + b1cn−1
1 = 0,

nc0cn−1
2 − n(n + 1)

2

λ

n
cn−1

2 + b1cn−1
2 = 0.

From these equations, we get λ = 0, a contradiction. This also completes the proof of Corollary 2.

6. Proof of Theorem 2

Suppose that f (z) is a transcendental meromorphic solution of Eq. (5) and satisfies N(r, f ) = S(r, f ). By differentiat-
ing (5), we get

nf n−1 f ′ + P ′ = α1 p1eα1 z + α2 p2eα2z. (44)

Eliminating eα1z and eα2z from (5) and (44), respectively, we get

α1 f n − nf n−1 f ′ + α1 P − P ′ = (α1 − α2)p2eα2z, (45)

α2 f n − nf n−1 f ′ + α2 P − P ′ = (α2 − α1)p1eα1z. (46)

Differentiating (46) yields

nα2 f n−1 f ′ − n(n − 1) f n−2( f ′)2 − nf n−1 f ′′ + α2 P ′ − P ′′ = α1(α2 − α1)p1eα1z. (47)

It follows from (46) and (47) that

f n−2ϕ = −Q , (48)

where

ϕ = α1α2 f 2 − n(α1 + α2) f f ′ + n(n − 1)
(

f ′)2 + nf f ′′, (49)

and

Q = α1α2 P − (α1 + α2)P ′ + P ′′. (50)

Since Q is a differential polynomial in f of degree � n−2, from (48) and by Lemma 1, we have m(r,ϕ) = S(r, f ). Therefore,
T (r,ϕ) = S(r, f ). We distinguish two cases below.



P. Li / J. Math. Anal. Appl. 375 (2011) 310–319 317
Case 1. ϕ ≡ 0. In this case, we have Q ≡ 0, i.e.,

α1α2 P − (α1 + α2)P ′ + P ′′ ≡ 0. (51)

From (5) and by Lemma 4, we see that P �≡ 0. Therefore, α1 P − P ′ ≡ 0 and α2 P − P ′ ≡ 0 cannot hold simultaneously.
Suppose α2 P − P ′ �≡ 0. By (51), we deduce that

α2 P − P ′ = Aeα1z, (52)

where A is a nonzero constant. Combining this and (46), we get

f n−1(α2 f − nf ′) = α2(α2 − α1 − A)

A
P + (1 − α2 + α1)P ′. (53)

Note that the right-hand side of the above equation is a differential polynomial in f of degree � n − 2. By Lemma 1, we
see that α2 f − nf ′ and f (α2 f − nf ′) are small functions of f . Therefore, α2 f − nf ′ = 0, which yields

f n = p̃2eα2z, (54)

where p̃2 is a nonzero constant. By this and (5), (52), we get(
1 − p2

p̃2

)
f n = −α1

α1 − α2
P + 1

α1 − α2
P ′. (55)

If p̃2 �= p2, then by the above equation and Lemma 1 we get T (r, f ) = S(r, f ), which is impossible. Therefore, p̃2 = p2, and
thus f = c2eα2z/n , where c2 is a nonzero constant satisfying cn

2 = p2.

If α1 P − P ′ �≡ 0, then by a similar method we can deduce that f = c1eα1z/n , where c1 is a nonzero constant satisfying
cn

1 = p1.

Case 2. ϕ �≡ 0. It follows from (49) that the multiple zero of f must be the zero of ϕ. Therefore, N(2(r,1/ f ) = S(r, f ). By
differentiating (49) we get

ϕ′ = 2α1α2 f f ′ − n(α1 + α2)
(

f ′)2 − n(α1 + α2) f f ′′ + n(2n − 1) f ′ f ′′ + nf f ′′′. (56)

If z0 is a simple zero of f , then it follows from (49) and (56) that z0 is a zero of (2n − 1)ϕ f ′′ − ((n − 1)ϕ′ + (α1 + α2)ϕ) f ′.
Define

ψ := (2n − 1)ϕ f ′′ − ((n − 1)ϕ′ + (α1 + α2)ϕ) f ′

f
. (57)

Then we have T (r,ψ) = S(r, f ). It follows that

f ′′ = γ1 f ′ + γ0 f , (58)

where

γ1 = n − 1

2n − 1

ϕ′

ϕ
+ α1 + α2

2n − 1
, γ0 = ψ

(2n − 1)ϕ
. (59)

By substituting (58) into (49), we have

af 2 + bf f ′ + c
(

f ′)2 = ϕ, (60)

where a = α1α2 + nγ0, b = nγ1 − n(α1 − α2), and c = n(n − 1). By Lemma 6, we have

c
(
4ac − b2)ϕ′

ϕ
= c

(
4ac − b2)′ − b

(
4ac − b2). (61)

Now we distinguish two subcases below.

Subcase 2.1. Suppose 4ac − b2 = 0. It follows from (60) that c( f ′ − b
2c f )2 = ϕ , which implies that β = f ′ + b

2c f is a small

function of f . By substituting f ′ = − b
2c f + β into (45) and (46), respectively, we get

(
α1 + nb

2c

)
f n − nβ f n−1 + α1 P − P ′ = (α1 − α2)p2eα2 z, (62)

(
α2 + nb

)
f n − nβ f n−1 + α2 P − P ′ = (α2 − α1)p2eα1 z, (63)
2c
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and the left-hand sides of the above two equations are polynomials in f with coefficients being small functions of f . Since
α1 �= α2, one of α1 + nb

2c and α2 + nb
2c is not zero.

Suppose α1 + nb
2c �= 0. By Lemma 2, there exists a small function c0 of f such that

(
α1 + nb

2c

)
( f − c0)

n = (α1 − α2)p2eα2 z, (64)

which implies that f = c0 + c2eα2z/n , and cn
2 = (α1−α2)p2

α1+ nb
2c

. Similarly, if α2 + nb
2c �= 0, then we have f = c̃0 + c̃2eα1z/n. This

cannot hold in such case. Therefore, α2 + nb
2c = 0. Thus cn

2 = p2.

Suppose α2 + nb
2c �= 0. We can deduce that f = c0 + c1eα1z/n , and cn

1 = p1, by a similar argument.

Subcase 2.2. Suppose 4ac − b2 �= 0. From (61) and the definitions of γ1 and b, we get

2n2(n − 1)

2n − 1

ϕ′

ϕ
= 2n(n − 1)

2n − 1
(α1 + α2) + (4ac − b2)′

4ac − b2
. (65)

By integration, we see that there exists a nonzero constant B such that

ϕ2n2(n−1) = B
(
4ac − b2)2n−1

e2n(n−1)(α1+α2)z, (66)

which implies that e2n(n−1)(α1+α2)z is small function of f . But from (5) we have nT (r, f ) � T (r, eα1 z) + T (r, eα2z) + S(r, f ).
Therefore, α1 + α2 = 0. It follows from (45) and (46) that

f 2n−2ϕ1 + R = −(α2 − α1)
2 p1 p2, (67)

where R is a differential polynomial in f of degree � 2n − 2, and ϕ1 = α1α2 f 2 + n2( f ′)2. By Lemma 1 we see that ϕ1 is
small function of f . Combining (60), we get ϕ1 = n

n−1 ϕ. Finally, by Lemma 6, we can deduce that f = c1eα1z/n + c2eα2z/n ,
where c1 and c2 are nonzero constants satisfying cn

i = pi . This also completes the proof of Theorem 2.

7. Concluding remark

By slightly modifying the proof of Theorem 1, we can prove the following result.

Theorem 3. Let n � 2 be an integer, and α a nonconstant entire function. Let P ( f ) be a differential polynomial in f of degree at most
n − 1, and p1 , p2 be two nonzero constants. If f is a meromorphic solution of the equation

f n + P ( f ) = p1eα + p2e−α, (68)

and N(r, f ) = S(r, f ), then

f = c0 + c1eα/n + c2e−α/n, (69)

where c0 is a small function of f , and c1 , c2 are nonzero constants satisfying cn
i = pi .

Furthermore, if we suppose that the degree of P ( f ) is at most n − 2 in Theorem 3, then we can show c0 = 0 in the
following way. Let g = c1eα/n + c2e−α/n. We have

eα/n = 1

2c1
g + n

2c1α′ g′, e−α/n = 1

2c2
g − n

2ccα′ g′,

and f = c0 + g. Hence f n = gn + nc0 gn−1 + P1(g), where P1(g) is a polynomial in g of degree at most n − 2. Note that

gn = p1eα + p2e−α +
n−1∑
k=1

(
n

k

)(
c1eα/n)k(

c2e−α/n)n−k
.

And (c1eα/n)k(c2e−α/n)n−k is a polynomial in eα/n or in e−α/n of degree at most n − 2. Therefore, the last summation in the
above equation is a differential polynomial in g of degree at most n − 2. It follows from (68) that

nc0 gn−1 + P2(g) = 0,

where P2(g) is a differential polynomial in g of degree at most n − 2. Note that N(r, g) = S(r, g). The above equation
implies c0 = 0.
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