Impact of Intracoronary Cell Therapy on Left Ventricular Function in the Setting of Acute Myocardial Infarction

A Collaborative Systematic Review and Meta-Analysis of Controlled Clinical Trials

Michael J. Lipinski, MD,*† Giuseppe G. L. Biondi-Zoccai, MD,‡ Antonio Abbate, MD,† Reena Khianey, MD,† Imad Sheiban, MD,‡ Jozef Bartunek, MD, PHD,§ Marc Vanderheyden, MD,§ Hyo-Soo Kim, MD,|| Hyun-Jae Kang, MD,|| Bodo E. Strauer, MD,# George W. Vetrovec, MD†

Charlottesville and Richmond, Virginia; Turin, Italy; Aalst, Belgium; Seoul, Korea; and Duesseldorf, Germany

Objectives	We aimed to perform a meta-analysis of clinical trials on intracoronary cell therapy after acute myocardial infarction (AMI).
Background	Intracoronary cell therapy continues to be evaluated in the setting of AMI with variable impact on left ventricular ejection fraction (LVEF).
Methods	We searched the CENTRAL, mRCT, and PubMed databases for controlled trials reporting on intracoronary cell therapy performed in patients with a recent AMI (\leq 14 days), revascularized percutaneously, with follow-up of \geq 3 months. The primary end point was change in LVEF, and secondary end points were changes in infarct size, cardiac dimensions, and dichotomous clinical outcomes.
Results	Ten studies were retrieved (698 patients, median follow-up 6 months), and pooling was performed with random effect. Subjects that received intracoronary cell therapy had a significant improvement in LVEF (3.0% increase [95% confidence interval (Cl) 1.9 to 4.1]; $p < 0.001$), as well as a reduction in infarct size (-5.6% [95% Cl -8.7 to -2.5]; $p < 0.001$) and end-systolic volume (-7.4 ml [95% Cl -12.2 to -2.7]; $p = 0.002$), and a trend toward reduced end-diastolic volume (-4.6 ml [95% Cl -10.4 to 1.1]; $p = 0.11$). Intracoronary cell therapy was also associated with a nominally significant reduction in recurrent AMI ($p = 0.04$) and with trends toward reduced death, rehospitalization for heart failure, and repeat revascularization. Meta-regression suggested the existence of a dose-response association between injected cell volume and LVEF change ($p = 0.066$).
Conclusions	Intracoronary cell therapy following percutaneous coronary intervention for AMI appears to provide statistically and clinically relevant benefits on cardiac function and remodeling. These data confirm the beneficial impact of this novel therapy and support further multicenter randomized trials targeted to address the impact of intracoronary cell therapy on overall and event-free long-term survival. (J Am Coll Cardiol 2007;50:1761–7) © 2007 by the American College of Cardiology Foundation

The treatment of acute myocardial infarction (AMI), especially ST-segment elevation, centers on early revascularization of the infarct-related artery and optimal medical therapy. Although multiple studies have more recently investigated the potential role of intracoronary cell therapy for AMI (1–16), it remains unclear whether intracoronary cell therapy improves left ventricular (LV) function, LV dimensions, infarct size, and other clinical outcomes. Our goal was to systematically review controlled clinical trials appraising the impact of intracoronary cell therapy on post-infarction LV function.

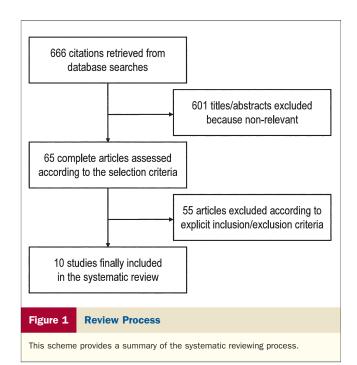
Methods

We searched (September 2006) the CENTRAL, mRCT, and PubMed databases, as well as years 2000 to 2006

From the *Department of Internal Medicine, University of Virginia, Charlottesville, Virginia; †Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia; ‡Interventional Cardiology, Division of Cardiology, University of Turin, Turin, Italy; §Cardiovascular Center and Cardiovascular Research Center, Aalst, Belgium; ||Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; and the #Department of Internal Medicine, Division of Cardiology, Pneumology, and Angiology, Heinrich Heine University, Duesseldorf, Germany. Drs. Bartunek and Vanderheyden are members of an institution that is a founding member of Cardio3. Drs. Lipinski and Biondi-Zoccai contributed equally to this work.

Manuscript received May 21, 2007; revised manuscript received July 16, 2007, accepted July 17, 2007.

Abbreviations


and Acronyms	American
AMI = acute myocardial	European Se and Transca
infarction	
BMC = bone marrow cell	lar Therape
CI = confidence interval	ceedings with tion, using
-CSF = granulocyte	AND (intra
colony-stimulating factor	coronary)."
V = left ventricular	tions were s
VEDV = left ventricular	abstract leve
nd-diastolic volume	relevant, reti
LVEF = left ventricular	complete ma
ection fraction	ance with th
VESV = left ventricular nd-systolic volume	1) prospectiv
R = odds ratio	tracoronary
	control after
PMC = peripheral nononuclear cell	infarct-relate
VR = target vessel	neously revas
evascularization	to-treat analy
	of >3 mont
	were: 1) irr
ta; 2) treatment of old	l MI (>14 day
1 01 01	

American College of Cardiology, Heart Association, ociety of Cardiology, atheter Cardiovascuutics conference prohout language restricas keywords: "cells coronary OR transnitially selected citascreened at the title/ el and, if potentially rieved and assessed as anuscripts for compliese inclusion criteria: ve comparison of incell therapy versus AMI in which the ed artery was percutacularized; 2) intentionysis; and 3) follow-up hs. Exclusion criteria etrievable or unclear

data; 2) treatment of old MI (>14 days), chronic ischemia, or heart failure; 3) lack of control group; 4) duplicate reports; and 5) ongoing or unpublished studies.

Several study features were extracted, including design, outcome definitions, imaging modalities, patient baseline characteristics, and procedural data. Specifically, the primary end point was the change in left ventricular ejection fraction (LVEF) from baseline to follow-up. Secondary efficacy end points were changes in left ventricular endsystolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), and infarct size. In case a remodeling parameter was reported by more than 1 imaging technique, the 1 with the smaller standard error was chosen for analysis. Secondary safety end points were the incidence of dichotomous clinical events (i.e., death, recurrent AMI, target vessel revascularization [TVR], and rehospitalization for heart failure) evaluated at the longest available followup. All of the outcomes analyzed were used as defined in individual trials. In case of missing or unclear data for the primary or secondary end points, at least 2 separate attempts were made to clarify the data by contacting the primary authors at least 3 weeks apart. The internal validity of included trials was appraised separately, addressing the risk of selection, performance, adjudication, and attrition bias. Study search, selection, abstraction, and appraisal were all performed by 2 independent reviewers, with divergences resolved with consensus.

Dichotomous variables are reported as proportions and percentages, continuous variables as mean \pm standard deviation or median (interquartile range [IQR]). Binary outcomes from individual studies were combined with the Peto fixed-effect model, unless inconsistency (I²) >50%, in which case a random-effect model was used to compute odds ratios (ORs) with 95% confidence intervals (CIs). Continuous

variables were pooled with a random-effect generic-inversevariance method, providing summary point estimates (95% CI). Chi-square tests and I^2 were computed to explore statistical heterogeneity and inconsistency, respectively. Small study bias was explored with funnel plots and Egger test. Finally, meta-regression and sensitivity analyses (including exclusion of 1 study at a time) were conducted to explore heterogeneity. Computations were performed using RevMan 4.2 (The Cochrane Collaboration, Copenhagen, Denmark) and SPSS 11.0 (SPSS, Chicago, Illinois), with statistical significance for hypothesis testing set at the 0.05, 2-tailed level.

Results

From the initial 666 hits, 601 citations were initially excluded at the title/abstract level (Fig. 1). Among the articles retrieved in complete form, 5 were excluded for lack of a control group (3,14), 16 for investigating a different end point, 15 with intracoronary cell therapy for chronic coronary disease or heart failure, 2 because they were ongoing or unpublished, 14 because they were related to surgical delivery or other therapies involving cell therapy, and 1 because the average time from symptom onset to cell injection was >14 days (6). Eventually, 11 articles covering 10 controlled trials were included in the analysis (2,4,5,7,8,10–13,15,16). The 10 included trials allocated 698 patients to intracoronary cell therapy or standard medical therapy (Tables 1 to 4), with a mean follow-up of 6 months (range 3 to 18 months).

Meta-analytic pooling for the primary end point showed that intracoronary cell therapy was significantly superior to standard medical therapy in terms of LVEF improvement, with a clinically and statistically significant difference of

Table 1 Main Features of Included Studies

Study	Year	Design	Patients Enrolled (Patients at Follow-Up)	Cell Type	Follow-Up (Months)	Primary End Point	Imaging Modality for LVEF Assessment
Strauer et al. (10)	2002	Non-RCT	20 (20)	BMC	3	LVEF	LV angiography
Bartunek et al. (11)	2005	Non-RCT	35 (35)	BMC	4	Safety, LVEF	LV angiography, SPECT
Jannsens et al. (8)	2006	RCT	67 (66)	BMC	4	LVEF	Cardiac MRI
BOOST (7)	2006	RCT	60 (60)	BMC	18	LVEF, safety	Cardiac MRI
Zhan-Quan et al. (13)	2006	Non-RCT	70 (58)	PMC	6	LVEF, LV volumes, WMSI	Echocardiography
MAGIC CELL-3-DES (12)	2006	RCT	56 (50)	PMC	6	LVEF	Cardiac MRI
TCT-STAMI (15)	2006	RCT	20 (20)	BMC	6	LVEF	Echocardiography, SPECT
ASTAMI (2,4)	2006	RCT	100 (97)	BMC	6	LVEF, EDV, infarct size	SPECT, MRI, echo
REPAIR-AMI (5)	2006	RCT	204 (187)	BMC	12	LVEF	LV angiography
Meluzin et al. (16)	2006	RCT	66 (66)	BMC	3	Infarct zone systolic function	SPECT

BMC = bone marrow cells; EDV = end-diastolic volume; LV = left ventricular; LVEF = left ventricular ejection fraction; MRI = magnetic resonance imaging; PMC = peripheral mononuclear cells; RCT = randomized controlled trial; SPECT = single-photon emission computed tomography; WMSI = wall motion score index.

3.0% (95% CI 1.9% to 4.1%; p < 0.00001; I² = 73.2%). Intracoronary cell therapy was similarly found to have benefit concerning LVESV (average difference -7.4 ml [95% CI -12.2 to -2.7]; p = 0.002; I² = 95.8%) and infarct size (average difference -5.6% [95% CI -8.7 to -2.5]; p = 0.0004; I² = 92.6%). There was a trend for improvement in LVEDV (average difference -4.6 ml [95% CI -10.4 to 1.1]; p = 0.11; I² = 95.2%) (Fig. 2).

Comparing dichotomous clinical end points (Table 4), intracoronary cell therapy proved to be notably safe, without any increase in the risk of TVR (OR 1.08 [95% CI 0.60 to 1.96]; p = 0.80; $I^2 = 25.3\%$). Conversely, intracoronary cell therapy tended to be associated, albeit nonsignificantly, with reductions in the risk of death or rehospitalization for heart failure. In addition, intracoronary cell therapy was associated with a nominally statistically significant decrease in recurrent AMI (p = 0.04), but this finding should be regarded as hypothesis-generating only, given the low number of events in all but 1 of the studies (5).

A number of exploratory meta-regression analyses were performed to appraise the impact of the following moderator or covariates on the changes in LVEF associated with intracoronary cell therapy. Specifically, at the overall analysis we did not find statistically significant association between: the benefits of intracoronary cell therapy and follow-up duration (p = 0.73), year of publication (p = 0.54), baseline LVEF in the experimental group (p = 0.32), number of injected cells (p = 0.69), time to PCI (p = 0.40), and time between symptom onset (p = 0.72). However, we found a trend toward a statistically significant association between injected volume and LVEF (p = 0.066), suggesting the possible presence of a dose-response relationship (Fig. 3).

No evidence of small-study bias was found either visually at inspection of funnel plots or analytically at Egger test (p = 0.57). Computations performed after selecting only randomized trials or high-quality randomized trials (4,5,7,8,11) (Table 3) confirmed the statistically significant improvement of LVEF (respectively: 3.8% [95% CI 2.2 to 5.5]; p < 0.00001; I² = 87.8%; and 2.8% [95% CI 1.3 to 4.3]; p < 0.001; I² = 70.9%). Indeed, we found no major differences in LVEF effect size between randomized and nonrandomized studies.

Similarly significant was the effect on LVEF when selecting only studies using a sham intracoronary infusion for the control group (3.0% change [95% CI 0.8 to 5.2]; p = 0.008; $I^2 = 79.4\%$). Finally, sensitivity analysis excluding 1 study at a time confirmed in direction and magnitude of statistical significance the results from the

Table 2 Patients ar	nd Procedu	ral Charac	teristics of In	cluded Studio	es				
Study	Mean Age (yrs)	Men (%)	Anterior AMI (%)	Hours to PCI	DES Use (%)	Days to ICT	Average Number of Injected Cells (10 ⁶)	CD34 ⁺ Cells (10 ⁶)	Injected Volume (ml)
Strauer et al. (10)	50	92.5	37.5	11.5	0	8	46	NP	20
Bartunek et al. (11)	54	91	94	10	8.6	11.6	NP	15.4	15-20
Jannsens et al. (8)	57	82	63	3.9	NP	1	304	2.8	10
BOOST (7)	56	70	77	8.9	NP	4.8	2,460	9.5	26
Zhan-Quan et al. (13)	60	80	60	24	NP	6	72.5	NP	57
MAGIC CELL-3-DES (12)	60	80	54	9.1	100	4	1,500	7	NP
TCT-STAMI (15)	58	90	70	7.5	NP	0.5	38.7	1.8	16
ASTAMI (2,4)	57	84	100	3.5	5	6	68	0.7	NP
REPAIR-AMI (5)	56	82	78	7.2	14.5	4.4	236	3.6	10
Meluzin et al. (16)	55	92.4	85	7.7	NP	7	55	0.55	21

AMI = acute myocardial infarction; DES = drug-eluting stent; ICT = intracoronary cell therapy; NP = not provided; PCI = percutaneous coronary intervention.

Table 3	Internal Validity	y of Included Trials*
---------	-------------------	-----------------------

	many or menuae						
Study	Setting	Allocation Concealment	Sham Infusion	Selection Bias	Performance Bias	Adjudication Bias	Attrition Bias
Strauer et al. (10)	Single-center	None (nonrandom allocation)	No	С	С	С	Α
Bartunek et al. (11)	Single-center	None (nonrandom allocation)	No	С	С	С	D
Jannsens et al. (8)	Single-center	Likely adequate	Yes	А	А	В	Α
BOOST (7)	Single-center	Unclear	No	В	В	А	Α
Zhan-Quan et al. (13)	Single-center	None (nonrandom allocation)	No	С	С	С	В
MAGIC-CELL-3-DES (12)	Single-center	Likely inadequate (open table of randomized allocations)	No	В	В	Α	Α
TCT-STAMI (15)	Single-center	Likely adequate	Yes	А	А	С	D
ASTAMI (2,4)	2 centers	Unclear	No	в	В	D	Α
REPAIR-AMI (5)	Multicenter	Likely adequate	Yes	А	Α	А	Α
Meluzin et al. (16)	Single-center	Unclear	No	Α	В	D	Α

*The internal validity of included trials was appraised by judging separately the risk for selection, performance, attrition, and adjudication biases, expressed as low risk (A), moderate risk (B), or high risk (C) of bias or incomplete reporting leading to inability to ascertain the underlying risk of bias (D).

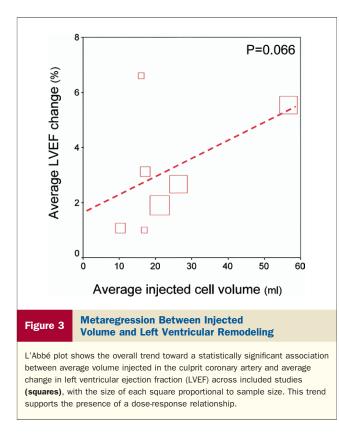
overall analysis (all p values <0.001). Analysis comparing the effect of bone marrow cells (BMCs) versus peripheral mononuclear cells (PMCs) could not be performed because of inadequate power due to the low number of studies using intracoronary delivery of peripheral cells (12,13). However, the impact of intracoronary cell therapy on LVEF was investigated for both BMCs and PMCs and demonstrated that intracoronary cell therapy improves LVEF, regardless of whether BMCs (3.3% [95% CI 1.8 to 5.2]; p < 0.001; $I^2 = 84.1\%$) or PMCs (5.3% [95% CI 4.1 to 6.7]; p < 0.001; $I^2 = 0\%$) were used.

Discussion

The main finding of the present study is that intracoronary cell therapy after AMI results in a modest yet significant increase in LVEF compared with control. In addition, analysis of secondary end points demonstrates that intracoronary cell therapy significantly decreases LVESV and infarct size. This meta-analysis included intracoronary cell therapy derived from both BMCs and PMCs. Although this may be argued as a limitation of the study, intracoronary cell therapy after AMI appears to improve LVEF regardless of whether BMCs or PMCs are employed. It is important to recognize that the outlying study by Chen et al. (6) was excluded, because therapy was initiated >14 days after symptoms.

The question of whether a small increase in LVEF is of clinical significance is an important issue. However, it should be stressed that many of the interventions with an established life-saving effect during or after AMI also provide only moderate yet clinically meaningful increases in LVEF. Several hypotheses have been proposed about how intracoronary cell therapy improves myocardial function. Recent well-conducted studies suggest that bone marrowderived cells do not transdifferentiate into cardiomyocytes but adopt mature hematopoeitic characteristics (17,18). However, adult peripheral blood CD34⁺ cells can transdifferentiate into cardiomyocytes, mature endothelial cells, and smooth muscle cells in vivo (19). Another proposed mechanism is that cell therapy may increase angiogenesis and improve blood supply to ischemic regions, potentially aiding in the revascularization of hibernating myocardium (20) and inhibiting cardiomyocyte apoptosis (21).

Table 4			est Available Follow-Up Idies and Pooled With		
Stu	ıdy	Death	Recurrent Myocardial Infarction	Target Vessel Revascularization	Rehospitalization for Heart Failure
Strauer et a	l. (10)	—	—	—	_
Bartunek et	al. (11)	0/19 vs. 0/16	—	11/19 vs. 4/16	_
Jannsens et	al. (8)	1/34 vs. 0/34	0/33 vs. 0/34	2/33 vs. 2/34	_
BOOST (7)		0/30 vs. 1/30	1/30 vs. 0/30	5/30 vs. 4/30	1/30 vs. 3/30
Zhan-Quan e	et al. (13)	0/35 vs. 0/23	0/35 vs. 0/23	0/35 vs. 0/23	0/35 vs. 0/23
MAGIC-CELL	-3-DES (12)	1/27 vs. 1/29	0/27 vs. 1/29	0/27 vs. 1/29	_
TCT-STAMI (15)	0/10 vs. 0/10	0/10 vs. 0/10	0/10 vs. 0/10	0/10 vs. 0/10
ASTAMI (2,4	•)	0/50 vs. 0/50	_	11/50 vs. 11/50	1/50 vs. 1/50
REPAIR-AMI	(5)	2/101 vs. 6/103	0/101 vs. 6/103	16/101 vs. 26/103	0/101 vs. 3/103
Meluzin et a	I. (16)	0/44 vs. 0/22	0/44 vs. 0/22	6/44 vs. 1/22	0/44 vs. 0/22
OR (95% CI)		0.52 (0.16-1.63)	0.22 (0.05-0.90)	0.97 (0.62-1.52)	0.32 (0.09-1.21)
p value		0.26	0.04	0.90	0.09


*Comparing intracoronary cell therapy versus control event rates (n/N)

CI = confidence interval; OR = odds ratio.

A Comparison:	Cell therapy vs control in ac	ute myocardial inf					
Outcome:	Change in ejection fraction		bllow-up				
Study or sub-category	EF cha	nge % (SE)	EF char	nge % (random) 95% Cl		EF change % (random) 95% CI	Ye
ASTAMI	-1.4000	(0.7200)				-1.40 [-2.81, 0.01]	20
Bartunek et al		(3.0800)				-3.10 [-9.14, 2.94]	20
BOOST Jannsens et al		(1.1200) (0.7900)				-2.80 [-5.00, -0.60] -1.10 [-2.65, 0.45]	20
MAGIC-3		(1.0100)		- T		-5.20 [-7.18, -3.22]	20
Meluzin et al		(0.4900)	-	-		-2.00 [-2.96, -1.04]	20
REPAIR-AMI Strauer et al		(0.5400)	-	-		-2.50 [-3.56, -1.44]	20
Strauer et al TCT-STAMI		(1.5600) (1.6300)				-1.00 [-4.06, 2.06] -6.70 [-9.89, -3.51]	20
Zhan-Quan et a		(0.8500)				-5.50 [-7.17, -3.83]	20
	eneity: Chi ² = 33.62, df = 9 (P effect: Z = 5.35 (P < 0.00001)		.2%			-2.97 [-4.06, -1.88]	
			-10 -5 avors cell therapy	0 5 y Favors cont	10 rol		
R			avoio cen alerapj	y 1 avois com			
D Comparison:	Cell therapy vs control in ac						
Outcome: Study	Change in end-systolic volu	me from baseline		nge (ml) (random)		ESV change (ml) (random)	
or sub-category		nge (ml) (SE)		95% CI		95% CI	Ye
BOOST		(1.6000)		1		-0.90 [-4.04, 2.24]	20
Jannsens et al MAGIC-3	-1.8000	(1.1000)		-1		-1.80 [-3.96, 0.36] 12.00 [-15.59, -8.41]	20
Meluzin et al	-13.0000					13.00 [-14.35, -11.65]	20
REPAIR-AMI	-5.0000	(1.2100)		-		-5.00 [-7.37, -2.63]	20
Zhan-Quan et a	al -12.0000	(1.7000)		-	-	12.00 [-15.33, -8.67]	20
	eneity: Chi ² = 118.32, df = 5 (P < 0.00001), I ² =	95.8%	•		-7.43 [-12.21, -2.66]	
	ffect: Z = 3.05 (P = 0.002)		100 -50	0 50	100		
			avors cell therapy				
	Cell therapy vs control in ac		arction	y Favors cont	rol		
Outcome: Study	Change in end-diastolic volu		arction to follow-up	y Favors cont nge (ml) (random) 95% Cl	rol	EDV change (ml) (random) 95% Cl	Ye
Outcome: Study or sub-category ASTAMI	Change in end-diastolic volu EDV char -9.2000	ume from baseline nge (ml) (SE) (3.1000)	arction to follow-up	nge (ml) (random)	rol	95% Cl -9.20 [-15.28, -3.12]	20
Outcome: Study or sub-category ASTAMI Bartunek et al	Change in end-diastolic volu EDV char -9.2000 1.6500	ume from baseline nge (ml) (SE) (3.1000) (13.9000)	arction to follow-up	nge (ml) (random)	rol	95% Cl -9.20 [-15.28, -3.12] 1.65 [-25.59, 28.89]	20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST	Change in end-diastolic volu EDV char -9.2000 1.6500 2.5000	ume from baseline nge (ml) (SE) (3.1000) (13.9000) (1.7300)	arction to follow-up	nge (ml) (random)	rol	95% Cl -9.20 [-15.28, -3.12] 1.65 [-25.59, 28.89] 2.50 [-0.89, 5.89]	20
Outcome: Study or sub-category ASTAMI Bartunek et al	Change in end-diastolic volu EDV char -9.2000 1.6500 2.5000 0.1000	ume from baseline nge (ml) (SE) (3.1000) (13.9000)	arction to follow-up	nge (ml) (random)	rol	95% Cl -9.20 [-15.28, -3.12] 1.65 [-25.59, 28.89] 2.50 [-0.89, 5.89] 0.10 [-2.59, 2.79]	20 20 20 20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al	Change in end-diastolic volu EDV char - 9.2000 1.6500 2.5000 0.1000 - 6.7000 - 13.5000	ume from baseline nge (ml) (SE) (3.1000) (13.9000) (1.7300) (1.3700) (2.2900) (0.7400)	arction to follow-up	nge (ml) (random)		95% Cl -9.20 [-15.28, -3.12] 1.65 [-25.59, 28.89] 2.50 [-0.89, 5.89] 0.10 [-2.59, 2.79] -6.70 [-11.19, -2.21] 13.50 [-14.95, -12.05]	20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al REPAIR-AMI	Change in end-diastolic volt EDV char - 9 . 2000 1.6500 0.1000 -6.7000 -13.5000 -1.0000	ume from baseline (3.1000) (13.9000) (1.7300) (1.3700) (2.2900) (0.7400) (1.6600)	arction to follow-up	nge (ml) (random)		95% Cl -9.20 [-15.28, -3.12] 1.65 [-25.59, 28.89] 2.50 [-0.89, 5.89] 0.10 [-2.59, 2.79] -6.70 [-11.19, -2.21] 13.50 [-14.95, -12.05] -1.00 [-4.25, 2.25]	20 20 20 20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et a	Change in end-diastolic volt EDV char - 9 . 2000 1.6500 0.1000 -6.7000 -13.5000 -1.0000	ume from baseline nge (ml) (SE) (3.1000) (13.9000) (1.7300) (1.3700) (2.2900) (0.7400)	arction to follow-up	nge (ml) (random)		95% Cl -9.20 [-15.28, -3.12] 1.65 [-25.59, 28.89] 2.50 [-0.89, 5.89] 0.10 [-2.59, 2.79] -6.70 [-11.19, -2.21] 13.50 [-14.95, -12.05]	20 20 20 20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et a Total (95% CI)	Change in end-diastolic volt EDV char - 9 . 2000 1.6500 0.1000 -6.7000 -13.5000 -1.0000	ume from baseline (3.1000) (13.9000) (1.7300) (2.2900) (0.7400) (1.6600) (2.5300)	arction to follow-up EDV char	nge (ml) (random)		95% Cl -9.20 (-15.28, -3.12) 1.55 (-25.59, 28.69) 2.50 (-0.69, 5.89) 0.10 (-2.59, 2.79) -6.70 (-11.19, -2.21) 13.50 (-14.95, -2.20) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44)	20 20 20 20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et a Total (95% CI) Test for heterogr	Change in end-diastolic volt EDV char - 9.2000 1.6500 0.1000 - 6.7000 - 1.0000 al - 6.4000 enetty: Chi ² = 146.01, df = 7 (ume from baseline (3.1000) (13.9000) (1.7300) (1.7300) (2.2900) (2.2900) (2.400) (2.530)	arction to follow-up EDV char	nge (ml) (random) 95% Cl	100	95% Cl -9.20 (-15.28, -3.12) 1.55 (-25.59, 28.69) 2.50 (-0.69, 5.89) 0.10 (-2.59, 2.79) -6.70 (-11.19, -2.21) 13.50 (-14.95, -2.20) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44)	20 20 20 20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et a Total (95% CI)	Change in end-diastolic volt EDV char - 9.2000 1.6500 0.1000 - 6.7000 - 1.0000 al - 6.4000 enetty: Chi ² = 146.01, df = 7 (ume from baseline (3.1000) (13.9000) (1.7300) (1.7300) (2.2900) (2.2900) (2.400) (2.530)	Sinction to follow-up EDV char 95.2%	nge (ml) (random) 95% Cl	100	95% Cl -9.20 (-15.28, -3.12) 1.55 (-25.59, 28.69) 2.50 (-0.69, 5.89) 0.10 (-2.59, 2.79) -6.70 (-11.19, -2.21) 13.50 (-14.95, -2.20) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44)	20 20 20 20 20 20 20 20 20 20
Dutcome: Study or sub-category ASTAMI Bartunek et BOOST Jannens et Metuzin et a REPAIR-AMI Zhan-Quan et Total (95% CI) Test for retergor Test for retorgatison:	Change in end-diastolic volt EDV chan -9.2000 1.6500 2.5000 0.1000 -6.7000 -1.3.5000 -1.0000 -1.0000 ell -6.4000	ume from baseline nge (ml) (SE) (3.1000) (1.37000) (1.2700) (1.2700) (2.2900) (0.7400) (1.6600) (2.5300) (P < 0.00001), P = F ute myocardial infi	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction	nge (m) (random) 95% Cl	100	95% Cl -9.20 (-15.28, -3.12) 1.55 (-25.59, 28.69) 2.50 (-0.69, 5.89) 0.10 (-2.59, 2.79) -6.70 (-11.19, -2.21) 13.50 (-14.95, -2.20) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44)	20 20 20 20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI BOOST Bartunek et al BOOST Jannesne et al MAGIC-3 Metuzin et al MAGIC-3 Metuzin et al REPAIR-AMI Zhan-Quan et - Total (95% cf) Test for heterogo Test for overall e	Change in end-diastolic volt EDV char - 9.2000 1.6500 0.1000 - 0.1000 - 1.0000 - 1.0000 - 1.0000 - 6.4000 eneity: Chi ² = 146.01, df = 7 (fifect: Z = 1.58 (P = 0.11) Cell therapy vs control in act Change in functional defect	ume from baseline nge (ml) (SE) (3.1000) (13.9000) (1.3700) (2.29001) (2.29001) (2.5300) (2.530) (2.5300)	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100	95% Cl -9.20 (-15.28, -3.12) 1.65 (-25.59, 28.89) 2.50 (-0.89, 5.89) 0.10 (-2.59, 2.79) (-6.70 (-1.10, -2.21) 13.50 (-14.95, -12.05) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12) defect change % (random)	20 20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI BoOST + Bartunek et al BOOST + Jannesne et al MAGIC-3 Meluzin et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et . Total (95% CI) Test for overall e Comparison: Study or sub-category	Change in end-diastolic volt EDV char - 9.2000 1.6500 0.1000 - 6.7000 - 1.3.5000 - 1.0000 al - 6.4000 eneity: Chi² = 146.01, df = 7 (frfect: Z = 1.58 (P = 0.11) Cell therapy vs control in ac Change in functional defect defect ch	ume from baseline nge (ml) (SE) (3.1000) (1.37000) (1.2700) (1.2700) (2.2900) (0.7400) (1.6600) (2.5300) (P < 0.00001), P = F ute myocardial infi	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline	nge (m) (random) 95% Cl y y Favors cont to follow-up	100	95% Cl -9.20 (-15.28, -3.12] 1.65 (-25.59, 28.89) 2.50 (-0.89, 5.89) 0.10 (-2.59, 2.79] -6.70 (-11.19, -2.21] 13.50 (-14.35, -12.05] -6.40 (-11.36, -1.44] -4.62 (-10.36, 1.12]	20 20 20 20 20 20 20 20
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST + ASTAMI MACIC-3 Meluzin et al MACIC-3 Meluzin et al MACIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et . Total (95% CI) Test for overall e Comparison: Ducome: Study or sub-category O1 Change in fu ASTAMI	Change in end-diastolic volt EDV char - 9-2000 1.6500 2.5000 -1.6500 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -6.4000 eneity: Chi ² = 1.68 (P = 0.11) Cell therapy vs control in act Change in functional defect defect ch nctional defect -3.2000	ume from baseline (3.1000) (1.7300) (1.7300) (1.7300) (1.22900) (2.2900) (2.530	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 rol	95% Cl -9.20 (-15.28, -3.12] 1.65 (-25.59, 28.69) 2.50 (-0.89, 5.89) 0.10 (-2.59, 2.79) -6.70 (-1.18, -2.21) 13.50 (-14.95, -12.05] -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12] defect change % (random) 95% Cl -3.20 (-5.57, -0.83]	2(22 2(22 22 22 22 22 22 22 22 22 22 2
Outcome: Study or sub-category ASTAMI BOOST Jannsens et al MAGIC-3 Meduzin et al REPAIR-AMI Zhan-Quan et : Total (95% CI) Test for heterogr Test for overall et Outcome: Study or sub-category Ot Change in fu ASTAMI Bartunek et al	Change in end-diastolic volt = EDV char - 9.2000 1.6500 2.5000 - 6.7000 - 1.0000 al - 6.4000 anelty: Chi ² = 146.01, df = 7 (iffect: Z = 1.58 (P = 0.11) Cell therapy vs control in ac Change in functional defect defect ch nctional defect -3.2000 -4.9000	ume from baseline (3.1000) (3.1000) (1.37000) (1.3700) (2.2900) (0.7400) (1.6600) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (2.1000) (2.2000) (1.2100) (2.2000)	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 rol	95% Cl -9.20 (-15.28, -3.12] 1.65 (-35.9, 28.69) 2.50 (-0.89, 5.69) 0.10 (-2.59, 2.79) -6.70 (-11.19, -2.21] 13.50 (-14.35, -12.05] -1.00 (-4.35, -2.25) -6.40 (-11.36, -1.44] -4.62 (-10.36, 1.12] defect change % (random) 95% Cl -3.20 (-5.57, -0.83] -4.90 (-5.82, -0.98]	20 22 20 20 20 20 20 20 20 20 20 20 20 2
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST + Melizin et al MAGIC-3 Melizin et al REPAIR-AMI Zhan-Quan et . Total (95% CI) Test for heterogo Test for overall e Comparison: Study or sub-category O1 Change in fu ASTAMI Bartunek et al Melizin et al	Change in end-diastolic volt EDV char - 9-2000 1.6500 0.1000 -6.7000 -1.0000 al -6.4000 eneity: Chi² = 146.01, df = 7 (frfect: Z = 1.58 (P = 0.11) Cell therapy vs control in act Change in functional defect act Change in functional defect -3.2000 -3.2000 -4.9000 -3.2000	ume from baseline nge (ml) (SE) (3.1000) (1.3700) (1.3700) (2.2900) (0.7400) (1.6600) (2.5300) P < 0.00001), I ^a = F ute myocardial infr or late enhancem hange % (SE) (1.2100) (2.0500)	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 rol	95% Cl -9.20 (-15.28, -3.12] 1.65 (-25.59, 28.69) 2.50 (-0.89, 5.89) 0.10 (-2.59, 27.9) (-6.70 (-1.18, -2.21) 13.50 (-14.95, -12.05] -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12] defect change % (random) 95% Cl -3.20 (-5.57, -0.83] -4.90 (-8.82, -0.98] -1.00 (-2.10, 0.10)	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST + ASTAMI MACIC-3 Meluzin et al MACIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et . Total (95% CI) Test for heterogo Test for overall et Comparison: Ducomparison: Study or sub-category OI Change in fu ASTAMI Bartunek et al Strauer et al TCT-STAMI	Change in end-diastolic volt EDV char - 9- 2000 1.6500 2.5000 - 0.1000 - 6.7000 - 1.0000 - 1.0000 al - 6.4000 eneity: Chi ² = 146.01, df = 7 (frfect: Z = 1.58 (P = 0.11) Cell therapy vs control in act Change in functional defect - 3.2000 - 4.9000 - 1.0000 - 3.2000 - 1.0000 - 1.0000	ume from baseline nge (ml) (SE) (3.1000) (1.3700) (1.3700) (2.2900) (0.7400) (1.6600) (2.5300) P < 0.00001), I ^a = F ute myocardial infr or late enhancem hange % (SE) (1.2100) (2.0500)	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 rol	95% Cl -9.20 (-15.28, -3.12] 1.65 (-25.59, 28.69) 2.50 (-0.89, 5.89) 0.10 (-2.59, 27.9) -6.70 (-1.18, -2.21) 13.50 (-14.95, -12.05] -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12] defect change % (random) 95% Cl -3.20 (-5.57, -0.83] -4.90 (-8.82, -0.98] -1.00 (-16.29, -9.71] -5.00 (-6.39, -1.61]	20 22 22 20 20 20 20 20 20 20 20 20 20 2
Outcome: Study or sub-category ASTAM Bartunek et al BOOST ASTAM Bartunek et al MAGIC-3 Meluzin et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et al Total (85% CI Zotroparison: Outcome: Study or sub-category O1 Change in fu ASTAMI Bartunek et al Strauer et al TCT-STAM	Change in end-diastolic volt EDV char - 9- 2000 1.6500 2.5000 - 1.000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.058 (P = 0.11) Cell therapy vs control in ac Change in functional defect - 3.2000 - 4.9000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000	ume from baseline nge (ml) (SE) (3.1000) (1.3.7000) (1.3700) (2.2900) (0.7400) (1.6600) (2.5300) (2.5300) (2.5300) (2.6600) (1.2100) (2.0000) (1.2100) (2.6600) (1.7300)	95.2% 95.2% 100 -50 avors cell therapy arction ent from baseline defect ch	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 rol	95% Cl -9.20 [-15.28, -3.12] 1.65 [-35.50, 28.89] 2.50 [-0.89, 5.89] -0.10 [-2.50, 27.9] -6.70 [-11.19, -2.21] 13.50 [-14.95, -12.05] -1.00 [-4.25, 2.25] -6.40 [-11.36, -1.44] -4.62 [-10.36, 1.12] defect change % (random) 95% Cl -3.20 [-5.57, -0.83] -4.90 [-8.82, -0.98] -1.00 [-2.10, 0.10] 11.00 [-12.9, -9.71]	20 22 22 20 20 20 20 20 20 20 20 20 20 2
Outcome: Study or sub-category ASTAM Bartunek et al BOOST ASTAM Bartunek et al MAGIC-3 Meluzin et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et Total (95% C) Test for heterogo Test for overall Comparison: Outcome: Study or sub-category Of Change In fu ASTAMI Bartunek et al Straver et al TCT-STAM	Change in end-diastolic volt EDV char - 9- 2000 1.6500 2.5000 - 6.7000 al - 6.4000 eneity: Chi ² = 146.01, df = 7 (ffect Z = 1.58 (P = 0.11) Cell therapy vs control in ac Change in functional defect defect ch nctional defect - 3.2000 - 4.9000 - 1.0000 - 3.0000 - 3.0000 - 5.0000 i) eneity: Chi ² = 49.95, df = 4 (F effect Z = 2.62 (P = 0.009)	ume from baseline nge (ml) (SE) (3.1000) (1.3.7000) (1.3700) (2.2900) (0.7400) (1.6600) (2.5300) (2.5300) (2.5300) (2.6600) (1.2100) (2.0000) (1.2100) (2.6600) (1.7300)	95.2% 95.2% 100 -50 avors cell therapy arction ent from baseline defect ch	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 rol	95% Cl -9.20 (-15.28, -3.12] 1.65 (-25.59, 28.69) 2.50 (-0.89, 5.89) 0.10 (-2.59, 27.9) -6.70 (-1.18, -2.21) 13.50 (-14.95, -12.05] -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12] defect change % (random) 95% Cl -3.20 (-5.57, -0.83] -4.90 (-8.82, -0.98] -1.00 (-16.29, -9.71] -5.00 (-6.39, -1.61]	20 22 22 20 20 20 20 20 20 20 20 20 20 2
Outcome: Study or sub-category ASTAM Bartunek et al BOOST ASTAM Bartunek et al BOOST ASTAM MAGIC-3 Meluzin et al MAGIC-3 Meluzin et al MAGIC-3 Text for heterogo Text for overall Comparison: Outcome: Study or sub-category Of Change In fu ASTAMI Bartunek et al Strauer et al TCT-STAM Subtoti (05% C Text for overall i	Change in end-diastolic volt EDV char - 9- 2000 1.6500 2.5000 - 1.000 - 1.000 al - 6.4000 al Cell therapy vs control in ac Change in functional defect defect ch nctional defect - 3.2000 - 4.9000 - 1.000 - 1.000 defect ch - 3.2000 - 4.9000 - 1.0000 - 5.0000 - 5.0	ume from baseline nge (mt) (SE) (3.1000) (1.7300) (1.7300) (2.2900) (2	95.2% 95.2% 100 -50 avors cell therapy arction ent from baseline defect ch	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		95% Cl -9.20 (-15.28, -3.12) 1.65 (-25.59, 28.89) 2.50 (-0.89, 5.89) 0.10 (-2.59, 27.9) -6.70 (-11.19, -2.21) 13.50 (-14.35, -12.05) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12) defect change % (random) 95% Cl -3.20 (-5.57, -0.83) -4.90 (-8.29, -9.71) -3.00 (-16.29, -9.71) -3.00 (-16.29, -9.71) -5.00 (-9.29, -1.61) -5.00 (-9.23, -1.33) -2.70 (-5.58, 0.18)	Yes 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 203 203 204 204 205 204
Outcome: Study or sub-category ASTAMI Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et : Total (95% cf) Test for heterog Test for heterog Comparison: Outcome: Study or sub-category of change in fu ASTAMI Bartunek et al Meluzin et al Strauer et al TCT-STAMI Subtotal (95% cf) Subtotal (95% cf) Study or sub-category of change in fu ASTAMI Bartunek et al Meluzin et al Strauer et al Subtotal (95% cf) Test for heterog Test for overall et al Subtotal (95% cf) Test for heterog	Change in end-diastolic volt EDV char -9.2000 1.6500 2.5000 0.1000 -6.7000 -1.3.5000 -1.0000 -1.3.5000 eneity: Chi² = 146.01, df = 7 (iffect: Z = 1.58 (P = 0.11) Cell therapy vs control in ac Change in functional defect -3.2000 -4.9000 -1.0000 -3.2000 -3.2000 -1.0000 -1.0000 -1.0000 -1.0000 -2.0000 -3.2000 -2.7000	ume from baseline nge (ml) (SE) (3.1000) (1.7300) (1.27300) (1.27300) (2.23000) (2.5300) (2.5400)	95.2% 95.2% 100 -50 avors cell therapy arction ent from baseline defect ch	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 rol	95% Cl -9.20 (-15.28, -3.12] 1.65 (-35.59, 28.89] 2.50 (-0.89, 5.89] -0.10 (-2.59, 2.79] -4.70 (-11.19, -2.21] 13.50 (-14.25, 2.25] -6.40 (-11.36, -1.44] -4.62 (-10.36, 1.12] defect change % (random) 95% Cl -3.20 (-5.57, -0.83] -4.90 (-8.22, -0.98] -1.00 (-8.29, -9.71] -5.00 (-8.29, -1.61] -5.28 (-9.23, -1.63] -2.70 (-5.58, 0.18] -2.70 (-5.58, 0.18]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Outcome: Study or sub-category ASTAM Bartunek et al BOOST Jannsens et al MAGIC-3 Metuzin et al REPAIR-AMI Zhan-Quan et Total (95% CI) Test for heterogo Test for overall et Comparison: Outcome: Study or sub-category Of Change in fu ASTAMI Bartunek et al Strauter et al TCT-STAM Metuzin et al Stat for heteroge Test for heteroge Subtoal (05% C	Change in end-diastolic volt EDV char - 9- 2000 1.6500 2.5000 -1.000 -1.35000 -1.000 al -6.1000 al -6.4000 eneity: Chi ² = 146.01, df = 7 (freet Z = 1.58 (P = 0.11) Cell therapy vs control in acc Change in functional defect defect ch nctional defect -3.2000 -1.000	ume from baseline nge (ml) (SE) (3.1000) (1.7300) (1.27300) (1.27300) (2.25000) (2.5300) (2.5300) (2.6600) (2.5300) (2.6600) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (3.500) (3.5400)	et to follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline defect ch	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		95% Cl -9.20 (-15.28, -3.12) 1.65 (-25.59, 28.89) 0.10 (-2.59, 28.99) 6.70 (-11.19, -2.21) 13.50 (-14.35, -12.05) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12) defect change % (random) 95% Cl -3.20 (-5.57, -0.83) -4.90 (-8.29, -9.71) -3.00 (-16.29, -9.71) -3.00 (-16.29, -9.71) -5.00 (-9.29, -1.61) -5.00 (-9.29, -1.32) -2.70 (-5.58, 0.18)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Bartunek et al BOOST Jannsens et al MAGIC-3 Meluzin et al REPAIRAMI Total (85% CI) Test for heteroge Test for heteroge Test for heteroge Comparison: Outcome: Study or sub-category Of Change in to Statumet et al Strauer et al Tort-STAMI Bartunek et al Statumek e	Change in end-diastolic volt EDV char - 9-2000 1.6500 2.5000 - 0.1000 - 1.0000 al - 6.4000 an - 6.4000 - 1.0000 - 1.0000 an - 6.4000 - 1.0000 - 1.0000 an - 6.4000 - 1.0000 - 1.0000 an - 6.4000 - 1.0000 - 1.00	ume from baseline nge (ml) (SE) (3.1000) (1.7300) (1.27300) (1.27300) (2.25000) (2.5300) (2.5300) (2.6600) (2.5300) (2.6600) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (2.5300) (3.500) (3.5400)	et to follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline defect ch	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		95% Cl -9.20 (-15.28, -3.12) 1.65 (-25.59, 28.69) 2.50 (-0.89, 5.89) 0.10 (-2.59, 2.79) -6.70 (-11.19, -2.21] 13.50 (-14.35, -12.05] -1.00 (-4.35, 2.25) -6.40 (-11.36, -1.44] -4.62 (-10.36, 1.12] defect change % (random) 95% Cl -3.20 (-5.57, -0.83] -3.20 (-5.57, -0.83] -1.00 (-2.10, 0.10] 11.00 (-16.29, -9.71] -5.00 (-8.39, -1.61] -5.26 (-9.23, -1.33] -2.70 (-5.58, 0.18] -2.70 (-5.58, 0.18] -2.70 (-5.58, 0.18] -2.70 (-5.58, 0.28] -2.71 (-12.58, 0.28]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Dutcome: Study or sub-category ASTAMI Bartunek et BooST Tansens et al MAGIC-3 Meluzin et al REPAIR-AMI Zhan-Quan et : Total (6% C) Test for overall et Dutcome: Study or sub-category of Change In fu ASTAMI Bartunek et Study of Change In fu ASTAMI Bartunek et Study of Change In fu ASTAMI Bartunek et Study of Change In fu ASTAMI Bartunek et Study (2 Change In fu ASTAMI BOOST Test for heterog Test for overall (20 Change In fu ASTAMI BOOST Test for heterog Test for overall (5% Change In fu AMAGIC-3 Subtal (16% C) Test for heterog Test for overall (5% Change In fu AMAGIC-3 Subtal (16% C)	Change in end-diastolic volt EDV char - 9- 2000 1.6500 2.5000 -1.000 -1.35000 -1.000 al -6.1000 al -6.4000 eneity: Chi ² = 146.01, df = 7 (freet Z = 1.58 (P = 0.11) Cell therapy vs control in acc Change in functional defect defect ch nctional defect -3.2000 -1.000	ume from baseline nge (ml) (SE) (3.1000) (1.7300) (1.27300) (1.27300) (2.23000) (2.23000) (2.6600) (2.5300) (2.6600) (2.5300) (2.6600) (2.5300) (2.5300) (2.5400) (2.5400) (1.2100) (2.0000) (1.2100) (2.5600) (1.2100) (2.5600) (1.2100) (2.5600) (1.2100) (2.5600) (1.2100) (2.5600) (1.2400) (2.5600) (1.5400) (2.5400)	eto follow-up EDV char 95.2% 100 -50 avors cell therapy arction ent from baseline defect ch 32.0%	nge (ml) (random) 95% Cl 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		95% Cl -9.20 (-15.28, -3.12) 1.65 (-25.59, 28.89) 0.10 (-2.59, 28.99) -6.70 (-11.19, -2.21) 13.50 (-14.35, -12.05) -1.00 (-4.25, 2.25) -6.40 (-11.36, -1.44) -4.62 (-10.36, 1.12) defect change % (random) 95% Cl -3.20 (-5.57, -0.83) -4.90 (-8.29, -0.98) -1.00 (-2.10, 0.10) 11.00 (-16.29, -9.71) -5.00 (-5.39, -1.61) -5.28 (-9.23, -1.33) -2.70 (-5.58, 0.18) -2.70 (-5.58, 0.18) -2.70 (-5.58, 0.18)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 2 Impact of Intracoronary Cell Therapy on Left Ventricular Remodeling

Forest plots show the significantly beneficial impact of cell therapy after myocardial infarction on (A) left ventricular ejection fraction (EF), (B) end-systolic volume (ESV), (C) end-diastolic volume (EDV), and (D) infarct size/functional defect at myocardial scintigraphy or late enhancement at magnetic resonance imaging. CI = confidence interval; $I^2 = inconsistency$; SE = standard error.

Cells were harvested either by bone marrow biopsy or by daily granulocyte colony-stimulating factor (G-CSF) injections for 3 to 5 days followed by apheresis and delivered via an over-the-wire balloon catheter. However, controversy exists as to whether G-CSF injections alone after AMI improve LV function (22). Therefore, the MAGIC Cell-3-DES (Myocardial Infarction With G-CSF and Intra-Coronary Stem Cell Infusion-3-Drug Eluting Stents) trial (12) and the study by Li et al. (13) are inherently different from other studies included in this analysis owing to the use of G-CSF. Additionally, Bartunek et al. (11) primarily delivered CD133⁺ cells. Cell isolation protocols before delivery have also been shown to have an impact on cell functional activity (23). Finally, Hofmann et al. (24) demonstrated the impact of cell line on cellular retention in the myocardium, with detection of only 1% to 3% of unselected BMCs after intracoronary transfer, whereas 14% to 39% of CD34-enriched labeled cells were detected. Our incomplete understanding of the complex extra- and intracellular signaling that governs cell homing and differentiation is currently a major limitation of this technique. On the other hand, despite previous concerns over a potential increase in in-stent restenosis after cell therapy (14,25), we found that TVR was not increased in cell therapy recipients.

Study limitations. Limitations of systematic reviews are well known. Drawbacks pertinent to the present study include lack of raw and uniform data from included studies, inclusion of papers using intracoronary PMCs and BMCs,

variation in imaging techniques and revascularization strategies, and large differences in time from AMI to cell therapy, as well as pooling nonrandomized and randomized trials. However, maintenance of significance when selecting only randomized trials lends support to the robustness of our overall analysis.

Acknowledgments

This work is part of a training project of the Center for Overview, Meta-analysis, and Evidence-Based Medicine Training (COMET), based in Charlottesville, Virginia. The authors gratefully acknowledge the help of the authors of the original studies.

Reprint requests and correspondence: Dr. Giuseppe Biondi-Zoccai, Interventional Cardiology, Division of Cardiology, University of Turin, S. Giovanni Battista "Molinette" Hospital, Corso Bramante 88-90, 10126 Turin, Italy. E-mail: gbiondizoccai@ gmail.com.

REFERENCES

- Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–5.
- Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199–209.
- Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 2004;44:1690–9.
- Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrowderived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210–21.
- Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 2006;27:2775–83.
- Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92–5.
- Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration) trial. Circulation 2006; 113:1287–94.
- 8. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrowderived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006;367:113–21.
- Strauer BE, Brehm M, Zeus T, et al. Intrakoronare, umane autologe Stammzelltransplantation zur Myokardregeneration nach Herzinfarkt (in German). Dtsch Med Wschr 2001;126:932–8.
- Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–8.
- Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005;112:1178–83.
- 12. Kang HJ, Lee HY, Na SH, et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC CELL-3-DES randomized, controlled trial. Circulation 2006;114:1145–51.

- Li ZA, Zhang M, Jing YZ, et al. The clinical study of autologous peripheral blood stem cell transplantation by intracoronory infusion in patients with acute myocardial infarction (AMI). Int J Cardiol 2007; 115:52–6.
- Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002;106:3009–17.
- Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 2006;92:1764–7.
- Meluzin J, Mayer J, Groch L, et al. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 2006;152:975e9–15.
- Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428:668–73.
- Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664-8.
- Yeh ET, Zhang S, Wu HD, Korbling M, Willerson JT, Estrov Z. Transdifferentiation of human peripheral blood CD34⁺-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003;108:2070–3.

- Boyle AJ, Whitbourn R, Schlicht S, et al. Intra-coronary high-dose CD34⁺ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol 2006;109:21–7.
- Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430-6.
- Nienaber CA, Petzsch M, Kleine HD, Eckard H, Freund M, Ince H. Effects of granulocyte-colony-stimulating factor on mobilization of bone-marrow-derived stem cells after myocardial infarction in humans. Nat Clin Pract Cardiovasc Med 2006;3 Suppl 1:S73–7.
- 23. Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007;28:766–72.
- Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198–202.
- 25. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC CELL randomised clinical trial. Lancet 2004;363:751–6.