Application of Raney Ni and Pt/SiO2-ZrO2 catalysts for two-step hydrogenation of difurfurylidene acetone to long-chain alkanes
Yuping Li a, Xiaoming Huang a,b, Tiejun Wang a,*, Longlong Ma a, Qing Zhang a
aCAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
bSchuit Institute of Catalysis, Inorganic Materials Chemistry, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands

Abstract
Difurfurylidene acetone (F2A) was catalytic converted to long-chain hydrocarbons by a two-step hydrogenation process, low-temperature hydrogenation over Raney Ni catalyst in a batch reactor, followed by hydrodeoxygenation (HDO) over 1wt.%Pt/SiO2-ZrO2 in a fixed-bed reactor. The results indicated that using methanol as solvent promoted hydrogenation of double bonds of F2A over Raney Ni due to its protonation effect. Selectivity of 1,5-di(tetrahydro-2-furanyl)-3-pentanol (II-c), the saturated alcohol form of the hydrogenated dimer, was 72.1% in the hydrogenated intermediate liquid (H-F2A). High carbon alkane yield of liquid alkanes (C8-C14) was 82.9% (mol) after the second-step HDO reaction over 1wt.%Pt/SiO2-ZrO2. Long operation showed the stability of 1wt.%Pt/SiO2-ZrO2 as HDO catalyst, deduced from the steady phase structures of the SiO2-ZrO2 support and Pt active centers during HDO reaction.

Keywords: Raney Ni; 1wt.%Pt/SiO2-ZrO2; difurfurylidene acetone; long-chain hydrocarbons; two-step hydrogenation/HDO process

Introduction
Recently intensive focus has been on the aqueous-phase processing for conversion of lignocellulosic biomass to liquid jet fuels, which developed a renewable route for bio-fuel production [1]. However, the aldol-condensation products from furan and acetone such as furfurylidene acetone (FA) and difurfurylidene acetone (F2A) are water-insoluble and unstable, which caused hydrogenation difficulty [2]. Two-step process of low-temperature hydrogenation (110-125°C) and the following high-temperature hydrodeoxygenation (HDO) for aldol-product conversion is usually utilized. Until now hydrogenation and HDO reactions are mostly carried out in tetrahydrofuran solvent (THF) over noble metal-based catalysts, especially for HDO where Pt/SiO2-Al2O3 was commonly used [3]. In this context Raney Ni and Pt/SiO2-ZrO2 were used as catalysts for two-step process of hydrogenation /HDO of F2A respectively.

Experimental section

* Corresponding author. Tel.: +8620-87057790; fax: +8620-87057731.
E-mail address: wangtj@ms.giec.ac.cn; mall@ms.giec.ac.cn.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Raney Ni used was homemade and preserved in ethanol before use (Ni:Al=84.4:15.6,
$S_{\text{BET}}=27.3\text{m}^2\cdot\text{g}^{-1}$, $\nu_{p}=0.03\text{cm}^3\cdot\text{g}^{-1}$, $d_p=4.5\text{nm}$). Pt/SiO$_2$-Al$_2$O$_3$ was prepared by incipient wetness impregnation of H$_2$PtCl$_6$·6H$_2$O on SiO$_2$-Al$_2$O$_3$ support with Si/Zr molar ratio of 3.0$^{[4]}$. Powder X-ray diffraction (XRD), NH$_3$-temperature programmed desorption (TPD) and thermal analysis(TG/DSC) were used for catalyst characterization. Low-temperature hydrogenation reaction was carried out in a batch reactor to produce hydrogenated intermediates(H-F$_2$A) under 2.5MPa. In each run, 8.0g of F$_2$A, 32ml solvent and 2.0g of catalyst were added to prepare 20wt.% F$_2$A solution. High-temperature HDO reaction was performed in a fixed-bed reactor. 4ml of 1wt.%Pt/SiO$_2$-Al$_2$O$_3$ was used and the typical operation conditions were $P=5.0\text{MPa}$, preheater temperature=150°C, flow rate of H-F$_2$A methanol solution=0.05ml/min with LHSV of 0.75h$^{-1}$.

Results and discussion

3.1 Low-temperature hydrogenation of F$_2$A

![Fig.1 Effect of solvent on low-temperature hydrogenation of F$_2$A over Raney Ni:](image)

(A)F$_2$A conversion as a function of time; (B) Selectivity of different H-F$_2$A intermediates at 2h TOS

Nine hydrogenated intermediates from F$_2$A hydrogenation in were detected by GC, shown in Fig.1, which could be sorted into three types of H-F$_2$A (type I: ketone H-dimers; type II: alcohol H-dimers; type III: spiro-H dimers) according to the hydrogenation degree of double bonds in F$_2$A. F$_2$A conversion in methanol(protic polar solvent), tetrahydrofuran(THF, aprotic polar solvent) and cyclo-hexane(nonpolar solvent) was 99.5%, 80.5% and 59.7% respectively, after 25min time on stream(TOS). The selectivity of deep hydrogenated intermediates of 1,5-bis(tetrahydrofuran-2-yl) pentan-3-ol(II-c) and 2-(2-(tetrahydrofuran-2-yl)ethyl)-1,6-dioxaspiro [4.4]nonane(III-b) was low, which was 19.0% and 10.0% in THF and cyclo-hexane respectively. Selectivity of II-c and III-b was as high as 80.8% at 2h TOS when methanol was used as F$_2$A solvent. The high selectivity of alcohol H-dimers and spiro-H dimers in methanol solvent may result from the protonation effect of methanol, which accelerated the activation of double bonds of alkene C=C, furan C=C and carbonyl C=O in F$_2$A molecule$^{[5]}$. And the H$_{ads}$, dissociated adsorbed on Raney Ni, was easy to saturate these functional groups.

Table 1 The composition of H-F$_2$A under 5.0MPa and 50°C

<table>
<thead>
<tr>
<th>Components*</th>
<th>I-a</th>
<th>I-b</th>
<th>I-c</th>
<th>I-d</th>
<th>I-e</th>
<th>II-a</th>
<th>II-b</th>
<th>II-c</th>
<th>III-a</th>
<th>III-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content (%)</td>
<td>0.18</td>
<td>0.05</td>
<td>0.42</td>
<td>0.63</td>
<td>13.8</td>
<td>0.13</td>
<td>0.05</td>
<td>82.8</td>
<td>0.66</td>
<td>0.55</td>
</tr>
</tbody>
</table>

* The symbol represents the same component as in Fig.1.

Table 1 shows the components and contents in the hydrogenated intermediate liquid of H-F$_2$A after 2h TOS under H$_2$ pressure of 5.0MPa. Increasing H$_2$ pressure decreased selectivity of spiro-H dimers and increased II-c selectivity, which was 82.8%. It may be deduced that the C=C bonds in olefins and in furan ring were easier to be hydrogenated than C=O bonds in the furan rings. That promoted
selectivity of the primary hydrogenation product like ketone H-dimer of 1,5-di(tetrahydro-2-furanyl)-3-pentanone (I-e), which was further hydrogenated to II-c.

3.2 High-temperature HDO of H-F2A

The increase of initial H-F2A concentration decreased carbon alkane yield of C8-C14, which was 65.6% and 51.9% for 28wt.% and 38wt.% H-F2A solutions in table 2 respectively. And carbon yield of C13 decreased from 70.0% to 42.4%, which is the dominant product of HDO reaction. While carbon yields of unsaturated O-containing compounds increased, especially for 1-tridecanol. It may be due to the insufficient HDO capability over 1wt%Pt/SiO2-ZrO2 when high H-F2A contained feedstock was used.

<table>
<thead>
<tr>
<th>Concentration (wt.%)</th>
<th>Carbon alkane yield (%mol)</th>
<th>Yield of C8-C14 alkanes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2-C7</td>
</tr>
<tr>
<td>18</td>
<td>10.1</td>
<td>0.8</td>
</tr>
<tr>
<td>28</td>
<td>4.3</td>
<td>0.4</td>
</tr>
<tr>
<td>38</td>
<td>1.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Carbon alkane yield (%mol)</th>
<th>Yield of C8-C14 alkanes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2-C7</td>
</tr>
<tr>
<td>260</td>
<td>4.5</td>
<td>0.5</td>
</tr>
<tr>
<td>280</td>
<td>10.1</td>
<td>0.8</td>
</tr>
<tr>
<td>300</td>
<td>13.3</td>
<td>0.6</td>
</tr>
<tr>
<td>320</td>
<td>13.7</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Carbon yield of C8-C14 alkanes over 1wt%Pt/SiO2-ZrO2 was 40.5%, mainly of C13(33.6%) when HDO temperature was 260°C using 18wt.% H-F2A solution as feedstock in a fixed-bed reactor. 1-Tridecene, 1-tridecanol and 1-dodecanol were detected with carbon yield of 1-tridecanol as high as 11.7%, which indicates HDO reaction could not perform completely over 1wt%Pt/SiO2-ZrO2 at 260°C. As temperature was increased to 280°C, HDO performance was improved with clear and transparent liquid product, which naturally separated from methanol solvent. The carbon yield of 1-tridecanol was decrease to 0.9%. The carbon yield of long-chain alkanes of C8-C14 was 82.9%, including 70.0% to C13. Further increasing temperature to 300°C and 320°C, carbon yield of C8-C14 was decreased to 71.0% and 64.0% respectively.

HDO performance at over 1wt%Pt/SiO2-ZrO2 was operated for 120h. Carbon alkane yield of C8-C14 kept at 58.2-72.8% after 120h TOS at LHSV of 0.6h⁻¹. The stable activity of 1wt%Pt/SiO2-ZrO2 might deduce from its textural properties:(a) The acidic and basic centers of SiO2-ZrO2 support favoured activation of O-contained intermediates and decreased carbon deposition on the catalyst surface, as reported in guaiacol HDO reaction;(b)SiO2 with large surface area dispersed Pt active centers and ZrO2 for HDO reaction. Catalyst characterizations were performed to verify the deduction, shown in Fig.2. The fresh 1wt.%Pt/SiO2-ZrO2 shows NH3 desorption peak at 150-450°C, indicating the existing of weak and moderately strong acidity. After 120h HDO reaction, NH3-TPD pattern of the used 1wt.%Pt/SiO2-ZrO2 exhibits the decreased desorption area at 200-400°C with
increased desorption area above 400°C. That indicated the formation of stronger acid centers during HDO reaction\cite{6}, which might have activated O-containing intermediates to accelerate HDO reaction. While the similar XRD patterns of the used 1wt.%Pt/SiO_2-ZrO_2 in Fig.4.B indicated that stability of catalyst structure and active Pt phase during long time HDO operation. The weight loss of the used 1wt.%Pt/SiO_2-ZrO_2 with and without methanol washing was 7wt% and 32wt% respectively at 150-650°C. It is obvious that methanol solvent could dissolve and carry away the coke precursor to decrease carbon deposition\cite{7}, which had contributed to the stable performance of HDO over 1wt.%Pt/SiO_2-ZrO_2 in methanol solvent in this context.

![Graph A](A) ![Graph B](B) ![Graph C](C)

Fig.4 Characterization patterns of 1wt.%Pt/SiO_2-ZrO_2. (A)NH_3-TPD; (B) XRD; (C)TG/DSC

4. Conclusion

Protonation effect of methanol solvent increased the low-temperature hydrogenation of F_2A and high-temperature HDO reactions of the hydrogenated H-F_2A compounds over Raney Ni and Pt/SiO_2-ZrO_2 catalysts respectively. And the stable HDO performance during 120h HDO reaction could be deduced from the stable structure properties and active centers over 1wt.%Pt/SiO_2-ZrO_2.

Acknowledgment

We acknowledge the financial supports of National Natural Research Foundation of China (No.51006110&No. 51276183&No. 51036006) and National Natural Research Foundation of China/Japan Science and Technology Agency (NSFC/JST, No. 51161140331) and National Key Basic Research Program 973 Project founded by MOST of China (No. 2013CB228105)

References

Biography

Yuping Li, Ph. D, Associate Professor of GIEC, CAS. Research interest: Biomass-based chemical production and liquid fuel synthesis technologies; Pyrolysis, gasification and combustion technologies for converting biomass to fuels and power ;Bio-oil upgrading and cellulosic ethanol technologies.