

stochastic processes and their applications

Stochastic Processes and their Applications 120 (2010) 1247–1266

www.elsevier.com/locate/spa

Invariant measures and the Kolmogorov equation for the stochastic fast diffusion equation

Viorel Barbu^a, Giuseppe Da Prato^{b,*}

^a University Al. I. Cuza, 700506, Iasi, Romania ^b Scuola Normale Superiore, 56126, Pisa, Italy

Received 21 June 2009; received in revised form 4 March 2010; accepted 16 March 2010

Available online 30 March 2010

Abstract

We prove the existence of an invariant measure μ for the transition semigroup P_t associated with the fast diffusion porous media equation in a bounded domain $\mathcal{O} \subset \mathbb{R}^d$, perturbed by a Gaussian noise. The Kolmogorov infinitesimal generator N of P_t in $L^2(H^{-1}(\mathcal{O}), \mu)$ is characterized as the closure of a second-order elliptic operator in $H^{-1}(\mathcal{O})$. Moreover, we construct the Sobolev space $W^{1,2}(H^{-1}(\mathcal{O}), \mu)$ and prove that $D(N) \subset W^{1,2}(H^{-1}(\mathcal{O}), \mu)$.

© 2010 Elsevier B.V. All rights reserved.

MSC: 60J10; 47D07

Keywords: Fast diffusion equations; Stochastic equations; Invariant measure; Sobolev space; Kolmogorov equations

1. Introduction

We are concerned with the following stochastic problem in a bounded domain \mathscr{O} of \mathbb{R}^d :

$$\begin{cases} dX(t,\xi) = \Delta\beta(X(t,\xi))dt + \sqrt{Q}dW(t,\xi), & \xi \in \mathcal{O}, \\ X(t,\xi) = 0, & \forall \, \xi \in \partial \mathcal{O}, \\ X(0,\xi) = x(\xi), & \forall \, \xi \in \mathcal{O}, \end{cases}$$
(1.1)

where

$$\beta(r) = a|r|^{\alpha} \operatorname{sgn} r, \quad \alpha \in [0, 1], \ a > 0, \ \forall \ r \in \mathbb{R}.$$

E-mail address: daprato@sns.it (G. Da Prato).

0304-4149/\$ - see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.spa.2010.03.007

^{*} Corresponding author.

We denote by $\{e_k\}$ and $\{\alpha_k\}$ eigensequences of the Laplace operator in \mathcal{O} endowed with Dirichlet boundary conditions,

$$\Delta e_k = -\alpha_k e_k, \quad \forall k \in \mathbb{N}.$$

Let $A = -\Delta$ with $D(A) = H^2(\mathcal{O}) \cap H_0^1(\mathcal{O})$. We shall assume that the boundary $\partial \mathcal{O}$ of \mathcal{O} is sufficiently smooth (of class C^2 for instance) or that \mathcal{O} is convex.

Here W is a cylindrical Wiener process in $L^2(\mathcal{O})$ of the form

$$W(t) = \sum_{k=1}^{\infty} e_k W_k(t), \quad \forall t \ge 0,$$

where $\{W_k\}$ is a sequence of independent real Brownian motions on a filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$ and

$$\sqrt{Q} W(t) = \sum_{k=1}^{\infty} \sqrt{Q} e_k W_k(t), \quad \forall t \ge 0.$$

We take $Q \in L(L^2(\mathcal{O}))$ such that

$$Qe_k = q_k e_k, \quad \forall k \in \mathbb{N},$$

where $\{q_k\}$ is a sequence of nonnegative numbers such that

$$\text{Tr}[A^{-1}Q] = \sum_{k=1}^{\infty} \alpha_k^{-1} q_k < \infty.$$

This condition is fulfilled for $q_k \to 0$ sufficiently fast. In fact we shall need a stronger assumption in what follows. (See Proposition 2.6 below.)

For the sake of simplicity we shall take in the following a=1 (here and everywhere in the following we shall denote by Tr the trace in the space $L^2(\mathcal{O})$).

We introduce the nonlinear operator F in $H^{-1}(\mathcal{O})$

$$\begin{cases} F(x) = -\Delta(|x|^{\alpha}\operatorname{sgn} x), & \forall x \in D(F), \\ D(F) = \{x \in L^{1}(\mathscr{O}) \cap H^{-1}(\mathscr{O}) : |x|^{\alpha}\operatorname{sgn} x \in H_{0}^{1}(\mathscr{O})\}, \end{cases}$$

$$(1.2)$$

where $\operatorname{sgn} x = \frac{x}{|x|}$ if $x \neq 0$, $\operatorname{sgn} 0 = [-1, 1]$. By a classical result (see e.g. [1, Proposition 2.12]) we know that if $\alpha > 0$ then F is maximal monotone on $H^{-1}(\mathscr{O})$. Then we may write (1.1) as

$$\begin{cases}
dX(t) + F(X(t))dt = \sqrt{Q}dW(t), & \forall t \ge 0, \\
X(0) = x \in H^{-1}(\mathscr{O}).
\end{cases}$$
(1.3)

Definition 1.1. A solution X to (1.1) is an adapted stochastic process X(t), $t \ge 0$, with values in $H^{-1}(\mathcal{O})$ such that (see [3,4])

$$X \in L^2_W(\Omega; C[0, T]; H^{-1}(\mathcal{O})) \cap L^{\alpha+1}(\Omega \times [0, T] \times \mathcal{O})$$

and for all $k \in \mathbb{N}$ and all t > 0 we have

$$\langle X(t), e_k \rangle_2 + \alpha_k \int_0^t \langle |X(s)|^\alpha \operatorname{sgn} X(s), e_k \rangle_2 ds = \langle x, e_k \rangle_2 + \sqrt{q_k} W_k(t), \quad \mathbb{P}\text{-a.s.}$$
 (1.4)

Existence and uniqueness of solutions for Eq. (1.1) for general classes of monotone functions β were established in [3–6,10,11,13]. Moreover in [10] proof was given for the existence of an invariant measure for C^1 functions β satisfying the condition

$$k_0|x|^{m-1} \le \beta'(x) \le k_1|x|^{r-1} + C_2, \quad r > 1, \ k_0, k_1 > 0.$$

In [2] proof was given for the existence of a probability measure μ , infinitesimally invariant, for the Kolmogorov operator N_0 associated with (1.1) and the essential dissipativity of N_0 in the space $L^2(H^{-1}, \nu)$ where ν is an excessive probability measure with respect to N_0 . (See also [10,11].)

Here we shall prove the existence of an invariant measure μ for (1.1) (see Theorem 3.2) and we shall describe the corresponding Kolmogorov operator N, i.e., the infinitesimal generator of the transition semigroup P_t associated with (1.1), as the closure in $L^2(H^{-1}(\mathcal{O}), \mu)$ of the elliptic infinite dimensional operator

$$N_0\varphi = \frac{1}{2} \text{Tr} \left[A^{-1} Q D^2 \varphi \right] - \langle \beta(x), D^1 \varphi \rangle_2.$$

(See Theorem 4.4.) Moreover, the last section is devoted to proving the closability of the gradient in $L^2(H^{-1}, \mu)$ and to defining the Sobolev space $W^{1,2}(H^{-1}, \mu)$. Finally, we show that the domain D(N) of N is included in $W^{1,2}(H^{-1}, \mu)$.

For $\alpha \in (0, 1)$ the equation considered here is known in the literature as the "fast diffusion equation" and it models diffusion in plasma physics (see e.g. [7,8,14]), curvature flows and self-organized criticality in sandpile models. (The case $\alpha = 0$ was recently studied in [4].)

It should be mentioned, however, that the methods used in [2,10–13] for studying the Kolmogorov equation associated with (1.1) are not applicable in the present situation due to the singularity of β' at the origin and so a sharper analysis was necessary.

We shall use the following notation.

- $L^p(\mathcal{O})$ with norm $|\cdot|_p$, $p \ge 1$ and inner product $\langle \cdot, \cdot \rangle_2$ when p = 2.
- $H_0^1(\mathcal{O})$ is the standard Sobolev space on \mathcal{O} with norm denoted as $\|\cdot\|_1$.
- $H^{-1}(\mathcal{O})$ is the dual of $H_0^1(\mathcal{O})$ with norm $\|\cdot\|_{-1}$, and inner product $\langle x,y\rangle_{-1} = -\langle \Delta^{-1}x,y\rangle_2$, $x,y\in H^{-1}(\mathcal{O})$. Sometimes we shall write H^{-1} for short, instead of $H^{-1}(\mathcal{O})$ and L^2 , instead of $L^2(\mathcal{O})$.

If H is a Hilbert space we shall denote by $D^1\varphi$ the differential of $\varphi: H \to \mathbb{R}$ and by $D^2\varphi$ the second differential. If $B \in L(H) = L(H, H)$ is a trace class operator we shall denote its trace by $\operatorname{Tr}_H B$. By $C_b^k(H)$, k=1,2, we shall denote the space of differentiable functions of order k with k derivative continuous and bounded on H. Finally, $B_b(H)$ will represent the space of all Borelian bounded functions on H.

We shall use notation from [4,9] for spaces of adapted processes with values in $H_0^1(\mathcal{O})$, $H^{-1}(\mathcal{O})$ or $L^p(\mathcal{O})$, $p \ge 2$.

2. The approximating problem

Note that β is m-accretive in \mathbb{R} and denote by β_{ϵ} , $\epsilon > 0$, its Yosida approximation, i.e.,

$$\beta_{\epsilon}(r) = \frac{1}{\epsilon} (r - J_{\epsilon}(r)), \quad \forall r \in \mathbb{R},$$

where

$$J_{\epsilon} = (1 + \epsilon \beta)^{-1}, \quad \forall \, \epsilon > 0.$$

We set

$$\widetilde{\beta}_{\epsilon}(r) = \beta_{\epsilon}(r) + \epsilon r, \quad \forall r \in \mathbb{R}.$$

Since $\widetilde{eta}_{\epsilon}$ is Lipschitz continuous and strongly monotone the stochastic equation

$$\begin{cases} dX_{\epsilon}(t) - \Delta \widetilde{\beta_{\epsilon}}(X_{\epsilon}(t))dt = \sqrt{Q}dW(t), \\ X_{\epsilon}(0) = x \in H^{-1}(\mathscr{O}), \end{cases}$$
(2.1)

has a unique solution

$$X_\epsilon \in L^2_W(\varOmega; C([0,T]; H^{-1}\mathcal{O})) \cap L^2(\varOmega \times [0,T]; H^1_0(\mathcal{O})).$$

(See [4, Proposition 3.4].)

We set

$$j_{\epsilon}(r) := \int_{0}^{r} \beta_{\epsilon}(r) dr. \tag{2.2}$$

Lemma 2.1. We have

$$r\beta_{\epsilon}(r) \ge j_{\epsilon}(r), \quad \forall r \in \mathbb{R}.$$
 (2.3)

Moreover for any $\alpha \in (0, 1)$ we have

$$\beta_{\epsilon}'(r) = \frac{\alpha |J_{\epsilon}(r)|^{\alpha - 1}}{1 + \alpha \epsilon |J_{\epsilon}(r)|^{\alpha - 1}}, \quad \forall r \in \mathbb{R}$$
(2.4)

and for $\alpha = 0$

$$\beta'_{\epsilon}(r) = \begin{cases} 0 & for |r| > \epsilon \\ 1 & for |r| < \epsilon. \end{cases}$$

Proof. Since j_{ϵ} is convex we have

$$i_{\epsilon}(s) - i_{\epsilon}(r) > \beta_{\epsilon}(r)(s-r), \quad \forall r, s \in \mathbb{R}.$$

Setting s = 0 yields (2.3).

Let us show (2.4). Set $s = J_{\epsilon}(r) = (1 + \epsilon \beta)^{-1}(r)$, so $r = s + \epsilon \beta(s)$. If $s \neq 0$ we have

$$1 = \frac{\mathrm{d}s}{\mathrm{d}r} + \alpha \epsilon |r|^{\alpha - 1} \frac{\mathrm{d}s}{\mathrm{d}r} = \frac{\mathrm{d}s}{\mathrm{d}r} (1 + \alpha \epsilon |s|^{\alpha - 1}).$$

Hence

$$J_{\epsilon}'(r) = \frac{\mathrm{d}s}{\mathrm{d}r} = \frac{1}{1 + \alpha \epsilon |J_{\epsilon}(r)|^{\alpha - 1}}.$$

Therefore

$$\beta_{\epsilon}'(r) = \frac{\alpha |J_{\epsilon}(r)|^{\alpha - 1}}{1 + \alpha \epsilon |J_{\epsilon}(r)|^{\alpha - 1}}.$$
(2.5)

In the case $\alpha = 0$ we have

$$\beta_{\epsilon}(r) = \begin{cases} \operatorname{sign} r & \text{for } |r| > \epsilon \\ r & \text{for } |r| < \epsilon \end{cases}$$

and this implies the desired formula for β'_{ϵ} . \square

2.1. A few estimates for the approximating equation

We shall give below a few estimates for the solution X_{ϵ} to (2.1). We begin with an estimate for $\mathbb{E}\|X_{\epsilon}(t)\|_{-1}^2$.

Proposition 2.2. If $x \in H^{-1}$ we have

$$\mathbb{E}\|X_{\epsilon}(t)\|_{-1}^{2} + 2\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} \beta_{\epsilon}(X_{\epsilon}(s))X_{\epsilon}(s)dsd\xi = \|x\|_{-1}^{2} + t\operatorname{Tr}\left[QA^{-1}\right]. \tag{2.6}$$

Proof. By Itô's formula applied to $||X_{\epsilon}(t)||_{-1}^2$, we have

$$\begin{aligned} \mathbf{d} \| X_{\epsilon} \|_{-1}^{2} &= 2 \langle \Delta \beta_{\epsilon}(X_{\epsilon}) \mathbf{d}t + \sqrt{Q} \mathbf{d}W(t), X_{\epsilon} \rangle_{-1} + \text{Tr} \left[Q A^{-1} \right] \mathbf{d}t \\ &= -2 \langle \beta_{\epsilon}(X_{\epsilon}), X_{\epsilon} \rangle_{2} \mathbf{d}t + \left\langle \sqrt{Q} \mathbf{d}W(t), X_{\epsilon} \right\rangle_{-1} + \text{Tr} \left[Q A^{-1} \right] \mathbf{d}t. \end{aligned}$$

Taking the expectation yields (2.6).

Let us now estimate $\mathbb{E}|X_{\epsilon}(t)|_2^2$ (we refer the reader to [3] and [3] for a justification of Itô's formula for Eq. (2.8) below).

Proposition 2.3. Assume that $\operatorname{Tr} Q < \infty$. Then, if $x \in L^2(\mathcal{O})$ we have

$$\mathbb{E}|X_{\epsilon}(t)|_{2}^{2} + 2\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} \beta_{\epsilon}'(X_{\epsilon}(s))|\nabla X_{\epsilon}(s)|^{2} d\xi ds \leq |x|_{2}^{2} + t \operatorname{Tr} Q.$$
(2.7)

Proof. The proof is exactly the same as that of [4, Proposition 3.4], so it will only be outlined. Namely, we consider the equation

$$\begin{cases} dX_{\epsilon}^{\lambda}(t) + (F_{\epsilon})_{\lambda}(X_{\epsilon}^{\lambda}(t))dt = \sqrt{Q}dW_{t}, \\ X_{\epsilon}^{\lambda}(0) = x, \end{cases}$$
(2.8)

where $(F_{\epsilon})_{\lambda}$ is the Yosida approximation of $F_{\epsilon} = -\Delta \widetilde{\beta}_{\epsilon}$ with the domain $\{x \in L^{1}(\mathscr{O}) \cap H^{-1}(\mathscr{O}) : \widetilde{\beta}_{\epsilon}(x) \in H^{1}_{0}(\mathscr{O})\}$. Then applying Itô's formula with $\varphi(x) = \frac{1}{2} |x|_{2}^{2}$ and taking into account that

$$(F_{\epsilon})_{\lambda}(X_{\epsilon}^{\lambda}) = -\Delta \widetilde{\beta}_{\epsilon}(Y_{\epsilon}^{\lambda}), \qquad Y_{\epsilon}^{\lambda} = (1 + \lambda F_{\epsilon})^{-1}(X_{\epsilon}^{\lambda}),$$

we get

$$\mathbb{E}|X_{\epsilon}^{\lambda}(t)|_{2}^{2} + 2\mathbb{E}\int_{0}^{t} \langle (F_{\epsilon})_{\lambda}(X_{\epsilon}^{\lambda}(s)), X_{\epsilon}^{\lambda}(s) \rangle_{2} ds = |x|_{2}^{2} + t \operatorname{Tr} Q.$$
(2.9)

On the other hand, we have

$$\langle (F_{\epsilon})_{\lambda}(X_{\epsilon}^{\lambda}), X_{\epsilon}^{\lambda} \rangle_{2} = \langle F_{\epsilon}(Y_{\epsilon}^{\lambda}), Y_{\epsilon}^{\lambda} \rangle_{2} + \lambda |(F_{\epsilon})_{\lambda}(X_{\epsilon}^{\lambda})|^{2}$$

$$= -\langle \Delta \widetilde{\beta}_{\epsilon}(Y_{\epsilon}^{\lambda}), Y_{\epsilon}^{\lambda}(x) \rangle_{2} + \lambda |(F_{\epsilon})_{\lambda}(X_{\epsilon}^{\lambda})|_{2}^{2}. \tag{2.10}$$

So, substituting in (2.9) and using Green's formula yields

$$\mathbb{E}|X_{\epsilon}^{\lambda}(t)|_{2}^{2} + 2\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} \widetilde{\beta}_{\epsilon}'(Y_{\epsilon}^{\lambda}(s))|\nabla Y_{\epsilon}^{\lambda}(s)|_{2}^{2} ds d\xi \leq |x|_{2}^{2} + t \operatorname{Tr} Q.$$
(2.11)

Recalling that by [4, Proposition 3.4] we have

$$\lim_{\lambda \to 0} X_{\epsilon}^{\lambda} = X_{\epsilon} \quad \text{strongly in } L^{2}(\Omega \times [0, T] \times \mathscr{O}),$$

we obtain that

$$\lim_{\lambda \to 0} Y_{\epsilon}^{\lambda} = X_{\epsilon} \quad \text{strongly in } L^{2}(\Omega \times [0, T] \times \mathscr{O}). \tag{2.12}$$

Moreover, since $\widetilde{\beta}'_{\epsilon} \geq \epsilon$ it follows by (2.10) and (2.11) that $\{Y^{\lambda}_{\epsilon}\}$ is bounded in $L^2(0,T;L^2(\Omega,H^1_0(\mathscr{O})))$ and so

$$\lim_{\lambda \to 0} Y_{\epsilon}^{\lambda} = X_{\epsilon} \quad \text{weakly in } L^{2}(0, T; L^{2}(\Omega, H_{0}^{1}(\mathscr{O}))),$$

i.e.,

$$\lim_{\lambda \to 0} \nabla Y_{\epsilon}^{\lambda} = \nabla X_{\epsilon} \quad \text{weakly in } L^{2}(\Omega \times [0, T] \times \mathscr{O}). \tag{2.13}$$

Now by (2.11) and (2.5) we see that

$$\lim_{\lambda \to 0} |\widetilde{\beta}_{\epsilon}'(Y_{\epsilon}^{\lambda}) - \widetilde{\beta}_{\epsilon}'(X_{\epsilon})| = 0, \quad \text{a.e. in } \Omega \times (0, T) \times \mathscr{O}$$

and

$$|\widetilde{\beta}'_{\epsilon}(Y_{\epsilon}^{\lambda}) - \widetilde{\beta}'_{\epsilon}(X_{\epsilon})| \le C$$
, a.e. in $\Omega \times (0, T) \times \mathcal{O}$.

This implies that

$$\lim_{\lambda \to 0} \nabla Y_{\epsilon}^{\lambda} [\widetilde{\beta}_{\epsilon}'(Y_{\epsilon}^{\lambda})]^{1/2} = \nabla X_{\epsilon} [\widetilde{\beta}_{\epsilon}'(X_{\epsilon})]^{1/2} \quad \text{weakly in } L^{2}(\Omega \times [0, T] \times \mathscr{O})$$

and therefore by weak lower semicontinuity of the integral, we have

$$\liminf_{\lambda \to 0} \mathbb{E} \int_0^t \int_{\mathscr{Q}} \widetilde{\beta}'_{\epsilon}(Y^{\lambda}_{\epsilon}(s)) |\nabla Y^{\lambda}_{\epsilon}(s)|_2^2 ds d\xi \ge \mathbb{E} \int_0^t \int_{\mathscr{Q}} \widetilde{\beta}'_{\epsilon}(X_{\epsilon}(s)) |\nabla X_{\epsilon}(s)|_2^2 ds d\xi.$$

Then by (2.9) and (2.11) the conclusion (2.7) follows.

We have a similar estimate for $\mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m}$.

Proposition 2.4. Assume that $\sum_{k=1}^{\infty} q_k \|e_k\|_{\infty}^2 < \infty$. Then, if $x \in L^{2m}(\mathscr{O})$ and $m > \frac{1}{2}$ we have

$$\mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m} + 2m(2m-1)\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} \beta_{\epsilon}'(X_{\epsilon}(s))|X_{\epsilon}(s)|^{2m-2}|\nabla X_{\epsilon}(s)|^{2}d\xi ds$$

$$\leq |x|_{2m}^{2m} + m(2m-1)\sum_{t=1}^{\infty} q_{k}\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} |X_{\epsilon}(s)|^{2m-2} e_{k}^{2}d\xi ds. \tag{2.14}$$

Proof. One proceeds as in the proof of Proposition 2.3, i.e. one applies Itô's formula to the function $\varphi(x) = \frac{1}{2} |x|_{2m}^{2m}$ and to Eq. (2.8). One gets as above

$$\mathbb{E}|X_{\epsilon}^{\lambda}|_{2m}^{2m} + 2m \int_{\mathscr{O}} (\widetilde{\beta}_{\epsilon})(Y_{\epsilon}^{\lambda}(s))|Y_{\epsilon}^{\lambda}(s)|^{2m-2}|\nabla Y_{\epsilon}^{\lambda}(s)|^{2}d\xi ds$$

$$= |x|_{2m}^{2m} + m(2m-1) \sum_{k=1}^{\infty} q_{k} \mathbb{E} \int_{0}^{t} \int_{\mathscr{O}} |Y_{\epsilon}^{\lambda}(s)|^{2m-2} e_{k}^{2} d\xi ds$$

and let $\lambda \to 0$ to get by (2.12), (2.13) estimate (2.14). \square

By (2.14) we have:

Corollary 2.5. Assume that $\sum_{k=1}^{\infty} q_k \|e_k\|_{\infty}^2 < \infty$. Then, if $x \in L^{2m}(\mathcal{O})$, $m \in \mathbb{N}$, there exists $C_T > 0$ independent of ϵ such that

$$\mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m} + 2m(2m-1)\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} \beta_{\epsilon}'(X_{\epsilon}(s))|X_{\epsilon}(s)|^{2m-2}|\nabla X_{\epsilon}(s)|^{2}d\xi ds$$

$$\leq C_{T}(1+|x|_{2m}^{2m}), \quad \forall t \in [0,T]. \tag{2.15}$$

2.2. Existence for equation (1.1)

Proposition 2.6. Assume that $\sum_{k=1}^{\infty} q_k \|e_k\|_{\infty}^2 < \infty$. Then if $x \in H^{-1}(\mathcal{O})$ and $\int_{\mathcal{O}} |x|^{2\alpha} d\xi < \infty$, $\alpha \geq 0$ problem (1.1) has a unique solution.

Proof. The existence and uniqueness of a solution to (1.1) was proved earlier in [2,3,5] for more general β . Here we give, however, for later use a direct proof relying on Proposition 2.4.

Let us show that sequence $\{X_{\epsilon}\}$ is Cauchy in $L^2_W(\Omega; C([0,T]; H^{-1}(\mathcal{O})))$, where X_{ϵ} is the solution to (2.1). In fact, for $\epsilon, \eta > 0$ we have by (2.1)

$$\frac{\mathrm{d}}{\mathrm{d}t}(X_{\epsilon} - X_{\eta}) = \Delta \widetilde{\beta}_{\epsilon}(X_{\epsilon}) - \widetilde{\Delta\beta}_{\eta}(X_{\eta}), \quad \mathbb{P}\text{-a.s.}$$

Multiplying both sides, in scalar fashion, in $H^{-1}(\mathcal{O})$ by $X_{\epsilon} - X_{\eta}$ yields

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} |X_{\epsilon} - X_{\eta}|_{-1}^{2} - \langle \Delta \beta_{\epsilon}(X_{\epsilon}) - \Delta \beta_{\eta}(X_{\eta}), X_{\epsilon} - X_{\eta} \rangle_{-1} + \epsilon |\nabla X_{\epsilon} - \nabla X_{\eta}|_{2}^{2} = 0,$$

 \mathbb{P} -a.s.,

and therefore

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|X_{\epsilon}-X_{\eta}|_{-1}^{2}+\langle\beta_{\epsilon}(X_{\epsilon})-\beta_{\eta}(X_{\eta}),X_{\epsilon}-X_{\eta}\rangle_{2}\leq0,\quad\mathbb{P}\text{-a.s.}$$

It follows that

$$\begin{split} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|X_{\epsilon}-X_{\eta}|_{-1}^{2}+\langle\beta(J_{\epsilon}(X_{\epsilon}))-\beta(J_{\eta}(X_{\eta})),\,J_{\epsilon}(X_{\epsilon})-J_{\eta}(X_{\eta})\rangle_{2}\\ &+\langle\beta_{\epsilon}(X_{\epsilon})-\beta_{\eta}(X_{\eta}),\,\epsilon\beta_{\epsilon}(X_{\epsilon})-\eta\beta_{\eta}(X_{\eta})\rangle_{2}\leq0. \end{split}$$

Therefore, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}|X_{\epsilon} - X_{\eta}|_{-1}^{2} \leq 2(\epsilon + \eta) \left(|\beta_{\epsilon}(X_{\epsilon})|_{2\alpha}^{2\alpha} + |\beta_{\eta}(X_{\eta})|_{2\alpha}^{2\alpha} \right)
\leq 2C(\epsilon + \eta) \left(1 + |X_{\epsilon}|_{2\alpha}^{2\alpha} + |X_{\eta}|_{2\alpha}^{2\alpha} \right).$$

Consequently,

$$\mathbb{E}\sup_{t\in[0,T]}|X_{\epsilon}-X_{\eta}|_{-1}^2\leq 2C(\epsilon+\eta)\int_0^T(1+|X_{\epsilon}(s)|_{2\alpha}^{2\alpha}+|X_{\eta}(s)|_{2\alpha}^{2\alpha})\mathrm{d}s,$$

and by Proposition 2.3 it follows that $\{X_{\epsilon}\}$ is Cauchy in $L^2(\Omega; C([0,T]; H^{-1}(\mathscr{O})))$ and so, it is convergent to an element $X \in L^2(\Omega; C([0, T]; H^{-1}(\mathcal{O})))$. It is easily seen that X is a solution of (1.1). \square

3. The invariant measure

We shall assume here that $\sum_{k=1}^{\infty} q_k \|e_k\|_{\infty}^2 < \infty$. We denote by P_t the transition semigroup associated with Eq. (1.1), i.e.,

$$P_t \varphi(x) := \mathbb{E}[\varphi(X(t,x))], \quad \forall \varphi \in B_b(H^{-1}), \ x \in H^{-1}, \ t \ge 0$$

where X(t, x) is the solution to (1.1).

We notice that P_t is Feller, that is $P_t \varphi \in C_b(H^{-1})$ for all $\varphi \in C_b(H^{-1})$ and all $t \ge 0$. This an easy consequence on the fact that X(t, x) depends continuously on x in the topology of H^{-1} .

Lemma 3.1. If $m \in [1, 2]$ then the following estimate holds:

$$\frac{1}{T}\mathbb{E}\int_{0}^{T}|X(s,x)|_{p^{*}(2m+\alpha-1)/2}^{2m+\alpha-1}\mathrm{d}s \leq \frac{C_{1}}{T}|x|_{2m}^{2m}+C_{2}, \quad \forall T>0, \ x\in L^{2m}(\mathscr{O}),$$
(3.1)

where $p^* = \frac{2d}{d-2}$ if d > 2, $p^* \in [2, \infty)$ if d = 1, 2.

Proof. By Proposition 2.4 and by (2.5) we see that

$$\frac{1}{2m} \mathbb{E} |X_{\epsilon}(t)|_{2m}^{2m} + (2m-1) \mathbb{E} \int_{0}^{t} \int_{\mathscr{O}} \left(\frac{\alpha |J_{\epsilon}(X_{\epsilon}(s))|^{\alpha-1}}{1 + \alpha \epsilon |J_{\epsilon}(X_{\epsilon}(s))|^{\alpha-1}} + \epsilon \right) |X_{\epsilon}(s)|^{2m-2} | \\
\times \nabla X_{\epsilon}(s)|^{2} ds d\xi \leq |x|_{2m}^{2m} + (m-1/2) \sum_{k=1}^{\infty} q_{k} \mathbb{E} \int_{0}^{t} \int_{\mathscr{O}} |X_{\epsilon}(s)|^{2m-2} e_{k}^{2} d\xi ds.$$

Taking into account that J_{ϵ} is non-expansive, that is

$$|J_{\epsilon}(\xi) - J_{\epsilon}(\eta)| \le |\xi - \eta|, \quad \forall \, \xi, \eta \in \mathbb{R},$$

we have

$$|J_{\epsilon}(x)| \le |x|, \qquad |\nabla J_{\epsilon}(x)| \le |\nabla x| \quad \text{a.e. in } \mathscr{O}, \ \forall \ x \in H_0^1(\mathscr{O}).$$

Then we obtain that

$$\frac{1}{2m} \mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m} + \alpha(2m-1)\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} \left(\frac{\alpha|Y_{\epsilon}(s)|^{2m-3+\alpha}}{1+\alpha\epsilon|Y_{\epsilon}(s)|^{\alpha-1}}\right) |\nabla Y_{\epsilon}(s)|^{2} ds d\xi$$

$$\leq |x|_{2m}^{2m} + C\mathbb{E}\int_{0}^{t} \int_{\mathscr{O}} |X_{\epsilon}(s)|^{2m-2} d\xi ds, \quad \forall \epsilon > 0,$$

where $Y_{\epsilon}(s) = J_{\epsilon}(X_{\epsilon}(s))$. Equivalently,

$$\frac{1}{2m} \mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m} + C\alpha \mathbb{E} \int_{0}^{t} \int_{\mathscr{O}} |\nabla g_{\epsilon}(Y_{\epsilon}(s))|^{2} ds d\xi$$

$$\leq |x|_{2m}^{2m} + C \mathbb{E} \int_{0}^{t} \int_{\mathscr{O}} |X_{\epsilon}(s)|^{2m-2} d\xi ds, \quad \forall \epsilon > 0.$$
(3.2)

Here $g_{\epsilon}: \mathbb{R} \to \mathbb{R}$ is defined by

$$g_{\epsilon}(r) := \int_0^r \left(\frac{z^{2m-3+\alpha}}{1+\alpha\epsilon z^{\alpha-1}} \right)^{1/2} \mathrm{d}z, \quad \forall r \ge 0.$$

Next by the Sobolev embedding theorem we have for $p^* = \frac{2d}{d-2}$ if d > 2, $p^* \in [2, \infty)$ if d = 1, 2.

$$\mathbb{E} \int_0^t \int_{\mathcal{O}} |\nabla g_{\epsilon}(Y_{\epsilon}(s))|^2 ds d\xi \ge C \mathbb{E} \int_0^t |g_{\epsilon}(Y_{\epsilon}(s))|_{p^*}^2 ds. \tag{3.3}$$

(Here and everywhere in the following we shall denote by C several positive constants independent of ϵ .)

On the other hand, by the integral mean theorem we have

$$g_{\epsilon}(r) \ge \int_0^r \frac{z^{m-3/2+\alpha/2}}{1+(\alpha\epsilon)^{1/2}z^{(\alpha-1)/2}} dz = \int_0^r \frac{z^{m-1}}{z^{(1-\alpha)/2}+(\alpha\epsilon)^{1/2}} dz$$
$$= \frac{2}{1-\alpha} \int_0^r \frac{u^{\frac{1-\alpha}{2}}}{u+\sqrt{\alpha\epsilon}} du = \frac{\tilde{g}}{m} r^m$$

where

$$\tilde{g} \in \left[\frac{1}{r^{\frac{1-\alpha}{2}} + (\alpha\epsilon)^{1/2}}, \frac{1}{(\alpha\epsilon)^{1/2}}\right].$$

Hence

$$g_{\epsilon}(r) \ge \frac{r^m}{m\left(r^{\frac{1-\alpha}{2}} + (\alpha\epsilon)^{1/2}\right)}, \quad \forall r \ge 0.$$

This yields

$$g_{\epsilon}(r) \ge \frac{r^m}{m\left(r^{\frac{1-\alpha}{2}} + r^{\frac{1-\alpha}{2}}\right)} = \frac{1}{2m} r^{m-\frac{1-\alpha}{2}} \quad \text{if } r \ge (\alpha \epsilon)^{\frac{1}{1-\alpha}}.$$

For $0 < r < (\alpha \epsilon)^{\frac{1}{1-\alpha}}$ we have (because $g_{\epsilon}(r) \leq \frac{1}{2m-1+\alpha} r^{\frac{2m-1+\alpha}{1-\alpha}}$)

$$g_{\epsilon}(r) \geq -\frac{1}{2m-1+\alpha} (\alpha \epsilon)^{\frac{2m+\alpha-1}{2(1-\alpha)}}.$$

Hence for all r > 0 we have

$$g_{\epsilon}(r) \ge C\left(r^{\frac{2m-1+\alpha}{2}} - C\epsilon^{\frac{2m-1+\alpha}{2(1-\alpha)}}\right).$$
 (3.4)

By (3.2), (3.3) and (3.4) we obtain that

$$\frac{1}{2m} \mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m} + C\mathbb{E} \int_{0}^{t} |Y_{\epsilon}(s)|_{p^{*}(2m+\alpha-1)/2}^{2m+\alpha-1} ds$$

$$\leq |x|_{2m}^{2m} + C\mathbb{E} \int_{0}^{t} |X_{\epsilon}(s)|_{2m-2}^{2m-2} ds + C\epsilon^{\frac{m-1+\alpha}{2(1-\alpha)}}, \quad \forall \epsilon > 0.$$
(3.5)

On the other hand, we have by (2.3) and by estimate (2.6) that

$$\mathbb{E} \int_0^t \int_{\mathscr{O}} j_{\epsilon}(X_{\epsilon}(s)) \mathrm{d}s \mathrm{d}\xi \leq C, \quad \forall \ \epsilon > 0.$$

This yields

$$\mathbb{E} \int_0^t \int_{\mathscr{Q}} |X_{\epsilon}(s) - Y_{\epsilon}(s)|^2 ds d\xi \le C\epsilon, \quad \forall \, \epsilon > 0,$$

because

$$j_{\epsilon}(r) = \frac{1}{2\epsilon} |r - J_{\epsilon}(r)|^2 + j(J_{\epsilon}(r)), \quad \forall r \in \mathbb{R}.$$

Then for $2m-2 \le 2$ (i.e., $1 \le m \le 2$ as we assumed) we have for ϵ small enough

$$\mathbb{E} \int_0^t |X_{\epsilon}(s)|_{2m-2}^{2m-2} \, \mathrm{d}s \le \mathbb{E} \int_0^t |Y_{\epsilon}(s)|_{2m-2}^{2m-2} \, \mathrm{d}s + C\epsilon$$

and substituting in (3.5) we obtain that

$$\frac{1}{2m} \mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m} + C\mathbb{E} \int_{0}^{t} |Y_{\epsilon}(s)|_{p^{*}(2m+\alpha-1)/2}^{2m+\alpha-1} ds$$

$$\leq |x|_{2m}^{2m} + C\mathbb{E} \int_{0}^{t} |X_{\epsilon}(s)|_{2m-2}^{2m-2} ds + C\epsilon, \quad \forall \epsilon > 0.$$
(3.6)

Now taking into account that for any $\delta > 0$ there exists $C_{\delta} > 0$ independent of ϵ such that

$$|r|^{2(m-1)} \le \delta |r|^{2m+\alpha-1} + C_{\delta}, \quad \forall r \in \mathbb{R},$$

we obtain by (3.6) that

$$\frac{1}{2m} \mathbb{E}|X_{\epsilon}(t)|_{2m}^{2m} + \frac{1}{2} C \mathbb{E} \int_{0}^{t} \int_{\mathscr{O}} |Y_{\epsilon}(s)|_{p^{*}(2m+\alpha-1)/2}^{2m+\alpha-1} ds d\xi \leq |x|_{2m}^{2m} + C\epsilon t,
\forall \epsilon > 0, \ t > 0.$$
(3.7)

Now letting $\epsilon \to 0$ in (3.7) and recalling that $\lim_{\epsilon \to 0} (X_{\epsilon} - Y_{\epsilon}) = 0$ in $L^2(\Omega \times [0, T] \times \mathcal{O})$ and $X_{\epsilon} \to X$ in $L^2(\Omega; C([0, T]; H^{-1}(\mathcal{O})))$, we obtain by the weak lower semicontinuity of the norm that X satisfies (3.1) as claimed. \square

Theorem 3.2 below is the main result of this section.

Theorem 3.2. For each $\alpha \in [0, 1]$ there exists at least one invariant measure μ for P_t , i.e.,

$$\int_{H^{-1}} P_t \varphi(x) \mu(\mathrm{d}x) = \int_{H^{-1}} \varphi(x) \mu(\mathrm{d}x), \quad \forall \ \varphi \in B_b(H^{-1}).$$

Moreover, one has

support
$$\mu \subset L^{p^*(3+\alpha)/2}(\mathscr{O}),$$
 (3.8)

$$\int_{\mu_{-1}} |x|^{3+\alpha}_{p^*(3+\alpha)/2} \mu(\mathrm{d}x) < \infty, \tag{3.9}$$

where p^* was defined in Lemma 3.1.

Proof. We shall use estimate (3.1) for m = 2. We set

$$\mu_T = \frac{1}{T} \int_0^T \pi_{t,x} \mathrm{d}t \quad \forall \ T > 0,$$

where $\pi_{t,x}$ is the law of X(t,x). Let $x \in L^4(\mathscr{O})$. Since by the Sobolev theorem the embedding of $L^{p^*(3+\alpha)/2}(\mathscr{O})$ into $H^{-1}(\mathscr{O})$ is compact we see that the set

$$\mathcal{M}_R := \{ x \in L^{p^*(3+\alpha)/2}(\mathcal{O}) : |x|_{p*(3+\alpha)/2} \le R \}$$

is compact in $H^{-1}(\mathcal{O})$. Also by Lemma 3.1 we have that

$$\mu_T(\mathcal{M}_R^c) \le C_1 \frac{|x|_4^4}{TR^{3+\alpha}} + \frac{C_2}{R^{3+\alpha}}.$$

Hence $\{\mu_T\}_{T>1}$ is tight and so, by the Prokhorov theorem, it is weakly convergent (on a subsequence $T_n \uparrow \infty$) to an invariant measure μ of P_t . Clearly we have

$$\mu_T(\mathcal{M}_R^c) \le \frac{C_2}{R^{3+\alpha}}, \quad \forall R > 0,$$

and this implies that also $\mu(L^{p^*(3+\alpha)/2}(\mathcal{O})) = 1$ as claimed.

It remains to prove (3.9), i.e. that

$$|x|_{p^*(3+\alpha)/2} \in L^{3+\alpha}(H^{-1}, \mu).$$

With this purpose we shall use estimate (3.1) where x is replaced by $\frac{x}{1+\epsilon|x|_{2m}}$. If $X^{\epsilon} = X^{\epsilon}(t, x)$ is the corresponding solution to (1.1) we have by (3.1) that

$$\frac{1}{T}\mathbb{E}\int_0^T |X^{\epsilon}(t,x)|_{p^*(2m+\alpha-1)/2}^{2m+\alpha-1} dt \leq \frac{C_1}{T} \frac{|x|_{2m}^{2m}}{(1+\epsilon|x|_{2m})^{2m}} + C_2, \quad \forall \ T > 0, \ x \in L^{2m}(\mathscr{O})$$

and by the invariance of measure μ ,

$$\frac{1}{T} \int_{H^{-1}} \mu(\mathrm{d}x) \mathbb{E} \int_0^T |X^{\epsilon}(t,x)|_{p^*(2m+\alpha-1)/2}^{2m+\alpha-1} \mathrm{d}t = \int_{H^{-1}} \frac{|x|_{\frac{1}{2}p^*(2m+\alpha-1)}^{2m+\alpha-1}}{(1+\epsilon|x|_{2m})^{2m+\alpha-1}} \, \mu(\mathrm{d}x),$$

$$\forall T > 0.$$

Hence

$$\int_{H^{-1}} \frac{|x|_{\frac{1}{2}p^*(2m+\alpha-1)}^{2m+\alpha-1}}{(1+\epsilon|x|_{2m})^{2m+\alpha-1}} \, \mu(\mathrm{d}x) \leq \frac{C_1}{T} \, \int_{H^{-1}} \frac{|x|_{2m}^{2m}}{(1+\epsilon|x|_{2m})^{2m}} \, \mu(\mathrm{d}x) + C_2,$$

$$\forall \, T>0, \, \epsilon>0.$$

Then letting $\epsilon \to 0$ it follows by Fatou's lemma that (3.9) holds. This completes the proof.

Remark 3.3. The problem of uniqueness of invariant measure μ remains open.

4. The Kolmogorov equation

Everywhere in this section we shall assume that $\sum_{k=1}^{\infty} q_k \|e_k\|_{\infty}^2 < \infty$.

We denote by X(t, x) the solution of (1.1) and by P_t the corresponding transition semigroup

$$P_t \varphi(x) = \mathbb{E}[\varphi(X(t,x))], \quad \forall t \ge 0, \ x \in H^{-1}(\mathcal{O}), \ \varphi \in B_b(H^{-1}).$$

It is well known that P_t has a unique extension to a contraction C_0 -semigroup in $L^2(H^{-1}, \mu)$, still denoted P_t (see e.g. [9]). The corresponding infinitesimal generator will be denoted by N. The Kolmogorov equation associated with Eq. (1.1) is the infinite dimensional elliptic equation in H^{-1}

$$\lambda \varphi - N\varphi = f.$$

Set

$$N_{0}\varphi := \frac{1}{2} \operatorname{Tr}_{H^{-1}} [QD^{2}\varphi] + \langle F(x), D^{1}\varphi \rangle_{-1}$$

$$= \frac{1}{2} \operatorname{Tr}_{L^{2}} [A^{-1}QD^{2}\varphi] - \langle \beta(x), D^{1}\varphi \rangle_{2}, \quad \forall \varphi \in D(N_{0}),$$
(4.1)

where

$$D(N_0) := \{ \varphi \in C_b^2(H^{-1}) \cap C_b^1(H_0^1) : D^2 \varphi A \in C_b(L(L^2)) \}.$$

(Here $A = -\Delta$ with $D(A) = H^2((\mathcal{O})) \cap H^1_0((\mathcal{O}))$.) Notice that $D(N_0)$ is dense in $L^2(H^{-1}, \mu)$. Our aim is to prove that N_0 is a core for N. We shall prove first:

Proposition 4.1. N is an extension of N_0 .

Proof. Let $\varphi \in D(N_0)$. By Taylor's formula we have

$$\varphi(X(t,x)) - \varphi(x) = \langle D^1 \varphi(x), X(t,x) - x \rangle_{-1} + \frac{1}{2} \langle D^2 \varphi(x) (X(t,x) - x), X(t,x) - x \rangle_{-1} + R(t,x),$$

where $||R(t, x)||_{-1} = o(t)$ as $t \to 0$. We obtain that

$$\frac{1}{t} \left(P_t \varphi(x) - \varphi(x) \right) = -\mathbb{E} \frac{1}{t} \int_0^t \langle D^1 \varphi(x), \beta(X(s, x)) \rangle_2 ds
+ \frac{1}{2t} \mathbb{E} \int_0^t ds \int_0^t \langle D^2 \varphi(x) \Delta \beta(X(s, x)), \beta(X(r, x)) \rangle_2 dr
+ \frac{1}{t} \mathbb{E} \int_0^t ds \langle D^2 \varphi(x) \Delta \beta(X(s, x)), \sqrt{Q} W(t) \rangle_{-1}
+ \frac{1}{2t} \mathbb{E} \langle D^2 \varphi(x) \sqrt{Q} W(t), \sqrt{Q} W(t) \rangle_{-1} + R(t, x)
=: I_1(t, x) + I_2(t, x) + I_3(t, x) + I_4(t, x) + R(t, x).$$
(4.2)

We notice that (4.2) makes sense because, since X is the solution to (1.1), we have (Definition 1.1) $\beta(X) \in L^{\frac{1+\alpha}{\alpha}}(\Omega \times (0,T) \times \mathscr{O}) \subset L^2(\Omega \times (0,T) \times \mathscr{O})$ and $D^2\varphi(x)\Delta\beta(X) \in L^2(\Omega \times (0,T) \times \mathscr{O})$.

As regards $I_1(t, x)$ we have

$$I_1(t,x) = -\frac{1}{t} \int_0^t \langle D^1 \varphi(x), P_s(\beta)(x) \rangle_2 ds$$

and so, taking into account the invariance of μ , we obtain that

$$\begin{split} \int_{H^{-1}} |I_{1}(t,x)|^{2} \mu(\mathrm{d}x) &\leq \|\varphi\|_{C_{b}^{1}(H_{0}^{1})} \frac{1}{t} \int_{0}^{t} \mathrm{d}s \int_{H^{-1}} P_{s}(\|\beta\|_{-1})(x) \mu(\mathrm{d}x) \\ &= \|\varphi\|_{C_{b}^{1}(H_{0}^{1})} \int_{H^{-1}} \|\beta(x)\|_{-1} \mu(\mathrm{d}x) \leq C \int_{H^{-1}} |\beta(x)|_{\frac{p^{*}}{p^{*}-1}} \mu(\mathrm{d}x) \\ &\leq C \int_{H^{-1}} |x|_{\frac{\alpha p^{*}}{p^{*}-1}}^{\alpha p^{*}} \mu(\mathrm{d}x) < +\infty. \end{split} \tag{4.3}$$

Here we have used once again Sobolev's embedding theorem, $L^{\frac{p^*}{p^*-1}}(\mathscr{O}) \subset H^{-1}(\mathscr{O})$, and Theorem 3.2 part (3.9).

Moreover, we have also that for each $\psi \in L^2(H^{-1}, \mu)$

$$\lim_{t \to 0} \int_{H^{-1}} I_1(t, x) \psi(x) \mu(\mathrm{d}x) = \int_{H^{-1}} \left\langle D^1 \varphi(x), \lim_{t \to 0} \frac{1}{t} \int_0^t P_s(\beta)(x) \mathrm{d}s \right\rangle_2 \psi(x) \mu(\mathrm{d}x)$$

$$= \int_{H^{-1}} \langle D^1 \varphi(x), \beta(x) \rangle_2 \psi(x) \mu(\mathrm{d}x), \tag{4.4}$$

because, as seen earlier by (3.8), $\beta \in L^2(H^{-1}, \mu)$, $D^1\varphi(x) \in H^1_0(\mathcal{O})$ and P_t is a C_0 -semigroup on $L^2(H^{-1}, \mu)$.

We shall estimate now the integral

$$I_2(t,x) = \frac{1}{2t} \mathbb{E} \int_0^t \mathrm{d}s \int_0^t \langle D^2 \varphi(x) \Delta \beta(X(s,x)), \beta(X(r,x)) \rangle_2 \mathrm{d}r.$$

We have

$$|D^2\varphi(x)\Delta y|_2 \le C|y|_2, \quad \forall y \in L^2,$$

because $\varphi \in D(N_0)$. This yields

$$|\langle D^2 \varphi(x) \Delta \beta(X(s,x)), \beta(X(r,x)) \rangle_2| \leq C_1 |\beta(X(s,x))|_2 |\beta(X(r,x))|_2, \quad \forall \, s,r \in [0,t].$$

We have, therefore,

$$|I_2(t,x)| \le C \frac{1}{t} \mathbb{E} \left(\int_0^t |\beta(X(r,x))|_2 dr \right)^2 \le C \mathbb{E} \int_0^t |\beta(X(r,x))|_2^2 dr,$$

$$\forall t > 0, \ x \in H^{-1}.$$

This yields

$$\begin{split} \int_{H^{-1}} |I_2(t,x)|^2 \mu(\mathrm{d}x) &\leq Ct \int_{H^{-1}} |\beta(x)|_2^4 \mu(\mathrm{d}x) = Ct \int_{H^{-1}} |x|_{2\alpha}^{4\alpha} \mu(\mathrm{d}x) \\ &\leq Ct \int_{H^{-1}} |x|_{4\alpha}^{\frac{(3+\alpha)p^*}{2}} \mu(\mathrm{d}x), \end{split}$$

and so by (3.9) we have that

$$\int_{H^{-1}} |I_2(t,x)|^2 \mu(\mathrm{d}x) \le C_2 t, \quad \forall t \ge 0.$$
(4.5)

Similarly,

$$\begin{aligned} |I_{3}(t,x)| &\leq \frac{C}{t} \mathbb{E} \left(\int_{0}^{t} |\beta(X(s,x))|_{2} \mathrm{d}s |\sqrt{Q} |W(t)|_{2} \right) \\ &\leq C \left(\frac{1}{t} \mathbb{E} \int_{0}^{t} |\beta(X(s,x))|_{2}^{2} \mathrm{d}s \right)^{1/2} \left(\mathbb{E} |\sqrt{Q} |W(t)|_{2}^{2} \right)^{1/2} \\ &= C \sqrt{t} \left(\operatorname{Tr} |Q|^{1/2} \left(\frac{1}{t} \int_{0}^{t} P_{s}(|\beta(x)|_{2}^{2}) \mathrm{d}s \right)^{1/2}. \end{aligned}$$

This yields

$$\int_{H^{-1}} |I_3(t,x)|^2 \mu(\mathrm{d}x) \le C\sqrt{t} \int_{H^{-1}} |\beta(x)|_2^2 \mu(\mathrm{d}x) \to 0 \quad \text{as } t \to 0.$$
 (4.6)

Finally, we have for each $\psi \in L^2(H^{-1}, \mu)$

$$\int_{H^{-1}} I_{3}(t,x)\psi(x)\mu(\mathrm{d}x) = \frac{1}{2t} \int_{H^{-1}} \psi(x)\mathbb{E} \left\langle D^{2}\varphi(x)\sqrt{Q} \ W(t), \sqrt{Q} \ W(t) \right\rangle_{-1} \mu(\mathrm{d}x)
= \frac{1}{2t} \int_{H^{-1}} \psi(x)\mathbb{E} \left(\sum_{k=1}^{\infty} \langle D^{2}\varphi(x)e_{k}, e_{k} \rangle_{-1} q_{k} W_{k}^{2}(t) \right) \mu(\mathrm{d}x)
= \int_{H^{-1}} \psi(x) \operatorname{Tr}_{H^{-1}} [QD^{2}\varphi(x)]\mu(\mathrm{d}x).$$
(4.7)

By (4.2)–(4.7) it follows that $\varphi \in D(N)$ and

$$\lim_{t \to 0} \frac{1}{t} \left(P_t \varphi(x) - \varphi(x) \right) = N \varphi = N_0 \varphi,$$

weakly and therefore strongly in $L^2(H^{-1}, \mu)$, as claimed. \square

Remark 4.2. Since N is dissipative it follows that N_0 is dissipative as well.

Now we are going to show that N is the closure of N_0 in $L^2(H^{-1}, \mu)$. To this end it is convenient to approximate the Kolmogorov equation $\lambda \varphi - N_0 \varphi = f$ by one with smooth drift term F.

More precisely we consider the Yosida approximation of F (defined by (1.2)),

$$F_{\epsilon}(x) = \frac{1}{\epsilon} \left(x - (1 + \epsilon F)^{-1}(x) \right) = -\Delta \beta ((1 + \epsilon F)^{-1}(x)).$$

It is well known that F_{ϵ} is Lipschitz in H^{-1} . Next, we introduce a further regularization of F_{ϵ} defining

$$F_{\epsilon,\rho}(x) = \int_{H^{-1}} F_{\epsilon}(e^{-\rho A}x + y) N_{\frac{1}{2A} (1 - e^{-2\rho A})}(dy), \quad x \in H^{-1}, \tag{4.8}$$

for any $\rho > 0$ and $\epsilon > 0$, where $N_{\frac{1}{2A} (1 - \mathrm{e}^{-2\rho A})}$ is the Gaussian measure centered at 0 and having covariance $\frac{1}{2A} (1 - \mathrm{e}^{-2\rho A})$. $F_{\epsilon,\rho}$ is monotone increasing, Lipschitz and has bounded derivatives of any order.

Finally, we consider the equation

$$\lambda \varphi_{\epsilon,\rho} - \frac{1}{2} \operatorname{Tr}_{H^{-1}} \left[Q D^2 \varphi_{\epsilon,\rho} \right] + \langle F_{\epsilon,\rho}(x), D^1 \varphi_{\epsilon,\rho} \rangle_{-1} = f, \tag{4.9}$$

where $\lambda > 0$ and $f \in L^2(H^{-1}, \mu)$.

Lemma 4.3. The following statements hold.

(i) For any $f \in C_b^2(H^{-1}(\mathscr{O}))$ and any $\lambda > 0$ there is a unique solution $\varphi_{\epsilon,\rho} \in C_b^2(H^{-1}(\mathscr{O}))$ of (4.9) given by

$$\varphi_{\epsilon,\rho}(x) = \int_0^\infty \mathrm{e}^{-\lambda t} \mathbb{E}[f(X_{\epsilon,\rho}(t,x))] \mathrm{d}t, \quad \forall \, x \in H^{-1}, \tag{4.10}$$

where $X_{\epsilon,\rho}$ is the solution to

$$\begin{cases} dX_{\epsilon,\rho}(t,x) + F_{\epsilon,\rho}(X_{\epsilon,\rho}(t,x))dt + \sqrt{Q}dW(t), \\ X_{\epsilon,\rho}(0,x) = x. \end{cases}$$
(4.11)

(ii) If in addition $f \in C_b^1(H_0^1(\mathcal{O}))$ then $\varphi_{\epsilon,\rho}$ possesses the Gateaux derivative at each point $x \in L^2(\mathcal{O})$ and the following estimate holds:

$$|\langle D^1 \varphi_{\epsilon,\rho}(x), h \rangle_2| \le C|h|_{\frac{2d}{d+2}}, \quad \forall h \in L^{\frac{2d}{d+2}}(\mathscr{O}), \ x \in L^2(\mathscr{O}). \tag{4.12}$$

Proof. Part (i) is standard; let us prove (ii). Fix $x, h \in L^2(\mathcal{O})$. Then by (4.10) we have

$$\langle D^1 \varphi_{\epsilon,\rho}(x), h \rangle_2 = \int_0^\infty e^{-\lambda t} \mathbb{E}[\langle D^1 f(X_{\epsilon,\rho}(t,x)), Z_{\epsilon,\rho}(t,x) \rangle_2] dt, \tag{4.13}$$

where $Z_{\epsilon,\rho}$ is the solution to the linear equation

$$\begin{cases} \frac{\partial}{\partial t} Z_{\epsilon,\rho}(t,x) = -D^1 F_{\epsilon,\rho}(X_{\epsilon,\rho}(t,x))(Z_{\epsilon,\rho}(t,x)), & \xi \in \mathcal{O}, \\ Z_{\epsilon,\rho}(t,x) = 0, & \forall \, \xi \in \partial \mathcal{O}, \\ Z_{\epsilon,\rho}(0,x) = h. \end{cases}$$
(4.14)

By the monotonicity of $F_{\epsilon,\rho}$ it follows that

$$\|Z_{\epsilon,\rho}(t,x)\|_{-1}\leq \|h\|_{-1},\quad\forall\, h\in L^{\frac{2d}{d+2}}(\mathcal{O}).$$

So, by the Sobolev embedding theorem $(L^{\frac{p^*}{p^*-1}}(\mathscr{O}) \subset H^{-1}(\mathscr{O}))$ we have

$$\|Z_{\epsilon,\rho}(t,x)\|_{-1} \leq C|h|_{\frac{2d}{d+2}}, \quad \forall \, h \in L^{\frac{2d}{d+2}}(\mathscr{O}).$$

Now by (2.7) we deduce that if $x \in L^2(\mathcal{O})$ then $X_{\epsilon,\rho}(t,x) \in H^1_0(\mathcal{O})$ and so by (4.13) we get (4.12) as claimed. \square

We are now in position to prove the main result of this section.

Theorem 4.4. Let $\alpha \in (0, 1]$. Then N_0 is essentially m-dissipative in $L^1(H^{-1}(\mathscr{O}), \mu)$ and its closure $\overline{N_0}$ coincides with N.

Proof. We first notice that N_0 is dissipative in $L^1(H^{-1}(\mathcal{O}), \mu)$ by Proposition 4.1. To prove the essential m-dissipativity of N_0 we fix $\lambda > 0$ and $f \in C_b^2(H^{-1}(\mathcal{O})) \cap C_b^1(H_0^1(\mathcal{O}))$. Then we consider the solution $\varphi_{\epsilon,\rho}$ of (4.9) expressed by (4.10). We have therefore

$$\lambda \varphi_{\epsilon,\rho} - L_0 \varphi_{\epsilon,\rho} = f + \langle F(x) - F_{\epsilon,\rho}(x), D^1 \varphi_{\epsilon,\rho} \rangle_{-1}. \quad \Box$$
(4.15)

Claim. We have

$$\lim_{\epsilon \to 0} \lim_{\rho \to 0} \langle F(x) - F_{\epsilon,\rho}(x), D^1 \varphi_{\epsilon,\rho} \rangle_{-1} = 0 \quad in \ L^2(H^{-1}, \mu).$$

The latter implies that the range of $\lambda I - N_0$ includes $C_b^2(H^{-1}(\mathcal{O})) \cap C_b^1(H_0^1(\mathcal{O}))$ so it is dense in $L^2(H^{-1}, \mu)$ and, therefore, the conclusion of Theorem 4.4 follows by the Lumer–Phillips theorem.

Proof of the Claim. We set

$$\langle F(x) - F_{\epsilon,\rho}(x), D^1 \varphi_{\epsilon,\rho} \rangle_{-1} = I_{\epsilon}^1 + I_{\epsilon,\rho}^2,$$

where

$$\begin{split} I_{\epsilon}^1 &\coloneqq \langle F(x) - F_{\epsilon}(x), D^1 \varphi_{\epsilon, \rho} \rangle_{-1} \\ I_{\epsilon, \rho}^2 &\coloneqq \langle F_{\epsilon}(x) - F_{\epsilon, \rho}(x), D^1 \varphi_{\epsilon, \rho} \rangle_{-1}. \end{split}$$

As regards $I_{\epsilon,\rho}^2$, we have by (4.8) that

$$F_{\epsilon}(x) - F_{\epsilon,\rho}(x) = \int_{H^{-1}} (F_{\epsilon}(x) - F_{\epsilon}(e^{-\rho A}x + y)) N_{\frac{1}{2A} (1 - e^{-2\rho A})}(dy).$$

Since F_{ϵ} is Lipschitz, there exists $C_{\epsilon} > 0$ such that

$$||F_{\epsilon}(x)||_{-1} \le C_{\epsilon}(1+||x||_{-1}), \quad \forall x \in H^{-1}.$$

Therefore

$$||F_{\epsilon,\alpha}(x)||_{-1}^{2} \leq 2C_{\epsilon}^{2} \int_{H^{-1}} (1 + ||y||_{-1}^{2}) N_{\frac{1}{2A} (1 - e^{-2\rho A})} (dy)$$

$$\leq 2C_{\epsilon}^{2} \left(1 + ||e^{-\rho A}x||_{-1}^{2} + \frac{1}{2} \operatorname{Tr} A^{-1} \right), \tag{4.16}$$

and so, by the Lebesgue dominated convergence theorem, we have that

$$\lim_{\rho \to 0} \int_{H^{-1}} I_{\epsilon,\rho}^2(x) \mu(\mathrm{d}x) = 0.$$

As regards $I_{\epsilon,\rho}^1$, by Lemma 4.3-(ii) we have

$$\begin{aligned} |\langle F(x) - F_{\epsilon}(x), D^{1} \varphi_{\epsilon} \rangle_{-1}| &\leq |\langle \beta(x) - \beta((I + \epsilon F)^{-1}(x)), D^{1} \varphi_{\epsilon} \rangle_{2}| \\ &\leq C|\beta(x) - \beta((I + \epsilon F)^{-1}(x))|_{\frac{2d}{d+2}}. \end{aligned}$$

This yields

$$\int_{H^{-1}} |\langle F(x) - F_{\epsilon}(x), D^{1} \varphi_{\epsilon} \rangle_{-1}|^{2} \mu(\mathrm{d}x)
\leq C \int_{H^{-1}} |\beta(x) - \beta((I + \epsilon F)^{-1}(x))|_{\frac{2d}{d+2}}^{2} \mu(\mathrm{d}x). \tag{4.17}$$

We are going to apply the Lebesgue dominated convergence theorem in $L^1(H^{-1}, \mu)$ to pass to the limit in (4.17). To this end further estimates are necessary. We recall that $y_{\epsilon} := (I + \epsilon F)^{-1}(x)$ is the solution to the equation

$$y_{\epsilon} - \epsilon \Delta \beta(y_{\epsilon}) = x \quad \text{in } \mathcal{O}, \ y_{\epsilon} = 0 \text{ on } \partial \mathcal{O}.$$
 (4.18)

If we multiply (4.18) by $|y_{\epsilon}|^{p-1}$ sign y_{ϵ} and integrate over \mathcal{O} we get that

$$\int_{\mathscr{O}} |y_{\epsilon}|^{p} d\xi \leq \int_{\mathscr{O}} |y_{\epsilon}|^{p-1} \operatorname{sign} y_{\epsilon} x d\xi$$

$$\leq \left(\int_{\mathscr{O}} |y_{\epsilon}|^{p} d\xi \right)^{\frac{p-1}{p}} \left(\int_{\mathscr{O}} |x|^{p} d\xi \right)^{\frac{1}{p}}.$$

This yields

$$|y_{\epsilon}|_{p} \le |x|_{p}, \quad \forall \, \epsilon > 0, \, x \in L^{p}(\mathcal{O}), \, p \ge 1.$$
 (4.19)

Since $y_{\epsilon} \to y$ in $H^{-1}(\mathcal{O})$ as $\epsilon \to 0$ we have by (4.19) that $y_{\epsilon} \to x$ weakly and then strongly in $L^p(\mathcal{O})$ for each $x \in L^p(\mathcal{O})$ and p > 1. (The space $L^p(\mathcal{O})$ is uniformly convex.)

Similarly by the inequality

$$|\beta(y_{\epsilon})|_{p} \le |\beta(x)|_{p}, \quad \forall \, \epsilon > 0, \, x \in L^{2p}(\mathcal{O}), \, p \ge 1/2, \tag{4.20}$$

we conclude that for $\epsilon \to 0$, $\beta(y_{\epsilon}) \to \beta(x)$ strongly in $L^{p}(\mathcal{O})$ for each $x \in L^{2p}(\mathcal{O})$ and p > 1/2.

This implies therefore that

$$\lim_{\epsilon \to 0} |((I + \epsilon F)^{-1} x) - \beta(x)|_{\frac{2d}{d+2}} = 0, \quad \forall \, x \in L^{\frac{2d}{d+2}}(\mathscr{O}). \tag{4.21}$$

On the other hand, by (4.20) and Theorem 3.2 ((3.8) and (3.9)) we have that

$$|\beta((I+\epsilon F)^{-1}x) - \beta(x)|_{\frac{2d}{d+2}}^2 \le 2|\beta(x)|_{\frac{2\alpha d}{d+2}}^2$$

and

$$\int_{H^{-1}} |\beta(x)|^2_{\frac{2d}{d+2}} \mu(\mathrm{d}x) = \int_{H^{-1}} |x|^{2\alpha}_{\frac{2d}{d+2}} \mu(\mathrm{d}x) < \infty.$$

Thus by (4.17) and (4.21) we infer via Lebesgue's dominated convergence theorem that

$$\lim_{\epsilon \to 0} \int_{H^{-1}} I_{\epsilon}^{1}(x) \mu(\mathrm{d}x) = 0,$$

as claimed. This completes the proof. \Box

Remark 4.5. Theorem 4.4 remains true for $\alpha = 0$ if in the definition of N_0 (see (4.1)) we take $\beta(x) = \frac{x}{|x|}$ if $x \neq 0$, $\beta(0) = 0$. In this case the operator F is no longer maximal monotone, but replacing in the proof of Theorem 4.4 F by $F^{\epsilon}(x) = -\Delta$ (sign $x + \epsilon x$) the previous argument works in this case too. The details are omitted.

5. The Sobolev space $W^1(H^{-1}, \mu)$

Everywhere in this section we shall assume that $\sum_{k=1}^{\infty} q_k \|e_k\|_{\infty}^2 < \infty$ and that $q_k > 0$ for all $k \in \mathbb{N}$, or in other words that Ker $Q = \{0\}$. We denote by μ an invariant measure of P_t and by

N its infinitesimal generator in $L^2(H, \mu)$. We know by Theorem 4.4 that N is the closure of the Kolmogorov operator N_0 defined by (4.1).

For any $\varphi \in D(N_0)$ we have, as is easily checked,

$$N_0(\varphi^2) = 2\varphi N_0 \varphi + |Q^{1/2} D^1 \varphi|_2^2.$$

Integrating this identity with respect to μ and taking into account that, by the invariance of μ , $\int_{H^{-1}} N_0(\varphi^2) d\mu = 0$, yields

$$\int_{H^{-1}} N_0 \varphi \, \varphi \, \mathrm{d}\mu = -\frac{1}{2} \int_{H^{-1}} |Q^{1/2} D^1 \varphi|_2^2 \mathrm{d}\mu, \quad \forall \, \varphi \in D(N_0). \tag{5.1}$$

Proposition 5.1. The operator $Q^{1/2}D^1$ can be uniquely extended to a bounded operator, still denoted by $Q^{1/2}D^1$, from D(N) (endowed with the graph norm) into $L^2(H^{-1}, \mu; H^{-1})$. Moreover the following identity holds:

$$\int_{H^{-1}} N\varphi \, \varphi \, \mathrm{d}\mu = -\frac{1}{2} \, \int_{H^{-1}} |Q^{1/2} D^1 \varphi|_2^2 \mathrm{d}\mu, \quad \forall \, \varphi \in D(N). \tag{5.2}$$

Proof. Let $\varphi \in D(N)$. Then there exists a sequence $\{\varphi_n\} \subset D(N_0)$ such that

$$\varphi_n \to \varphi$$
, $N_0 \varphi_n \to N \varphi$ in $L^2(H^{-1}, \mu)$.

By (5.1) it follows that

$$\int_{H^{-1}} |Q^{1/2} D^1 (\varphi_n - \varphi_m)|_2^2 \mathrm{d}\mu \le 2 \int_{H^{-1}} |N(\varphi_n - \varphi_m)| |\varphi_n - \varphi_m| \, \mathrm{d}\mu.$$

Therefore the sequence $\{Q^{1/2}D^1\varphi_n\}$ is Cauchy in $L^2(H^{-1},\mu;H^{-1})$ and the conclusion follows. \square

Corollary 5.2. Let $\varphi \in D(N_0)$ and let $t \ge 0$. Then the following identity holds:

$$\int_{H^{-1}} (P_t \varphi)^2 d\mu + \frac{1}{2} \int_0^t ds \int_{H^{-1}} |Q^{1/2} D^1 P_s \varphi|_2^2 d\mu = \int_{H^{-1}} \varphi^2 d\mu.$$
 (5.3)

Proof. Let $\varphi \in D(N_0)$. Then from the Hille–Yosida theorem one has $P_t \varphi \in D(N)$ for any $t \ge 0$ and moreover

$$\frac{\mathrm{d}}{\mathrm{d}t}P_t\varphi=NP_t\varphi.$$

Multiplying both sides of this identity by φ and integrating with respect to x, and taking into account (5.2), yields

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{H^{-1}} (P_t \varphi)^2 \mathrm{d}\mu = \int_{H^{-1}} N\varphi \ \varphi \ \mathrm{d}\mu = -\frac{1}{2}\int_{H^{-1}} |Q^{1/2}D^1 P_s \varphi|_2^2 \mathrm{d}s.$$

Integrating finally with respect to t yields (5.2). \square

As a consequence of identity (5.2), we are going to prove now that the mapping

$$D^1: D(N_0) \subset L^2(H^{-1}, \mu) \to L^2(H^{-1}, \mu; H^{-1}), \qquad \varphi \to D^1\varphi,$$

is closable. First we shall prove the following lemma.

Lemma 5.3. Let $\{\varphi_n\} \subset D(N_0)$ and $G \in L^2(H^{-1}, \mu; H^{-1})$ be such that $D^1\varphi_n \to G$ in $L^2(H^{-1}, \mu; H^{-1})$. Then we have

$$\lim_{n\to\infty} D^1 P_t \varphi_n = \mathbb{E}[X_x^*(t,x)G(X(t,x))] \quad \text{in } L^2(H^{-1},\mu;H^{-1}) \text{ uniformly in } t.$$

Here $X_x^*(t, x)$ is the Gâteaux differential of the map $x \to X(t, x)$.

Proof. Taking into account that $||X_x^*(t,x)||_{L(H^{-1})} \le 1$ and μ is invariant we have that

$$\begin{split} & \int_{H^{-1}} \left\| D^1 P_t \varphi_n(x) - \mathbb{E}[X_x^*(t, x) G(X(t, x))] \right\|_{-1}^2 \mu(\mathrm{d}x) \\ & = \int_{H^{-1}} \left\| \mathbb{E}[X_x^*(t, x) (D^1 \varphi_n(X(t, x)) - G(X(t, x)))] \right\|_{-1}^2 \mu(\mathrm{d}x) \\ & \leq \int_{H^{-1}} \mathbb{E}[\| D^1 \varphi_n(X(t, x)) - G(X(t, x)) \|_{-1}^2] \mu(\mathrm{d}x) \\ & = \int_{H^{-1}} \| D^1 \varphi_n(x) - G(x) \|_{-1}^2 \mu(\mathrm{d}x), \end{split}$$

and the conclusion follows. \Box

We can now prove the announced result.

Theorem 5.4. D^1 is closable.

Proof. Let $\{\varphi_n\} \subset D(N_0)$ and $G \in L^2(H^{-1}, \mu; H^{-1})$ be such that

$$\varphi_n \to 0 \text{ in } L^2(H^{-1}, \mu), \qquad D^1 \varphi_n \to G \text{ in } L^2(H^{-1}, \mu; H^{-1}).$$

By (5.3) we have

$$\int_{H^{-1}} (P_t \varphi_n)^2 d\mu + \frac{1}{2} \int_0^t ds \int_{H^{-1}} |Q^{1/2} D^1 P_s \varphi_n|_2^2 d\mu = \int_{H^{-1}} \varphi_n^2 d\mu.$$

Letting $n \to \infty$ yields

$$\lim_{n \to \infty} \int_0^{\tau} ds \int_{H^{-1}} ||A^{-1}D^1Q^{1/2}P_s\varphi_n||_{-1}^2 d\mu = 0.$$

Consequently, by Lemma 5.3, it follows that

$$\int_0^t \mathrm{d}s \int_{H^{-1}} \|Q^{1/2} X^*(t, x) G(X(t, x))\|_{-1}^2 \mu(\mathrm{d}x) = 0,$$

which yields

$$X^*(t, x)G(X(t, x)) = 0, \quad \forall t \ge 0, \ \mu\text{-a.s.},$$

because $A^{-1}Q$ is one-to-one. Therefore

$$G(X(t, x)) = 0$$
, $\forall t \ge 0$, μ -a.s.,

and so

$$P_t(\|G(\cdot)\|_{-1}^2)(x) = 0, \quad \forall t \ge 0, \ \mu\text{-a.s.}$$

Integrating with respect to μ over H^{-1} and taking into account the invariance of μ yields

$$\int_{H^{-1}} \|G(x)\|_{-1}^2 \mu(\mathrm{d}x) = 0,$$

so G = 0 as required. \square

We shall define the Sobolev space $W^{1,2}(H^{-1}, \mu)$ as the domain of the closure of D^1 . We conclude this section with a regularity property of elements of D(N).

Proposition 5.5. We have $D(N) \subset W^{1,2}(H^{-1}, \mu)$.

Proof. Let $\varphi \in D(N)$ and let $\{\varphi_n\} \subset D(N_0)$ be a sequence such that

$$\varphi_n \to \varphi$$
, $N_0 \varphi_n \to N \varphi$ in $L^2(H^{-1}, \mu)$.

By (5.2) it follows that

$$\int_{H^{-1}} |D^{1}(\varphi_{n} - \varphi_{m})|_{2}^{2} d\mu \leq 2 \int_{H^{-1}} |N(\varphi_{n} - \varphi_{m})| |\varphi_{n} - \varphi_{m}| d\mu.$$

Therefore the sequence $\{D^1\varphi_n\}$ is Cauchy in $L^2(H^{-1},\mu;H^{-1})$. Since D^1 is closed it follows that $\varphi \in W^{1,2}(H^{-1},\mu)$ as required. \square

Acknowledgement

The first author was supported by grant PN-II-ID-70 (2009–2011) from the Romanian Ministry of Education and Research.

References

- [1] V. Barbu, Analysis and Control of Infinite Dimensional Systems, Academic Press, 1993.
- [2] V. Barbu, V.I. Bogachev, G. Da Prato, M. Röckner, Weak solution to the stochastic porous medium equations: the degenerate case, J. Funct. Anal. 235 (2) (2006) 430–448.
- [3] V. Barbu, G. Da Prato, M. Röckner, Existence and uniqueness of nonnegative solutions to the stochastic porous media equation, Indiana Univ. Math. J. 57 (1) (2008) 187–212.
- [4] V. Barbu, G. Da Prato, M. Röckner, Stochastic porous media equation and self-organized criticality, Comm. Math. Phys. 285 (2009) 901–923.
- [5] V. Barbu, G. Da Prato, M. Röckner, Finite time extinction for solutions to fast diffusion stochastic porous media equations, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 81–84.
- [6] V. Barbu, G. Da Prato, M. Röckner, Existence of strong solutions for stochastic porous media equations under general monotonicity conditions, Ann. Probab. 37 (2) (2009) 428–452.
- [7] J. Berryman, C. Holland, Stability of the separable solutions for fast diffusion, Arch. Ration. Mech. Anal. 74 (1980) 379–388.
- [8] J.M. Carlson, E.R. Grannan, et al., Phys. Rev. Lett. E 48 (1993) 688–697.
- [9] G. Da Prato, Kolmogorov Equations for Stochastic PDEs, Birkäuser, 2004.
- [10] G. Da Prato, M. Röckner, Invariant measures for a stochastic porous medium equation, Adv. Stud. Pure Math. 41 (2004); Stoch. Anal. Related Topics (2004) 13–29.
- [11] G. Da Prato, M. Röckner, B.L. Rozovskii, F.Y. Wang, Strong solutions of stochastic generalized porous media equations: existence, uniqueness, and ergodicity, Comm. Partial Differential Equations 31 (1–3) (2006) 277–291.
- [12] C. Prevot, M. Röckner, A concise course on stochastic partial differential equations, in: Lecture Notes in Mathematics, vol. 1905, Springer, 2007.
- [13] J. Ren, M. Röckner, Feng-Yu Wang, Stochastic generalized porous media and fast diffusions equations, J. Differential Equations 238 (2007) 118–152.
- [14] Ph. Rosenan, Fast and super fast diffusion processes, Phys. Rev. Lett. 74 (1995) 7–14.