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1. Introduction and results

Let f be a transcendental meromorphic function on the complex plane C throughout this paper. We assume that
the reader is familiar with the standard notations used in the Nevanlinna’s value distribution theory such as the character-
istic function T (r, f), the proximity function m(r, f), and the counting function N(r, f). We refer the reader to the book [5]
for the details of the Nevanlinna’s theory and the notations. We use S(r, f) to denote any quantity that satisfies the con-
dition: S(r, f) =o(T(r, f)) as r — oo outside possibly an exceptional set of finite linear measure. A meromorphic function
a(z) is called a small function of f, if and only if T(r,a) = S(r, f). If m(r,a) = S(r, f), then we say that a(z) is a function
of small proximity related to f. In recent years, Nevanlinna’'s value distribution theory has been used to study solvabil-
ity and existence of entire or meromorphic solutions of differential equations in complex domains, see, e.g., [3,4,6,7,10,
12-14].

It is straightforward to show that the function f;(z) = sinz is a solution of the nonlinear differential equation
4f3 4 3f" = —sin3z. It was pointed out in [3] that f5(z) = —@ cosz — %sinz is also a solution of this equation.

In [14], the authors proved that this equation admits exactly three entire solutions, namely f1(z), f2(z) and f3(z) =

4 cosz — %sin z. Note that the function —sin3z is a linear combinations of e!3?

to find all entire solutions of the following more general equation:
fM(@) + P(f) = p1e’* + pre™™, (1)

where p1, pp and A are nonzero constants, and P(f) denotes a differential polynomial in f of degree at most n — 1.
The following two theorems answered this question partially.

and e~3Z, So, it is an interesting question

Theorem A. (See [14].) Let n > 3 be an integer, P(f) be a differential polynomial in f of degree at most n — 3, b(z) be a meromorphic
function, and A, p1, p2 be three nonzero constants. Then the differential equation:

'@ + P(f) =b@)(p1e"* + p2e ™)
has no transcendental entire solutions f (z) that satisfies T (r,b) = S(r, f).
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Theorem B. (See [8].) Let n > 2 be an integer, P(f) be a differential polynomial in f of degree at most n — 2, and A, p1, p2 be three
nonzero constants. If f is an entire solution of Eq. (1), then f(z) = c1e**/™ 4 c,e=*#/", where ¢ and c, are constants and cl = pj.

Remark. Theorem B is proved in [8]. From that proof we can see that Theorem B is still true if we suppose that f is a
meromorphic function with N(r, f) = S(r, f).

In [9], the authors also discussed the equation similar to the equation in (1) with the right-hand side replaced by a linear
combinations of e*1# and e“?# for two nonzero constants ¢«; and « with some additional conditions. In the present paper,
we weaken the condition on the degree of P(f) in Theorem B and prove the following theorem.

Theorem 1. Let n > 2 be an integer, P(f) be a differential polynomial in f of degree at most n — 1, and A, p1, p2 be three nonzero
constants. If f is a meromorphic solution of Eq. (1) and N(r, f) = S(r, f), then there exist two nonzero constants c1, c2 (c;? =pj), and

a small function cg of f such that

Az/n

f =co+c1e*?™ 4 cre™*/m, (2)

Corollary 1. Suppose that p1, p2, A are nonzero constants, by, b1, b, and c are meromorphic functions. If f is a meromorphic solution
of the following nonlinear differential equation

f2+c+bof +bif +baf” =pie*” + pre™?, (3)

such that c, bo, b1, by are small function of f, and N(r, f) = S(r, f), then by = 0. In particular, if c = bo = 0, then by is a constant
satisfying b328 = 21p1 p,.

For example, equation f2 + 8f” = 16e2Z + 4e—2% has exactly two entire solutions, namely f;(z) = 4e* —2e~% — 4 and
f2(z2) = —4e* + 2e% — 4. In fact, from the proof of Corollary 1, we can see that this equation has no other meromorphic
solutions satisfying N(r, f) = S(r, f).

By Theorem 1, we can also prove the following result on linear differential equations.

Corollary 2. Suppose that by, ..., b,_1 are polynomials, p1, p1, A are nonzero constants. Then any non-trivial entire solutions of the
linear differential equation

fO b f"V 4 buoa f o+ (pre¥ + pre ™) f =0, (4)

must have infinitely many zeros.
If A and —A are replaced by two constants 1 and o, respectively, then we have the following result.

Theorem 2. Let n > 2 be an integer, P(f) be a differential polynomial in f of degree at most n — 2, and p1, p2, ®1, &2 be nonzero
constants and oy # . If f(2) is a transcendental meromorphic solution of the following equation

[+ P(f) = p1e¥1* + p2e®?, (5)
and satisfying N(r, f) = S(r, f), then one of the following holds:
(i) f(@) =co+cre®?/m;
(i) f(2) = co+ coe®?/™;

(iii) f(z) =c1e1Z/M 4 cye®2Z/" and o1 + a3 =0,

where cg is a small function of f(z) and c1, c; are constants satisfying c|f = p1, ¢ = pa.

Remark. From the proof of Theorem 2, we can deduce that «7/op; must be a rational number under the assumption of
Theorem 2.

For further study, we propose the following question.

Question. How to find the solutions of Eq. (5) under the condition deg P(f) =n —1?
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2. Some lemmas
The following lemmas will be used in the proofs of the theorems.

Lemma 1 (Clunie’s lemma). (See [1,2].) Suppose that f(z) is meromorphic and transcendental in the plane and that

f"@P(f)=Q )

where P(f) and Q (f) are differential polynomials in f with functions of small proximity related to f as the coefficients and the degree
of Q (f) is at most n. Then

m(r, P(f)) =S, f).

Lemma 2. (See [5].) Suppose that f is a nonconstant meromorphic function and F = f" + Q (f), where Q (f) is a differential polyno-
mial in f with degree <n—1.IfN(r, f)+ N(r,1/F) = S(r, f), then F = (f — co)", where cq is meromorphic and T (r, co) = S(r, f).

Lemma 3. (See [14].) Let n be a positive integer, a, bg, b1, ..., by—1 be polynomials, and b,, be a nonzero constant. Let L(f) =
S ko bif &) Ifa(z) 0, then the transcendental meromorphic solution of the following equation:

P+ 1) =a,

must have the form f(z) = %(P(z)eR(Z) + Q(2)e R@) where P, Q, R are polynomials, and PQ = a. If furthermore all by are
constants, then deg P + deg Q < n — 1. Moreover, R(z) = Az, where A is a nonzero constant satisfying the following equations:

n n
1 k ;

Dbk =< Zbk<f)x’<-f=o, j=1.....degP.
1 ! J

k=0 k=j

n n

1 j .
Y b1 =—<, Zbk<‘.>(—x)"—f —0, j=1,...,degQ.
k=0 ! e M

Lemma 4. (See [11].) Let n, m be positive integers satisfying 1/n + 1/m < 1. Then there exist no transcendental entire solutions f and
g that satisfy the equation af™ + bg™ = 1, with a, b being small functions of f and g, respectively.

Lemma 5. Let n > 2 be an integer, P (f) be a differential polynomialin f of degree < n—1, and A, p1, p2 be three nonzero constants. If
f is a meromorphic solution of Eq. (1) and N(r, f) = S(r, f), then the function ¢ = A% f —n? f" is a small function of f. Furthermore,

Azlcfn _ n2kfn—2k(f/)2k €Dp_1, n=2k, (6)
— _2k— 2k+1
)\,Zkfn 1f/ _ nzkfn 2k 1(f/) + = Dn—] , n 2 2k + ‘1’ (7)

where and in the sequel D,,_1 denotes the family of all differential polynomials in f of degree at most n — 1 with coefficients being
small functions of f.

Proof. Set P = P(f). Suppose that f is a meromorphic solution of Eq. (1) and N(r, f) = S(r, f). By differentiating (1), we
get

nf"lf 4 P’ = Apie’? — Apye 2. (8)
Eliminating e~*? from (1) and (8) yields

AffP4nft U f 4 AP + P/ =2ap et (9)
By taking the derivative of the above equation, we get

n)nfn_lf/ +n(n _ 1)fn—2(f/)2 + nfﬂ—] f// + )\.P/ + P// — 2k2plek2' (10)
Then eliminating e** from (9) and (10) gives

22 —n(n— D fP2(f) —nf" 7 4 02P — P =0 (11)
By eliminating e*? from (1) and (8), we have

Aff—nftlf 4 AP — P/ =2apre . (12)
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It follows from (9) and (12) that

J2F 2 2022 L 232 1P — o fPY 4 32P2 — (P) = 432 ps. (13)
Eliminating (f’)? from (11) and (13) yields

@f == 202 f"P —2n(n — 1) [N f'P 4 nf"P" 4 (n— 122P% — (n— 1)(P')} —4(n — 1)A2pipa,  (14)
where ¢ =A% f —n?f”. Since the right-hand side of the above equation is a differential polynomial in f of degree at most

2n — 1, by Lemma 1, we get m(r, ¢) = S(r, f). By the assumption, we have N(r,¢) = S(r, f) and thus T(r, @) = S(r, f),
which means that ¢ is a small function of f. By substituting f” = (A*f — ¢)/n? into (11), we get

n n
2 —prpn2(py? £ty L osep B opr_g (15)
n—1 n—1 n—1
which implies that
A2 fM—n? f12(f1)? € Do (16)

Differentiating the left-hand side of (16), and then replacing f” by (A% f — ¢)/n? in the result, we get
R - () €Dy, n>3, (17)
Taking the derivative and then replacing f” by (A% f — ¢)/n? in the result, and combining (16), we derive

Mt () e Dy, n>4 (18)

Formulas (6) and (7) can be derived by using mathematical induction. O

Lemma 6. Suppose that f(z) is a transcendental meromorphic function, a(z), b(z), c(z) and d(z) are small functions of f(z), and
acd #0.If

af? +bff +c(f)’ =d, (19)
then

4
c(b® - 4ac)dE +b(b? — 4ac) — c(b? — 4ac)’ + (b? — 4ac)c’ =o0. (20)

In particular, if a, b, ¢, d are constants and b*> — 4ac # 0, then b = 0, and

f@) =c1e’ + e,

where c1, ¢ and XA are nonzero constants.

Proof. It is seen from (19) that the poles of f must be the poles of d if they are not the zeros or poles of a, b and c.
Therefore, N(r, f) = S(r, f). Eq. (19) can be written as

1 a bf cff 2
F‘E+ET+E<T>'

By the lemma of logarithmic derivative, we get m(r,1/f) = S(r, f), and thus T(r, f) = N(r,1/f) 4+ S(r, f). Also we can see
from (19) that the multiple zeros of f must be the zeros of d if they are not the poles of a, b and c. Hence N(r,1/f) =
N(r,1/f) + S(r, f). Differentiating (19) yields

d f2+ 2a+b)ff + (b+¢)(f) +bff" +2cf f' =d. (21)

Suppose zg is a simple zero of f that is not the pole of a and b. Then from (19) and (21), we get c(f)?®(zog) = d(zo) and
(b+ ) (f)2(z0) + 2¢f' f(z0) = d'(z0), which implies that zg is a zero of (cd’ — bd — dc’) f' — 2cdf”. Let

o (cd’ — bd —dc’) f' — 2cdf”

(22)
f
Then we have T(r, o) = S(r, f), i.e.,, @ is a small function of f. It follows that
d’ — bd —dc’
e =T/ (23)

2cd 2cd
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By substituting the above equation into (21), we get

, ba , , b(cd —bd—dc) « pod
<a —ﬁ>f +<2a+b +T_E>ff +eo () =d" (24)

From this and (19) we get

Bf+yf =0, (25)
where
B=d - — —a— (26)

and

y=2a+b - — ——— — = (27)

Note that 8 and y are small functions of f. If y 0, then it follows from (25) that N(r, f) = S(r, f), which is impossible.
Hence y =0, and thus g =0. By eliminating « from the above two equations, we can derive (20). In particular, if a, b, c,
d are constants and b® — 4ac 0, then we get b = 0. By Lemma 3, we see that there exist nonzero constants ¢y, ¢; and A
such that f(z) = cie*? + cpe™*%. This completes the proof of Lemma 6. O

3. Proof of Theorem 1

First of all, we prove Theorem 1 in the special case that P(z) =cf" 2 f’ + Q (f) where c is a small function of f and
Q(f) € Dy_y. Set P =P(f), Q = Q(f). By Lemma 5, we see that ¢ = A2f —n®f” is a small function of f. By taking the
derivatives of P and substituting f” = (A2 f — @)/n? into the results, we get

)LZ
¢ e —2) " 3(F) + Cn—zf’H + Qi

2

— 2
P’ = (c”+ —3nn2 5Ckz>f”‘2f’+2(n—2)c/f”‘3(f’) 20 1t e 20— 9 () + @

where Q; = Q' — ;—ff”‘z €Dyp_z,and Q2 =Q] — C/:f—z}‘zf”_z - zc(aﬁf"_v/ € Dy_». It is obviously that
fP=cf"'f +Ry, (28)
where R; = fQ € Dy_1. By (16) and (17), we have

3n+1

2 _
fP//=<C//+n = )L2>fn lf =7 ( ]) /

A2 fM 4Ry (29)

where R; is a function in D;_1. Multiplying (15) by f and then substituting (28), (29) into the result, we get

Ry — A2R1, (30)

n]_
o= —

where

1/f:}»2f2—n2(f/)2—}—< % _27(:/)"2)](4‘(3”_1C)\z_nflc//>f,- (31)

n—1 n nn-—1)

Since the right-hand side of (30) is a function in D1, by Lemma 1, we get m(r, ) = S(r, f). And thus T(r, ¥) = S(r, f),
i.e,, ¥ is a small function of f. Let

2/
a=-Y_ _ 2,2 (32)
n—1 n
3n—1
g=—""_ p2_ M (33)
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We can write (31) as

2
V=122 = (f) +af +Bf. (34)
Taking the derivative of this equation and substituting f” = (A2 f — ¢)/n? into the result, we get

B ﬂfﬂ

(2<p+oc+ﬁ’)f’+<a +—>f v +5 (35)

If 20 + o + 8 0, then f' = y; f + y2, where y; and y;, are two small functions of f. Hence P =cy; f"~ 1 +cy, f"2 4+ Q.
Let f; = f 4 cy1/n. Then Eq. (1) can be written as f} + P = pie* + pre%, where P is a differential polynomial in f of
degree at most n—2. By Theorem B, there exist two nonzero constants ¢y and c; (cj = p;) such that f; =c; eM/m 4 c e re/n,
Therefore, f = c1e*/™ + c;e™*?/™ — cyq /n.

If 20 +a + B’ =0, then from (35) we get o’ 4+ S1%/n?> =0 and ¥’ + Be/n® = 0. It follows that g2 — 4n?y —na? /A2 :=d
is a constant. Eq. (34) can be written as

/ :8 2 A o 2_ d
(7-3) ~(Grram) =ae )

Let h=Af/n+a/(2n1). By o + Br%/n®> =0, we get f' — /2n? =nh’/x. Therefore, h? — (nh’ /)% = —d/(4n*). By Lemma 3,
there exist two nonzero constants d; and dy such that h(z) = d;e*?/" + dye~*?/". Hence there exist constants ci, ¢; and a
small function cg of f such that f(z) = c1e*#/™ + cye=*2/" 4 ¢g, which means that the conclusion of Theorem 1 is true in
the special case.

Now we prove Theorem 1 in the general case. Since P(z) is a differential polynomial in f of degree at most n — 1, by
using f” = (A>f — @)/n%, we see that P(z) can be expressed as a polynomial in f and f’ with total degree at most n — 1.
Therefore,

n—1
P=Y b + Py, (37)

where P; € D,_5, and by (k=0,1,...,n—1) are small functions of f. Squaring both sides of (1), we get

f211 +2leP + P2 _ 2P]P2 _ p%ez)xl + p%e—nz.
That is

n—1
f2n+22bkf2"717k(f/)k+Q1 _ 2 2Az+p e~ Az’
k=0

where Q1 is a function in Dy,_;. By (6) and (7), the above equation can be expressed as
f2n + o f2n—1 +a2f2n—2f/ + Q2 =p 2 2kz + p2€—2)\z’
where o, ap are small functions of f and Q) € Dap—3. Let g = f +a1/(2n — 1). It follows that

2 2Az 2,-2)\z

g2n+cg2n2/+Q3 —I—pe ,

where ¢ is small function of g, and Qs is a differential polynomial in g with degree at most 2n — 2. By the result of
Theorem 1 in the special case, we conclude that Theorem 1 is still true in the general case.

4. Proof of Corollary 1
Suppose that f is a meromorphic solution of Eq. (3) and N(r, f) = S(r, f). By Theorem 1, we have

f(@) =co(2) +c1e*/? 4 cre™#/2,

where ¢ and c; are constants satisfying c? = pj, and co(2) is a small function of f. By substituting the above equation into

(3) and noting that the coefficients of e*?/2 and e~*2/2 must vanish, we get
A 22
2Co+bo-‘r—5b1 +Zb2=0, (38)
A 22
2co + bg — 5b1 +Zb2 =0, (39)

g +2c1c2 4 ¢ + boco + bicy + bacy = 0. (40)
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From (38) and (39), we get by =0 and 2co + bo + %bz = 0. In particular, if c = by =0, then by = —%co. It follows from (40)
that

8
g +2c1c2 — A—Zcocg =0, (41)

which implies that ¢y has no zeros and poles. Therefore, cy = e for an entire function h. From the above equation, we
have (1 — %(h” +h'2))e" = —2c;c,. It follows that h, and thus co, is a constant. Hence 2cjc; = —c3. Note that c? =pj and

co= —%bz. We can derive A8b3 =2"pp; easily.
5. Proof of Corollary 2

If Eq. (4) has a non-trivial entire solution f with finitely many zeros, then f = pe”, where p is a polynomial and « is
an entire function. Let g =p’/p + «’. By a simple computation, we get f’ = gf and

k(k+1) ,_
o= (g" g e+ Pk_z(g)>f k=2, (42)

where Py_,(g) is a differential polynomial in g of degree k — 2. From (4) and the above equation, we get the following
equation:

nn+1) ,_

gn+ > )gn 2

where Qp_2(g) is a differential polynomial in g of degree n — 2 with coefficients being polynomials. Since the right-

hand side of the above equation is transcendental, we see that g must be transcendental. It follows from g =p’/p + o’
that N(r,g) = S(r, g). By Theorem 1, there exist two nonzero constants cq, c; and a small function cg such that g =

. o . -1 a1y, .
c1€7/M 4 ce=*#/M 4 ¢ Substitute this into (43) and compare the coefficients of e*?, e=*%, "= ** and e~ "= ** in the resulting
equation, we have

g +b1g" " + Qn_2(g) = —p1e*? — pare %, (43)

cl=-p1, ¢y =—p2,
nn+1) A
ncoch ! + w—cq*1 +bicl ! =0,
2 n
nn+1)a
ncocg’l — %Ecg’l +b1cg’1 =0.

From these equations, we get A =0, a contradiction. This also completes the proof of Corollary 2.
6. Proof of Theorem 2

Suppose that f(z) is a transcendental meromorphic solution of Eq. (5) and satisfies N(r, f) = S(r, f). By differentiat-
ing (5), we get

nf" 1 f + P’ = a1 p1e®1? + az pae??. (44)
Eliminating e%1# and e“?? from (5) and (44), respectively, we get

ar f"=nf" N f' 4oy P — P/ = (a1 — o2) p2e®?, (45)

arf" —nf" ' 40P — P’ = (g — 1) pre”. (46)
Differentiating (46) yields

naa 1N f = nn = D2 N 4 P — P = o (o — o) pre®it, (47)
It follows from (46) and (47) that

e =-q, (48)
where

2

=0z f? —n(ar +az) ff +nm—1D)(f')" +nff’, (49)
and

Q =P — (a1 + )P’ + P, (50)

Since Q is a differential polynomial in f of degree < n—2, from (48) and by Lemma 1, we have m(r, ¢) = S(r, f). Therefore,
T(r,¢)=S(r, f). We distinguish two cases below.
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Case 1. ¢ =0. In this case, we have Q =0, i.e,

a102P — (a1 + )P’ + P =0. (51)

From (5) and by Lemma 4, we see that P # 0. Therefore, «1P — P’ =0 and a;P — P’ =0 cannot hold simultaneously.
Suppose oz P — P’ # 0. By (51), we deduce that

arP — P/ = Ae¥1?, (52)
where A is a nonzero constant. Combining this and (46), we get

o (ay — a1 — A)

" Neaf —nf') = -

Note that the right-hand side of the above equation is a differential polynomial in f of degree <n — 2. By Lemma 1, we
see that o f —nf’ and f(ao f —nf’) are small functions of f. Therefore, o f — nf’ =0, which yields

P+(1—oaz+a)P. (53)

S = bae ™, &4
where p; is a nonzero constant. By this and (5), (52), we get
- 1
(1 _ ’f—2>f” - % py p'. (55)
D2 o] — 02 o1 — a2

If py # p», then by the above equation and Lemma 1 we get T(r, f) = S(r, f), which is impossible. Therefore, p, = p», and
thus f = ce®%" where c; is a nonzero constant satisfying c} = pa.
If 1P — P’ 20, then by a similar method we can deduce that f = c;e®%" where c; is a nonzero constant satisfying
= p1.
1

Case 2. ¢ # 0. It follows from (49) that the multiple zero of f must be the zero of ¢. Therefore, N(r,1/f) = S(r, f). By
differentiating (49) we get
¢ =210 ff —n(og + Olz)(f/)2 —n(ar + ) ff"+n2n—1)f'f" +nff". (56)

If zg is a simple zero of f, then it follows from (49) and (56) that zg is a zero of 2n — D f” — (n— )¢’ + (1 + @2)@) f'.
Define

@n—Def"—((n—1D¢'+ (a1 + 2)9) f'

V= (57)
f
Then we have T(r,y) = S(r, f). It follows that
f"=wnif +vf, (58)
where
n-1¢ o1+a
7 A - (59)

“-1¢  22m-1° “en-1e

By substituting (58) into (49), we have

af> +bff +c(f) =, (60)

where a = aj02 +nyp, b =ny; —n(a1 —ay), and c =n(n — 1). By Lemma 6, we have
/
c(4ac—b2)% = c(4ac — b?) — b(4ac — b?). (61)
Now we distinguish two subcases below.

Subcase 2.1. Suppose 4ac — b% = 0. It follows from (60) that c(f’ — %f)2 = ¢, which implies that g = f’ + %f is a small
function of f. By substituting f’ = —%f + B into (45) and (46), respectively, we get

b
(0‘1 + %)f" —npf" !+ 1P — P’ = (a1 — a2) pae®?, (62)

nb
<0€2+2_c>fn—n/3f"_1 + P — P' = (ap — aq1)pe®'?, (63)
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and the left-hand sides of the above two equations are polynomials in f with coefficients being small functions of f. Since
o1 # oy, one of aq + ” and oy + 2 2—C is not zero.

Suppose o + 52 ;é O By Lemma 2, there exists a small function cg of f such that

<a1+ >(f—60) = (a1 — otg) p2e*?, (64)

which implies that f = co + c26%2%/", and ¢} = %, Similarly, if oy + % # 0, then we have f =g + 261%™, This
1+3¢
cannot hold in such case. Therefore, o + =0. Thus cz D2.

Suppose a3 + 52 ;é 0. We can deduce that f =co+cr1e®#M™ and | = p1, by a similar argument.

Subcase 2.2. Suppose 4ac — b? # 0. From (61) and the definitions of y; and b, we get

-1 ¢ _2n(n— ) (4ac — b2y’
+ +— 65
2n—1 ¢ 2n — @1 +e2) 4ac — b? (65)
By integration, we see that there exists a nonzero constant B such that
(pznz(n—l) _ B(4ac _ b2)2”—1€2n(n—1)(a1+o{2)z, (66)

which implies that e2"—D(@1+@2)Z js small function of f. But from (5) we have nT(r, f) < T(r, e¥1?) + T(r, e%2%) + S(r, f).
Therefore, o1 + a3 = 0. It follows from (45) and (46) that
201 + R = — (02 — 1) p1p2, (67)

where R is a differential polynomial in f of degree <2n—2, and @1 = ajaa f2 +n%(f')2. By Lemma 1 we see that ¢ is
small function of f. Combining (60), we get 1 = -5 ¢. Finally, by Lemma 6, we can deduce that f = c1e*1Z/M 4 cpe®2Z/m,
where ¢; and ¢ are nonzero constants satisfying ¢} = p;. This also completes the proof of Theorem 2.

7. Concluding remark

By slightly modifying the proof of Theorem 1, we can prove the following result.

Theorem 3. Let n > 2 be an integer, and o a nonconstant entire function. Let P(f) be a differential polynomial in f of degree at most
n —1, and p1, p2 be two nonzero constants. If f is a meromorphic solution of the equation

"+ P(f)=p1e* + pre?, (68)
and N(r, f) = S(r, f), then

o/n

f=co+cre*™ 4 cre™/m, (69)

where cg is a small function of f, and c1, ¢ are nonzero constants satisfying ¢} = p;.
Furthermore, if we suppose that the degree of P(f) is at most n — 2 in Theorem 3, then we can show co =0 in the
following way. Let g = c1e®/™ + c e~/ We have

1 n / —a/n 1 n /
= — —g, e =—g——g,
2cq g+ 2c1a’g 20y J 2cca’ J

eot/n

and f =co+ g. Hence f"=g" +ncog" ' + P1(g), where P{(g) is a polynomial in g of degree at most n — 2. Note that

gn = pr1e® + pae ™ + Z ( > eo/n (Cze—a/n)n—k.

And (ce®/™")*(ce~®/m"—k s a polynomial in e*/" or in e~%/" of degree at most n — 2. Therefore, the last summation in the
above equation is a differential polynomial in g of degree at most n — 2. It follows from (68) that
n—1 _
ncog" " + Pa(g) =

where P;(g) is a differential polynomial in g of degree at most n — 2. Note that N(r, g) = S(r, g). The above equation
implies co = 0.
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