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Abstract

We prove the existence of an invariant measure u for the transition semigroup P; associated with the
fast diffusion porous media equation in a bounded domain O C RY, perturbed by a Gaussian noise. The
Kolmogorov infinitesimal generator N of P; in L2(H -1 (0), ) is characterized as the closure of a second-
order elliptic operator in H -1 (O). Moreover, we construct the Sobolev space Wl'z(H -1 (0), p) and prove
that D(N) ¢ Wh2(H™H(0), p).
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1. Introduction

We are concerned with the following stochastic problem in a bounded domain & of R¥:

dX(1,6) = AB(X(1,£))dt + QAW (1, 8), &€,
X(t,£)=0, VE&ecdo, (1.1)
X(0,8) =x(), VéEed,

where

B(r) =alr|*sgnr, a€[0,1], a >0, VreR.
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We denote by {e;} and {a} eigensequences of the Laplace operator in & endowed with Dirichlet
boundary conditions,

Aey = —aper, VkeN.

Let A = —A with D(A) = H*(0) N H(; (0). We shall assume that the boundary & of & is
sufficiently smooth (of class C? for instance) or that ¢ is convex.
Here W is a cylindrical Wiener process in L2(&) of the form

o0
W) =Y exWi(t), Vi=0,
k=1

where {W;} is a sequence of independent real Brownian motions on a filtered probability space
(‘Qv 9, {9[}[20, ]P)) and

Voww =Y Voeawn, Yi=o.
k=1

We take Q € L(L?(0)) such that
Qe = qrex, YkeN,

where {q} is a sequence of nonnegative numbers such that
o0
Tr[A™' Q1= o'k < oo
k=1

This condition is fulfilled for g — 0 sufficiently fast. In fact we shall need a stronger assumption
in what follows. (See Proposition 2.6 below.)

For the sake of simplicity we shall take in the following @ = 1 (here and everywhere in the
following we shall denote by Tr the trace in the space L2(0)).

We introduce the nonlinear operator F in H~!(0)

{F(x) = —A(|x|%sgn x), Vx € D(F), (12)

D(F)={x e L"(O)NH™'(O) : |x|%sgn x € Hy(O)},

where sgn x = ﬁ if x # 0, sgn 0 = [—1, 1]. By a classical result (see e.g. [1, Proposition 2.12])

we know that if & > 0 then F is maximal monotone on H~!(¢&). Then we may write (1.1) as

{dX(t) + F(X(1)dt = /QdW (), Yt >0, (L3
X)) =xe H (0). '

Definition 1.1. A solution X to (1.1) is an adapted stochastic process X (t), ¢ > 0, with values
in H~1(©) such that (see [3,4])

X € L},(2;C[0,T); HY(0) N L*T (2 x [0, T] x O)

and for all £k € N and all + > 0 we have

t
(X(t),ek)z-lrotk/() (IX(s)*sgn X (5), ex)ads = (x, ex)2 + /@ Wi (1), P-as.  (1.4)
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Existence and uniqueness of solutions for Eq. (1.1) for general classes of monotone functions
B were established in [3-6,10,11,13]. Moreover in [10] proof was given for the existence of an
invariant measure for C! functions 8 satisfying the condition

kolx|"™ ' < B'(x) < kilx|”"' + Ca, 7> 1, ko, ki > 0.

In [2] proof was given for the existence of a probability measure u, infinitesimally invariant,
for the Kolmogorov operator Ny associated with (1.1) and the essential dissipativity of Ny in
the space L2(H ™!, v) where v is an excessive probability measure with respect to No. (See also
[10,11].)

Here we shall prove the existence of an invariant measure w for (1.1) (see Theorem 3.2) and
we shall describe the corresponding Kolmogorov operator N, i.e., the infinitesimal generator of
the transition semigroup P; associated with (1.1), as the closure in L2(H7Y(0), ) of the elliptic
infinite dimensional operator

_ 1 12 1
Nog = STr [A7 QD ¢l = (B(x), D ¢)a.

(See Theorem 4.4.) Moreover, the last section is devoted to proving the closability of the gradient
in L2 H™', 1) and to defining the Sobolev space WL2(H-, ). Finally, we show that the
domain D(N) of N is included in W-2(H 1, ).

For a € (0, 1) the equation considered here is known in the literature as the “fast diffusion
equation” and it models diffusion in plasma physics (see e.g. [7,8,14]), curvature flows and self-
organized criticality in sandpile models. (The case o« = 0 was recently studied in [4].)

It should be mentioned, however, that the methods used in [2,10-13] for studying the
Kolmogorov equation associated with (1.1) are not applicable in the present situation due to
the singularity of 8’ at the origin and so a sharper analysis was necessary.

We shall use the following notation.

e LP(0) withnorm | - |,, p > 1 and inner product (-, -)» when p = 2.

° HOl (0) is the standard Sobolev space on ¢ with norm denoted as || - ||.

e H™'(0) is the dual of H&(ﬁ) with norm | - ||-1, and inner product (x,y)_; =
—(A7x, y)2, x, vy € H~1(0). Sometimes we shall write H~! for short, instead of H~(©)
and L?, instead of L%(0).

If H is a Hilbert space we shall denote by D!¢ the differential of ¢ : H — R and by D?¢ the
second differential. If B € L(H) = L(H, H) is a trace class operator we shall denote its trace
by Try B. By Cﬁ(H ), k =1, 2, we shall denote the space of differentiable functions of order k
with k derivative continuous and bounded on H. Finally, B, (H) will represent the space of all
Borelian bounded functions on H.

We shall use notation from [4,9] for spaces of adapted processes with values in HOl (0),

H™Y0)or LP(0), p > 2.
2. The approximating problem

Note that 8 is m-accretive in R and denote by ¢, € > 0, its Yosida approximation, i.e.,

Be(r) = é (r—Je(r), VreR,
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where

Jo=0+4€ep)~", Ve>o.
We set

Be(r) = Be(r) +er, VreR.

Since ,B: is Lipschitz continuous and strongly monotone the stochastic equation

{dxg (1) = ABe(Xe()dt =/ QAW (1), @
Xc(0)=x e H 1 (0), '

has a unique solution
X € L3,(02; C([0, T]; H'0)) N L2(2 x [0, T1; HL(0)).
(See [4, Proposition 3.4].)
We set

Je(r) = /(.) Be(r)dr. 2.2)

Lemma 2.1. We have
rBe(r) > je(r), YreR. 2.3)

Moreover for any a € (0, 1) we have

s alden))e!

ﬁe(r)—w, VrelR 2.4
and for a =0

, _ |0 for|r| > €

56(’)_{1 for |r| < e.

Proof. Since j, is convex we have

Je(s) = je(r) = Be(r)(s —r), Vr.seR.

Setting s = 0 yields (2.3).
Let us show (2.4). Sets = J.(r) = (1 + eﬁ)_l(r), sor = s+ €f(s). If s # 0 we have

d ds d
1= d—j +ae|r|“*‘ﬁ - 5(1 + aels|oY).
Hence
ds 1
Ji)=— =
<= T T aede T
Therefore
alJe(ry|e!
BL(r) = i 2.5)

1+ ae|Jc(r)|e
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In the case @« = 0 we have

Be(r) :{

signr for |r| > €
r for|r| <e

and this implies the desired formula for g,. O
2.1. A few estimates for the approximating equation

We shall give below a few estimates for the solution X, to (2.1). We begin with an estimate
for E[ X ()12,

Proposition 2.2. If x € H~! we have
t
E[Xc(0)]2, + 2E /O fﬁ Be(Xe(5)Xc(s)dsdé = [lx]?, + Tr [QA™]. 2.6)

Proof. By It6’s formula applied to || X¢(¢) % 1> we have
dIXel2) = 2(AB(X)dt + QAW (1), Xe)—1 + Tr [QA™ " 1ds
= “2(Be(X0), Xehadr +(VOAW (), X} | +Tr[@A™"Ndr.
Taking the expectation yields (2.6). U

Let us now estimate E| X, (t)|% (we refer the reader to [3] and [3] for a justification of 1t6’s
formula for Eq. (2.8) below).

Proposition 2.3. Assume that TrQ < oo. Then, if x € L*(0) we have
t
E|Xc(1)]3 + 2E fo /ﬁ BL(Xe ()| VX () 2dEds < [x[2 + 1Tt Q. @7

Proof. The proof is exactly the same as that of [4, Proposition 3.4], so it will only be outlined.
Namely, we consider the equation

dXE(1) + (Fu(X2())dr = \/QdW,, 2.8)
X2(0) =x, '
where (F¢), is the Yosida approximation of F, = —AEE with the domain {x € L'(0) N

H Y 0) : Ee x) € HO] (0)}. Then applying 1t6’s formula with ¢(x) = % |x|% and taking into
account that

(FOu(XY) = —=AB.(YY),  Yr=(+rF)~'(xD,

we get

t
E|XX(0)]3 +2]E/ ((F)u(X2(s)), X2(s))ads = |x[3 +Tr Q. (2.9)
0

On the other hand, we have
(F) (XD, X2 = (Fe(Y2), Y202 + M(Fo)n (X2
—(AB(YD), Y2 (x))2 + Al(Fo)a (XD 3. (2.10)
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So, substituting in (2.9) and using Green’s formula yields

t
E|X§(z)|§+2ﬂz/ / BL(YX(s)|VY2(s)|3dsdE < |x|3 +1Tr Q. 2.11)
0 Jo

Recalling that by [4, Proposition 3.4] we have

)%in}) Xi = X strongly in L2(Q x [0, T] x 0),
-

we obtain that

Jim Y} = X, strongly in L*(22 x [0, T] x O). (2.12)
2

Moreover, since E’ > € it follows by (2.10) and (2.11) that {YE)‘} is bounded in

€

L?(0, T; L*(£2, H} (0))) and so
A113}) Y} =X, weakly in L*(0, T; L*(2, Hi (0))),

ie.,
)%irr}) VYG)‘ = VX, weaklyin L*(2 x [0, T] x O). (2.13)
—

Now by (2.11) and (2.5) we see that

Jim IBL(Y}) — BL(X)| =0, ae.inf2x(0,T)xC

and
IBL(Y)) — BL(X)| < C, ae.inx(0,T)x 0.
This implies that

lim VY B (YMY? = VX [BL(X)]Y?  weakly in L2(12 x [0, T] x O)
and therefore by weak lower semicontinuity of the integral, we have
t '
liminf E / f BL(Y2(s)IVY(s)3dsde = E / / BL(Xc(5))|VXc(s)[3dsdE.
A—0 0 Jo 0 Jo
Then by (2.9) and (2.11) the conclusion (2.7) follows. O

We have a similar estimate for E| X (¢) |%$

Proposition 2.4. Assume that Y ;- | qi||ex ||§Q < 0. Then, if x € L*™(0) and m > % we have
t
E|Xc ()3 + 2m(2m — 1)E / fﬁ BL(Xe ()X ()| 2|V X (s)|*dEds
0

o0 t
< x5 + m2m — 1)quE/0 fﬁ | X (s)[*"2ezdEds. (2.14)
k=1
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Proof. One proceeds as in the proof of Proposition 2.3, i.e. one applies Itd’s formula to the
function ¢ (x) = % |x|§% and to Eq. (2.8). One gets as above

E| X2 + 2m fﬁ BT (DY 5) P2V Y (s) P ds

o0 t
= |x3" + mQ2m — 1) qu]E[ fﬁ Y2 ()2 2eldeds
k=1 0

and let A — O to get by (2.12), (2.13) estimate (2.14). [
By (2.14) we have:

Corollary 2.5. Assume that Y ;- | 61k||€k||<2,0 < 00. Then, if x € L¥(0), m € N, there exists
Ct > 0 independent of € such that

t
EIXc ()3 4+ 2m(2m — DE /0 /ﬁ BLXe(SNIXe ()P 2|V X (5)*dEds

<Cr(l1+ |x|§$), Vtel0,T] (2.15)

2.2. Existence for equation (1.1)

Proposition 2.6. Assume that Y jo | gillexll3, < oo. Then if x € H™'(0) and [, |x|**dé <
00, @ > 0 problem (1.1) has a unique solution.

Proof. The existence and uniqueness of a solution to (1.1) was proved earlier in [2,3,5] for more
general 8. Here we give, however, for later use a direct proof relying on Proposition 2.4.

Let us show that sequence {X} is Cauchy in L%V(Q; C ([0, T]; H-1(0))), where X, is the
solution to (2.1). In fact, for €, n > 0 we have by (2.1)

d ~ —~
E(XE —Xp) = ABe(Xe) — ABy(Xy), P-as.

Multiplying both sides, in scalar fashion, in H~1(€) by X, — X y yields

1d
EE'XE — X2 — (ABe(Xe) = ABy(Xy), Xe — Xp) 1 + €[VXe — VX, |5 =0,

P-a.s.,
and therefore
1d
2 dt
It follows that

1d
Sa Xe T Xyl + (BU(Xe)) = BUy (X)), Je(Xe) = Ty (X2

+ (Be(Xe) — By(Xy), €Be(Xe) — nBy(Xy))2 < 0.

Therefore, we have

1Xe — X2 + (Be(Xe) = By(X,), Xe — X,)2 <0, P-as.

d
IXe =X,y = 26e +m) (1B (X3 + 18, (X))

< 2C(e+m) (14 1XeBE + 1%, 52)
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Consequently,
T
E sup [Xe— X,1%, §2C(6+n)/ (1 + [Xe ()3 + X, () 5)ds,
t€[0,T] 0

and by Proposition 2.3 it follows that { X} is Cauchy in L2(2; C([0, T]; H~'(0))) and so, it is
convergent to an element X € L2(2; C([0, T]; H~'(0))).
It is easily seen that X is a solution of (1.1). I

3. The invariant measure

We shall assume here that Y o, g llex ||C2>O < 00. We denote by P; the transition semigroup
associated with Eq. (1.1), i.e.,

Po(x) =Elp(X(t,x)], VeeBy(H ), xeH ', t>0

where X (¢, x) is the solution to (1.1).
We notice that P; is Feller, that is Pip € C,(H™ ") forall ¢ € C,(H™") and all ¢+ > 0. This
an easy consequence on the fact that X (¢, x) depends continuously on x in the topology of H~!.

Lemma 3.1. If m € [1, 2] then the following estimate holds:
lJE/Tp((s, x)Prtesl - ds L a |x| +Cy YT >0, x e L), (3.1)
7 ) p*Qm+a—1)/2

where p* = 24 if d > 2, p* € [2,00) if d = 1, 2.
Proof. By Proposition 2.4 and by (2.5) we see that

1 om ' ol Je(Xe(s)*! m—2
%E|Xe(t)|2m+(2m—1)E/0 /ﬁ(lweu&xé(”)laﬁe) X ()" 2

o0 t
X VX ()Pdsde < ¥+ on—1/2) S i /O /ﬁ X ()] 2ede ds.
k=1

Taking into account that J. is non-expansive, that is

IJe() = Je(ml < 1§ —nl. V& neR,

we have
[Je(@)] < |x], IVJe(x)| < |Vx| ae.in0, Vx e Hol(ﬁ’).
Then we obtain that

1 o Ol|Y (S)|2m 3+a )
S-EIX) +a(2m—l)]E/ / (1+a6|Y(s)|°‘ 1>|w€(s)| dsde

<|x|2m+CIE/ / IXc () 2deds, Ve >0,
0 JO

where Y (s) = Je(Xc(s)). Equivalently,

t
L EX 012" + CaE / / Ve (¥e () 2dsde
2m o Jo

t
< x5 + CIEfO /ﬁ |Xc ()" 2deds, Ve >0. (3.2)
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Here g : R — R is defined by

r ZZm—3+(x 1/2
ge(r) ::/ (—) dz, Vr=0.
0

1 + aezo!

Next by the Sobolev embedding theorem we have for p* = dz—flz ifd > 2, p* € [2,00) if
d=1,2,

t t
E / f [Vge(Ye(s))*dsdé > CE / |ge (Ye(5))[5ds. (3.3)
0 Jo 0

(Here and everywhere in the following we shall denote by C several positive constants indepen-
dent of €.)
On the other hand, by the integral mean theorem we have

ro me3/24a)2 r Zm!
> =
8e(r) > /0 1+ (u€)1/2z(¢¥—1)/2d2 /0 7(=0)/2 4 (qe)l/2 dz

1—

2 rTa u2mlila+oc g
T f LI
1—a Jy U+ Jae m
where
;e 1 1
8 > ) .
Pt + (xe)l/? (ae)!/?
Hence
rm
8e(r) = - , Yr=0.
m (rT + (ae)l/z)
This yields
r' | P T L
ge(r) > ——————~=-"r 2 ifr > (we)T-=.
m (rT + rT) 2m
1 1 2m—I1+4a
For 0 < r < (we) =« we have (because g.(r) < etral
1 2m+ta—1
ge(r) = ——————(we) A0

2m — 1+«

Hence for all » > 0 we have

(3.4)

2m—1+a 2m—1+a
g8(r)==C (r 2 —Ce 2o )
By (3.2), (3.3) and (3.4) we obtain that
1 ! _
S EIXc(Ol,; + CE /O Ye()da 1) pds

1 m—1+4a
< x5 + CE/O |Xe(s)3m2ds + Ceio, Ve 0. (3.5)
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On the other hand, we have by (2.3) and by estimate (2.6) that

t
E/ f je(Xe(s))dsde < C, Ve >0.
0 Jo

This yields

t
E/ / |Xc(s) — Ye(s)|?dsdé < Ce, Ve >0,
0 Jo
because
1
Jer) = o Ir = TP+ jUe(r)), YreR.

Then for 2m —2 < 2 (i.e., 1 <m < 2 as we assumed) we have for € small enough

t t
E/ |Xe(s)2m 2 ds < IE/ Ye(s)|37 =5 ds + Ce
0 0

and substituting in (3.5) we obtain that
1 2 ! 2m4a—1
EED{GU)'Z% +C]E/0 |Ye(s)|prf(—i2_f,;+a_l)/2ds

t
< |xpm 4+ CIE/ |Xe(s)3"3ds + Ce, Ve > 0. (3.6)
0
Now taking into account that for any § > O there exists Cs > 0 independent of € such that
IrP=D < s|ppPrtet 4 Cs, VreR,

we obtain by (3.6) that
1 1 t _
ﬁwxe(m%{; +3 C]E/O /(7 Ye()2nbe ) pdsde < |x 3 + Cet,

Ve>0,1>0. 3.7

Now letting ¢ — 0 in (3.7) and recalling that lim¢_,o(X — ¥¢) = O in L2(2 x [0,T] x O)
and X, — X in L2(2; C([0, T1; H~'(0))), we obtain by the weak lower semicontinuity of the
norm that X satisfies (3.1) as claimed. [

Theorem 3.2 below is the main result of this section.

Theorem 3.2. For each o € [0, 1] there exists at least one invariant measure | for Py, i.e.,

/H | Prpp(dr) = /H L #@u(dx), Vg eByH™.
Moreover, one has

support u C L G026y, (3.8)
/H I pi(d) < o0, (3.9)

where p* was defined in Lemma 3.1.
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Proof. We shall use estimate (3.1) for m = 2. We set

1 T
nr = — / mxdt VT >0,
T Jo
where m; . is the law of X (¢, x). Let x € L*(0). Since by the Sobolev theorem the embedding
of LP*G+0/2(¢) into H~1(0) is compact we see that the set
My = (x € L""CT2G) x| pu3ray2 < R)
is compact in H~!(&). Also by Lemma 3.1 we have that

|xI . o))
T R3+a R3ta’

Hence {ur}r>1 is tight and so, by the Prokhorov theorem, it is weakly convergent (on a
subsequence T, 1 o) to an invariant measure u of P;. Clearly we have

ur(My) < Cy

(&
pr(dy) < 2. YR >0,

and this implies that also w(LP"G+0/2()y = 1 as claimed.
It remains to prove (3.9), i.e. that
lXlptGars2 € L7TUHT, ).
With this purpose we shall use estimate (3.1) where x is replaced by m

If X€ = X€(¢, x) is the corresponding solution to (1.1) we have by (3.1) that

E T X€ ¢ 2m—+a—1 dr < Cl |X|%:: +C VT 0 L2m ﬁ)
T A [X°( 1x)|p*(2m+a_1)/2 =7 m 25 >V, x € (

and by the invariance of measure u,

2m—+a—1

1 ! € 2m+a—1 |x|%p*(2m+a71)
? /11171 M(dx)E/O |X (t’x)|l7*(2m+(x—l)/2dt :\/;]71 (1+6|x|2m)2m+0‘71 ,LL(d)C),
VT >0.
Hence
|.X|21m+a71 2m
5 P*2mta—1) Cy / |x|2m
<[ an+o,
w/H*I (1 4 €lx[gp)2mte=! ldr) < T Ju-1 (1 +€lx|pm)?m wda) + €
VT >0, ¢ >0.

Then letting € — 0 it follows by Fatou’s lemma that (3.9) holds. This completes the proof. [J
Remark 3.3. The problem of uniqueness of invariant measure y remains open.
4. The Kolmogorov equation

Everywhere in this section we shall assume that Z,fil qr ek ||§o < 00.
We denote by X (, x) the solution of (1.1) and by P; the corresponding transition semigroup

Pio(x) =Elp(X(t,x))], Yt>0, xe H (0), g € By(H™ ).
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It is well known that P, has a unique extension to a contraction Co-semigroup in L>(H ™!, u),
still denoted Py (see e.g. [9]). The corresponding infinitesimal generator will be denoted by N.
The Kolmogorov equation associated with Eq. (1.1) is the infinite dimensional elliptic equation
in H~!

rp — No = f.
Set
Nog : = % Try-1 [QD¢] + (F(x). D'g)_,
= % Tr2 [A7'QD?p] — (B(x), D')a. V¢ € D(Np), 4.1)
where

D(No) == {p € CZ(H )N CLHY) : D*pA € Cp(L(L*)).

(Here A = —A with D(A) = H*((0)) N H} ((0)).) Notice that D(No) is dense in L2(H !, ).
Our aim is to prove that Ny is a core for N. We shall prove first:

Proposition 4.1. N is an extension of Nj.
Proof. Let ¢ € D(Ny). By Taylor’s formula we have
1
(X, 00) = @) = (D'p(x), X (1, %) = x)1 + Z(D2p()(X (1, %) = x),
X(t’ -x) - x)*l + R(t’ x)»

where ||R(f, x)||—-1 = o(¢) ast — 0. We obtain that

1 1 [
T (o) —(x) = —E— /0 (D'o(x), B(X (s, x)))2ds

t t
+Z%E fo ds /O (D*p(x)AB(X (s, X)), B(X (r, x)))2dr
1 t
+;Ef0 ds(D%p(x) AB(X (s, %)), v/Q W() 1

1
+ 5 E(D?p(x)y/Q W(1), /O W(1)_1 + R(t, x)
= I1(t, x) + L(t, x) + I3(t, x) + I4(t, x) + R(z, x). 4.2)

We notice that (4.2) makes sense because, since X is the solution to (1.1), we have
(Definition 1.1) B(X) € L' *(2 x (0, T) x &) C L2(2 x (0, T) x &) and D>p(x)AB(X) €
L2(2 x (0,T) x O).

As regards I1(¢, x) we have

1 t
I, x) =~ /0 (D'o(x), P(B)(x))ads
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and so, taking into account the invariance of , we obtain that

1 1
/_] (0P () < lellepy /0 ds/,,_. Py(I1B11-1) () (dx)

= ||(P||c[§(H01)/ 1BCOI-112(dx) < c/ BGOI_p pu(dx)
H-! H-! =1
< C/ Ix|%,« 1(dx) < +oo. 4.3)
H-' T

s
Here we have used once again Sobolev’s embedding theorem, L**-1(0) C H ~1(©), and
Theorem 3.2 part (3.9).
Moreover, we have also that for each ¢ € L2(H - 7))

lim Ii(t, )y ()p(dx) = f

t—0 H-! H-1

1 t
<D1€0(x), lim —/ Py(ﬂ)(x)ds> Y (x)p(dx)
t=01 Jo 2

= /Hfl<Dl‘/’(x)7 B2y (x)(dx), 4.4)

because, as seen earlier by (3.8), 8 € L>(H™ !, Ww, Dlgo(x) € H(}(ﬁ) and P; is a Cp-semigroup
on Lz(Hfl, .
We shall estimate now the integral
1 t t
L, x) = ZE/O dS/O (D?o(x) AB(X (5, X)), B(X (1, x)))2dr.
We have
|D*p(x)Ayly < Clyla. V¥yelL?
because ¢ € D(Ny). This yields
UD2p(x)AB(X (s, %)), B(X (r, x))2| < CLIBX (s, ) 2|B(X (r,x))]2, V5,7 €[0,1].
‘We have, therefore,
1 t 2 t
[I2(7, x)| < C?E (/ I/3(X(V,X))|2dr) < CIE/ |B(X (r, x))I3dr,
0 0
V>0, xeH

This yields

/ Bt 0P u(dy) < Cr / BCOL(dx) = Ci / 12 (dx)
H-1 H-1 H-1

(3+g)17*
sth Ikl (),
Hfl

and so by (3.9) we have that

/ 1|Iz<r,x>|2u<dx>sczt, Vi>0. (4.5)
-
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Similarly,
C t
13, 1)) < —E (/0 IB(X (s, x))|2ds |/ Q W(t)lz)
1 ' 172 1/2
<C (;E /O |ﬂ(X(s,x>>|§ds> (EVe woB)
1 t 1/2
= CVi(Tr Q)'? (; /0 Ps<|ﬂ<x>|§>ds> :
This yields
/ (0 Pp(dy) < CVE / 1BO)Bu(dx) >0 ast— 0. (4.6)
H—- H—-
Finally, we have for each ¢ € L2H™', )
1
[ neovwue = 5 [ p@E(pmye wo. /o ) | u@
H-1 2t Jy-1 -1
1 o0
=5 /H L VOE <;<D2¢(x)ek, ek>1qu,3<t)> p(dx)
= /H V@) Try- [QD%p() ] (dx). @7

By (4.2)—(4.7) it follows that ¢ € D(N) and

1
}1% " (Pro(x) —@(x)) = No = Ny,

weakly and therefore strongly in L>(H ™!, 1), as claimed. [
Remark 4.2. Since N is dissipative it follows that Ny is dissipative as well.

Now we are going to show that N is the closure of Ng in L?>(H ™', ). To this end it is
convenient to approximate the Kolmogorov equation Ap — Nog = f by one with smooth drift
term F.

More precisely we consider the Yosida approximation of F (defined by (1.2)),

Fe(x) = é (x —(1+eF)™'(x) =—AB((1+€eF) " (x)).

It is well known that F, is Lipschitz in H~!. Next, we introduce a further regularization of F,
defining

Fep(x) = /Hil Fe@ ™ x + )N 1 (_e2n)@dy). x € H !, (4.8)

for any p > 0 and € > 0, where N 1 (1—e-204) is the Gaussian measure centered at O and having
2A

covariance ﬁ (1 —e=2r4), F¢ , is monotone increasing, Lipschitz and has bounded derivatives
of any order.
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Finally, we consider the equation

1
X%W—Equ[QD%WJ+U2AﬂJf%WL1=ﬁ 4.9)
where A > 0 and f € L>(H 1, nw).

Lemma 4.3. The following statements hold.

(i) Forany f € Cg(Hfl (0)) and any X\ > 0 there is a unique solution ¢¢ , € C,%(H’1 (0)) of
(4.9) given by

o
Pe p(X) =/ e ME[f (Xe ,(t, x)]dt, YxeH™', (4.10)
0
where X , is the solution to
dXe p(t, %) + Fe p(Xe p(t, x))dt +/ QAW (1), @10
Xe,p(0,x) = x. ’

(i) If in addition f € C bl (Hol(ﬁ)) then @c , possesses the Gateaux derivative at each point
x € L%(0) and the following estimate holds:

|(D1<p€,p(x),h>2| < Clhl%, Vhe Ld%(ﬁ), x € L2(0). (4.12)
d+
Proof. Part (i) is standard; let us prove (ii). Fix x, h € L%(0). Then by (4.10) we have
[e¢)
(D' e p(x), h)y = /(; e ME[D' f(Xep(t, X)), Ze p(t, x))2]dt, (4.13)
where Z , is the solution to the linear equation

d
5mem=—ﬂﬂﬂ&ﬂnm@meLS€@
Zep(t,x) =0, YE€do,

Zep(0,x) = h.

(4.14)

By the monotonicity of F¢ , it follows that
1Ze,p(t, X)-1 < llhll-1, VYhe L#2(0).

So, by the Sobolev embedding theorem (LP’[%' (0) ¢ H-1(0)) we have
1Zep(t, X)ll—1 = Clhl 20, Vh e LE2(0).

Now by (2.7) we deduce that if x € L?(0) then X, ,(t, x) € H}(0) and so by (4.13) we get
(4.12) as claimed. [

We are now in position to prove the main result of this section.

Theorem 4.4. Let o € (0, 1]. Then Ny is essentially m-dissipative in LY(H7Y(0), p) and its
closure Ny coincides with N.
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Proof. We first notice that Ny is dissipative in L' (H~! (&), 1) by Proposition 4.1. To prove the
essential m-dissipativity of Ny we fix A > O and f € CZ(H’l(ﬁ)) N C;(H(}(ﬁ)). Then we

consider the solution ¢ , of (4.9) expressed by (4.10). We have therefore
Mpe.p = Logep = [+ (F(x) = Fep(x), D'gc p) 1. O

Claim. We have

lim lim (F (x) = Fe o (x), D'gc o)1 =0 in LAH™', o).
e—>0p—

(4.15)

The latter implies that the range of Al — Ny includes C,f(Hf1 (0)) ﬁCé (HO1 (0)) so it is dense
in L>(H™', ) and, therefore, the conclusion of Theorem 4.4 follows by the Lumer—Phillips

theorem.
Proof of the Claim. We set

(F(x) = Fep(x), D'gep)1 = I} + 12,

where
I} = (F(x) = Fe(x), D'ge.p) 1
12, = (Fe(x) = Fe p(x), D' oc p)—1.

As regards 162 we have by (4.8) that

02

Fex) = Fep(x) = fH (Fel) = Fele™ x4+ YIN 1 2oy (d9).

Since F¢ is Lipschitz, there exists Cc > 0 such that
IFe() -1 < Ce(l+ lIx[-1), Vxe H™".

Therefore

IFeaI?, < 22 /H AP ON @)

1
<2c? (1 + le™Ax|* | + 5T A1> ,
and so, by the Lebesgue dominated convergence theorem, we have that

lim 12, (x)pu(dx) = 0.
H-!

p—0

As regards Iel’p,

(F(x) — Fe(x), Do) 1] < [(B(x) — B(U +€F)~'(x)), D'ge)al
< C|B(x) — B(U +eF>*1<x>>|d%.

by Lemma 4.3-(ii) we have

This yields

/Irl |(F(x) = Fe(x), D'ge) -1 *u(dx)

< c/ BG) = BT+ €F) ™) (1)) oy 1(d).
H-! d+2

(4.16)

4.17)
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We are going to apply the Lebesgue dominated convergence theorem in L' (H ™!, 11) to pass to
the limit in (4.17). To this end further estimates are necessary. We recall that y. := (I +€F )1 (x)
is the solution to the equation

Ve —€AB(ye) =x in0, yo=00nd0. (4.18)

If we multiply (4.18) by |ye|?~'sign y. and integrate over & we get that

/ velPde < / yelP~! sign ye xde
17 17

p=1 1
P P
< ( f Iygl”dé) ( / |x|f’ds) .
17 %
This yields

[Yelp < |xlp, Ve>0,x¢ LP(0), p>1. 4.19)

Since ye — y in H~'(0) as € — 0 we have by (4.19) that y. — x weakly and then strongly in
L?(0) foreach x € LP(0) and p > 1. (The space L?(0) is uniformly convex.)
Similarly by the inequality

1By < 1By, Ve>0, xeL?(0), p>1/2, (4.20)
we conclude that for € — 0, B(ye) — B(x) strongly in LP (&) for each x € L?P(0) and
p>1)2.

This implies therefore that
61i£})|((1—i—EF)’1x)—/3(x)|dz%2 =0, Vxe Ld%(ﬁ). (4.21)
On the other hand, by (4.20) and Theorem 3.2 ((3.8) and (3.9)) we have that
B +€F)71x) = B Py < 218(0) 3y
d+2 d+2

and

d+2

[ By o = [ i o < .
-1 d+2 H-!
Thus by (4.17) and (4.21) we infer via Lebesgue’s dominated convergence theorem that

lim 11 (x)p(dx) =0,
e—0 H—]

as claimed. This completes the proof. [J

Remark 4.5. Theorem 4.4 remains true for « = 0 if in the definition of Ny (see (4.1)) we take
Bx) = ﬁ if x £ 0, B(0) = 0. In this case the operator F is no longer maximal monotone, but
replacing in the proof of Theorem 4.4 F by F€(x) = —A (sign x + €x) the previous argument
works in this case too. The details are omitted.

5. The Sobolev space W (H1, n)

Everywhere in this section we shall assume that Z,fil qrllex ||gO < 00 and that g; > 0 for all
k € N, or in other words that Ker QO = {0}. We denote by w an invariant measure of P; and by
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N its infinitesimal generator in L2(H, ). We know by Theorem 4.4 that N is the closure of the
Kolmogorov operator Ny defined by (4.1).
For any ¢ € D(Np) we have, as is easily checked,

No(@?) = 2¢Nog + 102D g3

Integrating this identity with respect to w and taking into account that, by the invariance of wu,
J—1 No(@*)dp = 0, yields

1
| Nwodu==3 [ 10'7D'Ran. Ve eDMo. 5.1)
H—] 2 H—]

Proposition 5.1. The operator Q'/>?D' can be uniquely extended to a bounded operator, still
denoted by Ql/le, from D(N) (endowed with the graph norm) into L2(H_l,u; H™Y.
Moreover the following identity holds:

1
Nogdu=-3 [ 10"D'lidn. Vo eDW). (52)
H—] 2 Hfl

Proof. Let ¢ € D(N). Then there exists a sequence {¢,} C D(Np) such that
on > @, Nogn = Ne in L*(H™', ).
By (5.1) it follows that

[ 102D = gm i =2 [ NG = ol 6 = g di

Therefore the sequence {Q'/2D'¢,} is Cauchy in L?(H~!, u; H™') and the conclusion
follows. [

Corollary 5.2. Let ¢ € D(Ny) and let t > Q. Then the following identity holds:
1 t
[ ewrauss [as [ 107D el = [ oan 5.3)
-1 2 Jo H-1 -1

Proof. Let ¢ € D(Np). Then from the Hille—Yosida theorem one has P;p € D(N) forany ¢t > 0
and moreover

d
— P, = NPgp.
a 1% 1%

Multiplying both sides of this identity by ¢ and integrating with respect to x, and taking into
account (5.2), yields

1d 2 1 1/2 1 2
e Po)du = Noodu = —— 2D Pyp|3ds.
YT H_I(rw) iz /H_] ¢ @du 2/H_1|Q s@lads
Integrating finally with respect to ¢ yields (5.2). 0O

As a consequence of identity (5.2), we are going to prove now that the mapping

D':DWNo) c L*(H ', p) - L*(H '\, ;s H™Y), ¢ — D'y,

is closable. First we shall prove the following lemma.
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Lemma 5.3. Let {¢,} C D(No) and G € L*(H™ ', u; H™') be such that D'¢, — G in
L2(H™Y, u; H™Y). Then we have

lim D'P,g, = E[X*(t,x)G(X(t,x))] in L*(H™', w; H™") uniformly in 1.
n—>oo

Here X} (¢, x) is the Gateaux differential of the map x — X (¢, x).

Proof. Taking into account that || X5 (z, x) |l g1y < 1 and p is invariant we have that

/;{ HDIP;QDn(X) — E[X; (@, x)G(X(z, x))]Hz_l 1(dx)

-1

2
- /H B 0D on (X 0 0) = GX o] @)
= fH E[ID'¢u(X (1, 2)) = G(X (2, )12 pe(dx)

= /H 1D gn(x) = G@)I2 u(dr).
and the conclusion follows. [

We can now prove the announced result.

Theorem 5.4. D' is closable.

Proof. Let {¢,} C D(Ng) and G € L>(H™", u; H~") be such that
on— 0 inL*(H™ ', ), D¢, —> G inL*(H™',u; H™ V.

By (5.3) we have

1 t
/ <Pt¢n>2du+—/ds/ |Q‘/2D‘Ps¢n|§du=/ o7 du.
-1 2 Jo -1 -1

Letting n — oo yields

t
lim ds/ A~ D QY2 P, |1 du = 0.
0 H-!

n—oo

Consequently, by Lemma 5.3, it follows that

fotds/H QX (1, )G (X (8, DI u(dx) =0,
which yields

X*(t,x)G(X(t,x)) =0, Vt>0, u-as.,
because A~!Q is one-to-one. Therefore

GX(t,x))=0, Vr=>0, u-as.,
and so

PAIGOIPDE) =0, Vi>0, p-as.
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Integrating with respect to 4 over H~! and taking into account the invariance of u yields

/ IG(x)|I* p(dx) = 0,
H—l

so G = 0 asrequired. [J

We shall define the Sobolev space W2(H !, 1) as the domain of the closure of D'.
We conclude this section with a regularity property of elements of D(N).

Proposition 5.5. We have D(N) ¢ Wh2(H™1, ).

Proof. Let ¢ € D(N) and let {¢,} C D(Np) be a sequence such that
on = ¢, Nogo = N inL*(H™', ).

By (5.2) it follows that

[ 10 = gmBai <2 [ NG = 0l 00 = gl 4
: .

Therefore the sequence {D'¢,} is Cauchy in L>(H~!, u; H™1). Since D! is closed it follows
that g € WH2(H ™1, ) as required. [0
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