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Different dietary fatty acids have dissimilar effects on activity and
gene expression of mitochondrial tricarboxylate carrier in rat liver
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Abstract The tricarboxylate carrier (TCC), an integral protein
of the mitochondrial inner membrane, transports mitochondrial
acetyl-CoA into the cytosol, where lipogenesis occurs. We inves-
tigated in rat liver mitochondria the effect of diets enriched with
saturated fatty acids (beef tallow, BT), monounsaturated fatty
acids (olive oil, OO) or n � 3 polyunsaturated fatty acids (fish
oil, FO), respectively, on the activity and expression of TCC.
TCC activity decreased, in parallel with TCC mRNA abun-
dance, only upon FO-feeding. The TCC transcription rate,
mRNA turnover and RNA processing indicated that FO admin-
istration regulates TCC gene at transcriptional and post-tran-
scriptional steps, whereas BT- and OO-feeding do not seem to
affect either TCC activity or gene expression.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Besides its role as an energy source and its effect on mem-

brane lipid composition, dietary fat has remarkable influence

on gene expression [1], leading to changes in metabolism,

growth and cell differentiation [2,3]. The activities of lipogenic

enzymes, acetyl-CoA carboxylase (ACC) and fatty acid syn-

thase (FAS), are lower in rats fed a PUFA- than in rats fed

a saturated- or monounsaturated-supplemented diet [4,5]. Dif-

ferent molecular mechanisms have been proposed regarding

the regulation by dietary PUFA of lipogenic enzymes (for re-

view, see [5]). Most of these enzymes are regulated either at

transcriptional or at post-transcriptional steps. FAS [3,6],

ACC [3,4] and stearoyl-CoA desaturase [7] are dietary regu-

lated at transcriptional level, whereas PUFA regulation of

malic enzyme occurs by changes in mRNA stability [3] and

glucose-6-phosphate dehydrogenase is controlled by a post-

transcriptional mechanism [8].
Abbreviations: ACC, acetyl-CoA carboxylase; BT, beef tallow; FAS,
fatty acid synthase; FO, fish oil; OO, olive oil; TCC, tricarboxylate
carrier
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In this study, we investigated the effects of different die-

tary fats on the expression of the hepatic tricarboxylate car-

rier (TCC), an integral protein of the mitochondrial inner

membrane. This carrier protein plays a key role in lipogen-

esis [9]. It transports, in the form of citrate, acetyl-CoA,

mainly derived from sugar sources, from mitochondria to

cytosol, providing the carbon units for fatty acid and choles-

terol biosyntheses. In addition, TCC supplies NAD+ and

NADPH that support cytosolic glycolysis and lipid biosyn-

thesis, respectively [10]. TCC has been extensively character-

ized in liver mitochondria from mammals and fish (for

review, see [11]). A parallel decrease of TCC activity and

lipogenesis in the liver of starved [12] and n � 6 PUFA-fed

rats was reported [13]. The aim of this study was to investi-

gate whether diets with different fatty acid compositions, i.e.,

rich in either long chain saturated fatty acids (BT) or mono-

unsaturated fatty acids (OO) or n � 3 PUFA (FO) could

influence the hepatic TCC expression and, if so, to charac-

terize the molecular mechanism responsible for TCC gene

regulation.

This study showed that while BT and OO administration to

rats is practically without effect, FO-supplementation signifi-

cantly reduced hepatic TCC expression; the TCC gene regula-

tion occurred by both transcriptional and post-transcriptional

mechanisms.
2. Materials and methods

2.1. Animal treatments
Male Wistar rats (150–200 g) were randomly assigned to one of the

three different groups. The three groups received for 3 weeks a labo-
ratory chow diet enriched with 15% (w/w) diet of OO, BT or FO,
respectively. Fatty acid composition of the dietary lipids is reported
in Table 1. The experimental design was in accordance with local
and national guidelines covering animal experiments.

2.2. Citrate transport in rat liver mitochondria
TCC activity was assayed in freshly isolated rat liver mitochondria

as in [14]. The malate–citrate exchange reaction was started by the
addition of 0.5 mM [14C]citrate to malate-loaded mitochondria (1–
1.5 mg protein) and terminated by adding 12.5 mM of the inhibitor
1,2,3-benzenetricarboxylic acid (BTA) [14].

2.3. Immunoelectrophoretic analysis
Western blots were carried out as reported in [15]. Nitrocellulose

membranes were submitted to the reaction with antibody directed
against a C-terminal peptide of the rat liver TCC [15] and antibody di-
rected against bovine porin.
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Fig. 1. Time course of citrate uptake in rat liver mitochondria.
Malate-loaded mitochondria from BT (�), OO (�) or FO (m) treated-
rats were incubated with 0.5 mM [14C]citrate for the indicated times.
The data are means ± S.E. of six different experiments. Values sharing
a different letter were significantly different (P < 0.001).

Table 1
Fatty acid composition (mol%) of experimental diets

Fatty acid BT OO FO

C14:0 4.89 ± 0.35a 0.16 ± 0.01b 6.51 ± 0.46c

C16:0 29.33 ± 1.93a 14.10 ± 1.01b 17.62 ± 1.23c

C16:1 (n � 7) 2.69 ± 1.91a 1.62 ± 0.11b 9.12 ± 0.65c

C18:0 24.21 ± 1.87a 1.93 ± 0.11b 3.01 ± 0.23c

C18:1 (n � 9) 33.77 ± 2.87a 72.80 ± 6.88b 17.84 ± 1.10c

C18:2 (n � 6) 1.91 ± 0.13a 4.39 ± 0.34b 13.99 ± 1.12c

C18:3 (n � 3) 0.30 ± 0.04a 0.41 ± 0.04b 0.69 ± 0.07c

C20:5 (n � 3) ND ND 13.55 ± 1.12
C22:5 (n � 3) ND ND 2.31 ± 0.12
C22:6 (n � 3) 0.36 ± 0.02a ND 11.76 ± 0.97bP

saturated 58.43 ± 4.89a 16.19 ± 1.13b 27.14 ± 1.98cP
monounsaturated 36.46 ± 2.88a 74.42 ± 6.55b 26.96 ± 3.11cP
polyunsaturated 2.57 ± 0.15a 4.80 ± 0.23b 42.30 ± 4.11c

Basal diet was supplemented with 15% of BT, OO or FO, respectively.
Fatty acids were extracted from the different diets and analyzed by
gas–liquid chromatography. Results are expressed as means ± S.E. of
six determinations. Values on the same line with a different superscript
differ significantly (P < 0.05).P

saturated = sum of saturated fatty acids.P
monounsaturated = sum of monounsaturated fatty acids.P
polyunsaturated = sum of polyunsaturated fatty acids.
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2.4. Isolation of RNA and Northern blot analysis
About 15 lg of total RNA, extracted from liver of treated rats

according to Chomczynski and Sacchi [16], was electrophoretically
separated onto 1% formaldehyde-agarose gel under denaturing con-
ditions and transferred to Hybond N+ nylon membrane. The RNA
blots were hybridized with rat liver TCC cDNA probe as reported
by Siculella et al. [12]. For normalization of the hybridization sig-
nals, the same membranes were hybridized using a probe encoding
part of the human b-actin. After autoradiography, the intensity of
the bands was evaluated by densitometry with Molecular Analyst
Software.

2.5. Isolation of nuclei and nuclear run-on assay
Nuclei were isolated from hepatocytes obtained by liver perfusion

and collagenase digestion as reported by Gnoni et al. [17], washed
twice with cold PBS (phosphate-buffered saline) and then lysed as
in [12]. The crude nuclei were purified as described by Siculella
et al. [12] and nuclear run-on assay was carried out as described
by Liu et al. [18]. Labelled RNA was extracted as indicated above
and hybridized to Hybond N+ nylon membranes as reported by Sic-
ulella et al. [12]. Hybridization signals were quantified as described
above.

2.6. mRNA turnover assay
Hepatocytes from BT- and FO-fed rats were maintained on plastic

Petri dishes (60 mm) until monolayer formation [17]. After 2 h plating,
4 lg/ml actinomycin D in Ham�s F12 medium was added. For each
time point, total RNA was extracted from 10 plates (approx. 4 · 106

cells) for each group and 10 lg was analyzed by Northern blot hybrid-
ization as indicated above, using TCC cDNA as a probe. The same fil-
ter was stripped and rehybridized with b-actin cDNA. The
autoradiogram was quantified by densitometric scanning.

2.7. Isolation of nuclear RNA
RNA isolation from purified nuclei was carried out as described by

Chomczynski and Sacchi [16].

2.8. Probe design for ribonuclease protection assay
Two probes, intron2–exon3 (I2–E3) and exon7–intron7 (E7–I7), de-

signed for use in the ribonuclease protection assay, were obtained by
PCR amplification of a genomic clone p5B8 containing the TCC gene
(data not shown), using specific primers as previously reported [19].
The amplified products were subcloned into pBlueskript II vector.
After linearization, the recombinant plasmids were used in the in vitro
transcription reactions.
2.9. Ribonuclease protection assay
Antisense RNAs were synthesized by an in vitro transcription reac-

tion as reported in [19]. Nuclear RNA (10 lg) was hybridized with
2 · 105 cpm of 32P-labelled specific antisense probe in 20 ll of hybrid-
ization solution at 50 �C for 16 h. For the normalization, a b-actin
antisense 32P-labelled RNA probe was added in each hybridization
reaction. Probes were also hybridized with 10 lg of yeast RNA used
as a control for testing the RNase activity (data not shown). After
digestion with RNase A/T1, the protected fragments were separated
onto a 6% denaturing polyacrylamide gel. Gels were dried, exposed
for autoradiography and the intensity of the bands was evaluated by
densitometry with Molecular Analyst Software.

2.10. Statistical analysis
All data are presented as means ± S.E. for the number of experi-

ments indicated in each case. Statistical analysis was performed by Stu-
dent�s t test. Differences were considered statistically significant at
P < 0.05.
3. Results and discussion

3.1. Time course of citrate/malate exchange

Fig. 1 shows the time-course of [14C]citrate uptake by ma-

late-loaded mitochondria from liver of differently treated rats.

In the first 15 s, we already observed in FO-treated rats a de-

crease of the transport activity of about 60% versus both BT-

and OO-treatment.

3.2. Effect of BT, OO and FO on the TCC mRNA and on the

protein levels in rat hepatocytes

Northern blot analysis showed no significant difference in

the TCC mRNA level among BT-, OO- and chow-fed rats

(control) (Fig. 2A), while when compared to the other groups,

FO administration caused a reduction of about 40% of the he-

patic TCC mRNA level. Expression of the house-keeping gene

for b-actin was unmodified among the four groups of rats.

Analogously, the immunodecoration reported in Fig. 2B re-

vealed that the level of TCC in mitochondria from FO-fed rats

was lowered by about 50% with respect to the other groups of

rats. By contrast the amount of porin, the mitochondrial outer

membrane channel used as a control since its expression is not

affected by dietary PUFA [13], was unchanged. These data

indicate that inhibition of TCC activity and expression is due

specifically to the FO treatment since: (i) the different sources

of fat is the sole variable in the diet; (ii) the administration



Fig. 2. Effect of different diets on the TCC mRNA and protein levels in rat liver. (A) About 15 lg of RNA from two pools (two animals each) for C
(control, chow-fed rats), BT-, OO- or FO-fed rats was analyzed by Northern blot analysis and probed with TCC cDNA or b-actin cDNA fragment.
The bars represent an optical scan of the autoradiogram. Data are means ± S.E. of five independent experiments (aP < 0.05). (B) Liver mitochondria
from C, BT-, OO- or FO-fed rats were immunodecorated with antisera against either a C-terminal peptide of the rat liver TCC or bovine porin by
Western blot analysis. The content of mitochondrial TCC and porin was quantified by photodensitometric analysis of blots. Data are means ± S.E.
of five independent experiments (bP < 0.001).
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of BT, rich in long chain saturated fatty acids, or OO, high in

oleate (C18:1 n � 9) failed to inhibit TCC activity. It is worth

underlining that rats feeding on coconut oil, rich in short and

medium chain saturated fatty acids, showed practically no ef-

fect on the TCC activity [15], which on the other hand, was sig-

nificantly reduced by n � 6 PUFA-supplemented diet [13].

However, the latter reduction is lower than what we observed

in the present study with FO, rich in n � 3 PUFA. Interest-

ingly, the fact that the mRNA abundance of b-actin used as

a control was unmodified by the dietary treatment (Fig. 2A)

clearly establishes that FO administration does not have a gen-

eral effect on all mRNA species.

The Northern and Western experiments showed similar val-

ues for BT- and OO- fed rats, which in turn were similar to

laboratory chow-fed rats. Therefore, only BT-and FO-

supplemented diet effects were compared in all the subsequent

experiments.
Fig. 3. Turnover of TCC mRNA in cultured hepatocytes from BT-
and FO-fed rats. The semi-log plot in the upper and lower panel
represents the decay curve of TCC mRNA and b-actin mRNA,
respectively. BT-fed rats (m) and FO-fed rats (�). Each point
represents the average of two measurements. The data are from a
representative experiment. Similar results were obtained in five
independent experiments.
3.3. Turnover of TCC mRNA

To address the question whether changes of the TCC

mRNA turnover occurred upon FO treatment, the decay curve

of TCC mRNA (upper panel, Fig. 3) was analyzed. The esti-

mated apparent half-life of TCC mRNA from BT- and FO-

fed rat hepatocytes was similar (11.1 ± 0.9 h in BT- vs

10.9 ± 0.8 h in FO-fed rats). In the same RNA preparation,

the relative rate of degradation of the b-actin mRNA remained

constant (lower panel, Fig. 3). Therefore, in the absence of a



Fig. 4. Effect of BT- and FO-enriched diet on TCC transcriptional
activity. Nuclei, isolated from hepatocytes from BT- and FO-fed rats,
were allowed to incorporate [a-32P]UTP; TCC transcripts were
detected by hybridization to dots (5 lg) of the indicated cDNAs
applied to the filters. The data are from a representative experiment.
Similar results were obtained in four independent experiments.

Fig. 6. Effect of BT- and FO-enriched diet on the processing of TCC
precursor RNA. (A) A representative assay is shown. Nuclear RNA
(10 lg) was analyzed by two TCC specific probes using RNase
protection assay. U, undigested control (hybridization of yeast RNA
(10 lg) with the probes without subsequent RNase digestion); BT and
FO, hybridization of probes to 10 lg nuclear RNA isolated from liver
of, respectively, BT- and FO-fed rats, followed by RNase digestion. (B)
Quantitative results of four independent experiments with two rats per
treatment per experiment (mean ± S.E.). The hybridization signal was
quantified using Molecular Analyst Software. The values were
normalized for uridine content of the protected fragment.
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consistent difference in the TCC mRNA half-life, a decrease in

TCC mRNA accumulation in FO-fed rats could reflect a tran-

scriptional modulation of TCC gene.

3.4. Run-on assay

To investigate whether FO feeding controlled TCC expres-

sion at transcriptional level, nuclear run-on assay was carried

out. Nuclei isolated from BT- and FO-fed rat hepatocyte sus-

pensions were allowed to incorporate [a32P]UTP. The labelled

RNA was extracted and hybridized to dots (5 lg) of TCC

cDNA, b-actin cDNA, FAS cDNA and pUC19 applied to

the filters. b-actin and pUC19 were used for normalization

and as a negative control, respectively. FAS cDNA was used

as a positive control, since it has been reported that n � 3

PUFA-supplemented diet modulates this gene at transcrip-

tional level [6]. The labelled RNA was transcribed by RNA

polymerase II as TCC and b-actin transcripts were specifically

suppressed by a-amanitin (4 lg/ml) (data not shown). The dot

blot hybridization revealed a remarkable decrease of around

70% in the transcriptional rate of TCC mRNA from FO- vs

BT-fed rats (Fig. 4). In good agreement with [6], FAS tran-

scriptional rate decreased by approximately 80% in FO- vs

BT-fed rats. The transcriptional rate of b-actin remained con-

stant in the two groups of rats, thus suggesting that FO action

was gene-specific.

3.5. Processing of TCC precursor RNA

To study the effects of BT- and FO-supplemented diets on

the splicing of TCC RNA, we compared the amount of unsp-

liced and spliced TCC RNA in the nuclei of hepatocytes from

FO- vs BT-fed rats. Two probes (I2–E3 and E7–I7) separated

by about 1.1 kb were used to investigate the processing of the

pre-mRNA (Fig. 5). Each probe hybridized across an exon/in-

tron junction and thus resulted in two types of protected frag-

ments: the unspliced RNA containing both the exon and the

intron sequences (intron2–exon 3; exon7–intron7); the spliced

RNA containing only the exon sequences (exon3; exon7).
Fig. 5. Probes and predicted fragments for the ribonuclease protection assay
precursor RNA. The lower lines represent TCC specific RNA fragments detec
first probe (intron2–exon3) protects a 201 nt fragment of pre-mRNA conta
undergone splicing of intron2. The second probe (exon7–intron7) protects a 1
without intron.
The terms unspliced and spliced RNA refer to a RNA mix,

containing one or more of all the TCC introns. By using the

I2–E3 probe, we found the amount of spliced RNA 2.1-fold

greater than that of unspliced RNA in the nuclei from BT-

fed rats. To note that, in the nuclei from FO-fed rats, the

amount of spliced RNA was only 1.1-fold greater than that

of unspliced RNA. Therefore, FO-added diet caused a de-

crease in the ratio spliced to unspliced RNA (Fig. 6). Further-

more, the reduction in the amount of spliced RNA in the

nuclei of FO- versus BT-fed rats was similar to the decrease

(around 45%) in the accumulation of the mature TCC RNA,

measured in the cytoplasm (Fig. 2). In contrast, by using the

second probe (E7–17), we observed not only the same amount

of unspliced RNA but also a similar ratio of spliced/unspliced

RNA both in FO- and BT-fed rats (Fig. 6). Experiments are in

progress in our laboratory to further elucidate this pathway by

using different probes, representing other exon–intron junc-

tions.

The data, consistent with regulation of pre-mRNA process-

ing in rats fed a FO diet, indicate that the splicing reaction

itself is inhibited by FO treatment and suggest that: (i) the
. The lines and the boxes depict schematically the structure of the TCC
ted in the RNase protection assay by the two specific TCC probes. The
ining intron2 and in addition a 139 nt processed transcript that has
79 nt fragment containing intron7 and also a spliced transcript of 74 nt



284 L. Siculella et al. / FEBS Letters 578 (2004) 280–284
FO-supplemented diet does not exert its inhibitory effect on the

splicing of all the introns from the TCC precursor RNA; (ii) a

putative cis acting element, involved in TCC RNA splicing reg-

ulation, maps to exon 3; (iii) nuclear-cytoplasmic transport of

TCC mRNA seems not to be regulated, and (iv) TCC regula-

tion by FO occurs in the nucleus.

Taken together, the present report indicates that FO-supple-

mented diet downregulates the expression of TCC gene by

both transcriptional and post-transcriptional mechanisms. It

is worth underlining that also for the gene expression of the

cytosolic lipogenic enzyme ATP-citrate lyase, which works in

sequence to TCC, transcriptional and post-transcriptional reg-

ulation by nutrients is suggested [20]. On the other hand, gene

regulation of ACC [3,4] and FAS [3,6] by dietary PUFA

mainly occurs at transcriptional level. A possible speculation

to explain these differences is that while ACC and FAS func-

tion exclusively in fatty acid synthesis, TCC and ATP-citrate

lyase participate in metabolic processes other than lipogenesis

such as cholesterol synthesis, and the gluconeogenic pathway.
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