
Theoretical Computer Science 345 (2005) 386–405
www.elsevier.com/locate/tcs

Resource bounded symmetry of information
revisited�

Troy Leea,∗, Andrei Romashchenkob,1
aCWI and University of Amsterdam, Kruislaan 413, Amsterdam 1098SJ, The Netherlands

bInstitute for Information Transmission Problems, Bolshoy Karetny 19, Moscow 101447, Russia

Communicated by G. Ausiello

Abstract

The information contained in a stringx about a stringy is the difference between the Kolmogorov
complexityofyand theconditionalKolmogorovcomplexityofygivenx, i.e.,I (x : y)=C(y)−C(y|x).
The Kolmogorov–Levin Theorem says thatI (x : y) is symmetric up to a small additive term. We
investigate if this property also holds for several versions of polynomial time-bounded Kolmogorov
complexity.
Westudy symmetry of information for somevariants of distinguishing complexityCDwhereCD(x)

is the length of a shortest program which acceptsx and onlyx. We show relativized worlds where
symmetry of information does not hold in a strongway for deterministic and nondeterministic polyno-
mial time distinguishing complexities CDpoly and CNDpoly. On the other hand, for nondeterministic
polynomial time distinguishing complexity with randomness, CAMDpoly, we show that symmetry of
information holds for most pairs of strings in any set in NP. Our techniques extend work of Buhrman
et al. (Language compression and pseudorandom generators, in: Proc. 19th IEEE Conf. on Computa-
tional Complexity, IEEE, New York, 2004, pp. 15–28) on language compression by AM algorithms,
and have the following application to the compression of samplable sources, introduced in Trevisan
et al. (Compression of sample sources, in: Proc. 19th IEEE Conf. on Computational Complexity,

� A preliminary version of this paper appeared at the 29th Symposium on the Mathematical Foundations of
Computer Science, MFCS 2004[14].

∗ Corresponding author.
E-mail addresses:Troy.Lee@cwi.nl(T. Lee),anromash@mccme.ru(A. Romashchenko).
1 Supported in part by Russian Science Support Foundation and RFBR Grants 03-01-00475, 358.2003.1.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.07.017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81978336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:Troy.Lee@cwi.nl
mailto:anromash@mccme.ru

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 387

IEEE, NewYork, 2004, pp. 1–15): any elementx in the support of a polynomial time samplable source
X can be given a description of size− log Pr[X= x] +O(log3 n), from whichx can be recovered by
an AM algorithm.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Kolmogorov complexity; Symmetry of information; Compression

1. Introduction

One of the most beautiful theorems in Kolmogorov Complexity is the principle of “Sym-
metry of Information”, independently proven by Kolmogorov and Levin[29]. Roughly
speaking, symmetry of information states that for any two stringsx andy, the information
contained inx abouty is equal to the information contained iny aboutx, up to logarithmic
factors. More formally, lettingC(x) be the length of a shortest program which printsx, and
C(y|x) be the length of a shortest program which printsywhen given inputx, symmetry of
information can be stated asC(y)−C(y|x) ≈ C(x)−C(x|y). Besides its inherent attrac-
tiveness, this principle has also seen applications in diverse areas of theoretical computer
science, for example in [2,12,27].
In this paper, we investigate the principal of symmetry of information when resource

boundsare placedon theprogram to describeygivenx.While the argument of Kolmogorov–
Levin [29] can be used without modification to show that symmetry of information holds
for programs using exponential time or polynomial space, things become trickier with
polynomial time bounds. Though this question has been around for some time, indeed as
early as 1967 Kolmogorov suggested time-bounded versions of symmetry of information
as an interesting avenue of research [16], still few definite answers are known. See Section
7.1 of [18] for a survey and open problems.
The main contributions to the problem of polynomial time symmetry of information

appear in the series of works [17,19] which show, in particular, the following:
• If P = NP then polynomial time symmetry of information holds[19].
• If cryptographic one-way functions exist, then polynomial time symmetry of information
does not hold up to a O(log n) factor[17,19].

The intuition behind the second result is, iff is a polynomial time computable one-way
function, andf (x) = y, theny is simple givenx. On the other hand, ifx is simple in
polynomial time giveny then this would provide a way to invert the function, by cycling
through all small programs.
Revisiting these works, several interesting questions arise:

• Can polynomial time symmetry of information hold up to a factor larger than O(log n)?
The same argument sketched above shows that if symmetry of information holds up to
a factor of�(n) then there do not exist polynomial time computable cryptographical
functions which cannot be inverted in time 2�(n). However, as, for example, factoring
n-bit integers can be done in 2O(

√
n) time [7], it is not implausible that symmetry of

information could hold up to a factor of�(n) = �n or even�(n) = n1/2+�. It is the

388 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

case that 2C(x, y)�C(x)+C(y|x), could we show(2− �)C(x, y)�C(x)+C(y|x) for
some�?

• Can symmetry of information hold for complexity measures other than polynomial time
printing complexity? En route to showing that BPP is in the polynomial hierarchy, Sipser
[23] introduced a relaxation of printing complexity called distinguishing complexity,
denoted CD. For a stringx, CD(x) is the length of a shortest programwhich acceptsxand
only x. The arguments of [17,19] leave open the question if symmetry of information can
hold for distinguishing complexity. Now iff is a polynomial time computable one-way
permutation andf (x) = y, then CDpoly(x|y) is constant, as with a description off, on
input z we accept if and only iff (z) = y. More recently, distinguishing complexity
measures using nondeterminism, denoted CND, and nondeterminism and randomness
(based on the complexity class AM), denoted CAMD, have been introduced [6,9]. Does
symmetry of information hold for these measures?

• Is there an assumption weaker than P= NP which implies polynomial time symmetry
of information?

Addressing the first two questions, we show relativized worlds where symmetry of in-
formation fails in a strong way for CDpoly and CNDpoly (the existence of such worlds was
claimed in[5], thoughwithout a complete proof).On the other hand,we show that for any set
A ∈ NP symmetry of information holds for most pairs of strings〈x, y〉 ∈ A with respect to
the measure CAMDpoly. We also unconditionally show thatCpoly(x, y)�CAMDpoly(x)+
CAMDpoly(y|x). This implies that symmetry of information holds under the condition
Cpoly(x|y)�CAMDpoly(x|y). We show that this statement, however, is equivalent
to P= NP.
The main tool of our positive results is an extension of the language compression tech-

nique of [9]. This extension itself has an interesting implication for the compression of
samplable sources, the study of which is introduced in [25]. We show that for any polyno-
mial time samplable sourceX, any elementx in the support ofX can be given a description
of size− log Pr[X = x] + log3 n, such thatx can be recovered from this description by
an AM algorithm. Note that this means the source can be compressed to expected length
H(X)+O(log3 n), differing from optimal by just a O(log3 n) additive factor.
Another interestingapproach to thedefinitionof time-boundedKolmogorovcomplexity is

L. Levin’sKt complexity introduced in [15].RecentlyD.Ronneburgerproved that symmetry
of information does not hold for Kt complexity in a very strong sense [22].

2. Preliminaries

We use the following notation:
• denote byB the set{0,1}; similarly,Bn is the set of all binary strings of lengthn;
• denote by|x| the length of a binary stringx;
• denote by‖A‖ the cardinality of a finite setA;
• for a setA ⊂ B∗ denote byA=n the set{x : x ∈ A and|x| = n}.
• for a set of pairs of stringsA ⊂ B∗×B∗ denote byA=n the set{〈x, y〉 ∈ A : |x|+|y| = n}.
We will make use of the complexity classes P, NP, UP, RP, and BPP. See[1] for definitions.

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 389

2.1. Kolmogorov complexity measures

We use notation for Kolmogorov complexity from[18]:

Definition 1. The Kolmogorov complexityC(y|x) is defined as
min
p
{|p| : U(p, x) = y},

whereU is a universal recursive function. Also we defineC(z) = C(z|�), where� is the
empty word.

The choice ofU affects the Kolmogorov complexity by at most an additive constant.
We consider several flavors of time bounded Kolmogorov complexity.

Definition 2. Time t printing complexityCt(y|x) is defined as
Ct(y|x) = min

p
{|p| : U(p, x) = y andU(p, x) runs in at mostt (|x| + |y|) steps}

for a universal machineU. AlsoCt(z) = Ct(z|�).

The choice of universal machineU affectsCt(x|y) by at most an additive constant and
the time boundt by at most a log(t) multiplicative factor.
We also make use of a randomized version of printing complexity:

Definition 3. Randomized printing complexity CBPt (x|y) is defined as theminimal length
of a programp such that
(1) Pr[U(p, y, r) = x]� 2

3 where the probability is taken over allt (|x| + |y|) bit stringsr.
(2) U(p, y, r) runs in at mostt (|x| + |y|) steps for allr.

Definition 4. Distinguishing complexity CDt (y|x) is defined as the minimal length of a
programp such that
(1) U(p, x, y) accepts,
(2) U(p, x, z) rejects∀z �= y,
(3) U(p, x, z) runs in at mostt (|x| + |z|) steps.
Once again, CDt (z) = CDt (z|�).

There are a few other variants of distinguishing complexity. In[6] a nondeterministic
variant of distinguishing complexity is defined. This definition is very similar to Definition
4 except that the universal machine is nondeterministic. This version of complexity is
denoted CNDt , wheret is a time bound:

Definition 5. Let Un be anondeterministicuniversal machine. Nondeterministic distin-
guishing complexity CNDt (y|x) is defined as the minimal length of a programp such
that
(1) Un(p, x, y) accepts,
(2) Un(p, x, z) rejects∀z �= y,

390 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

(3) Un(p, x, z) runs in at mostt (|x| + |z|) steps.

Further, in[9] a complexity based on the class AMwas defined. In this case the universal
machine is nondeterministic and probabilistic. This complexity is denoted CAMDt :

Definition 6. LetUn be a nondeterministic universal machine. CAMDt (y|x) is defined as
the minimal length of a programp such that
(1) Prr [Un(p, x, y, r) accepts] > 2

3,
(2) Prr [Un(p, x, z, r) accepts] < 1

3 for all z �= y,
(3) Un(p, x, z, r) runs in at mostt (|x| + |z|) steps.
The probabilities above are taken over allt (|x| + |y|) (respectively,t (|x| + |z|)) bit
stringsr.

As usual, we let CNDt (z) = CNDt (z|�), and CAMDt (z) = CAMDt (z|�). We also use
relativizedversion of Kolmogorov complexities, allowing the universal machine to query
an oracle set.

2.2. Symmetry of information properties

Denote byCpoly a version of polynomial time-bounded Kolmogorov complexity, which
can beCpoly, CDpoly, CNDpoly, or CAMDpoly. To formulate the problem of symmetry of
information more precisely, we isolate three associated properties. The first is theEasy
Direction of Symmetry of Information:

For any polynomialp there exists a
polynomialq such that for allx, y :
Cq(n)(x, y)�Cp(n)(x)+ Cp(n)(y|x)+O(log(n)),
wheren = |x| + |y|.

(EDSI)

It is easy to verify that (EDSI) holds for any of the above complexity measures. Next is the
Hard Direction of Symmetry of Information:

For any polynomialp there exists a
polynomialq such that for allx, y :
Cq(n)(x)+ Cq(n)(y|x)�Cp(n)(x, y)+O(log(n)),
wheren = |x| + |y|.

(HDSI)

Finally we also consider the property ofSymmetry of Mutual Information:

For any polynomialp there exists a
polynomialq such that for allx, y :
Cq(x)+ Cq(y|x)�Cp(y)+ Cp(x|y)+O(log n)

(SMI)

Notice that if both (EDSI) and (HDSI) hold for a complexity measureC, then also (SMI)
holds forC. The converse is not necessarily true.

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 391

2.3. Language compression theorems

A fundamental theorem of Kolmogorov complexity, and one that is very useful in appli-
cations, is the following:

Theorem 7(Language Compression Theorem). For any recursively enumerable setA,and
all x ∈ A=n we haveC(x)� log ‖A=n‖ +O(log n).

This is asx can be described by its index in the enumeration ofA=n.
This theorem is essentially used in the proof of (HDSI) in the resource unbounded case

given in[29]. Similarly, our results about resource bounded symmetry of information (both
positive and negative) crucially rely on recent resource bounded language compression
theorems. In [9] the following analogue of the Language Compression Theorem is shown
for CND complexity.

Theorem 8(Buhrman et al.[9]). There is a polynomialp(n) such that for any set
A⊂B∗ and for all x ∈A=n we haveCNDp,A=n(x)� log ‖A=n‖ + O(�(n)) where
�(n) = (

√
log‖A=n‖ + log(n)) log(n).

Further[9] show thatwith thepowerofArthur–MerlinprotocolsaLanguageCompression
Theorem holds which is optimal up to an additive log3 n term:

Theorem 9(Burhman et al.[9]). There is a polynomialp(n) such that for any setA ⊂ B∗
and for allx ∈ A=n we haveCAMDp,A=n(x)� log ‖A=n‖ +O(log3(n)).

For comparison we remark that for CD complexity the situation is somewhat different.
In [6] it is shown that there is a polynomialp(n) such that for any setAand for allx ∈ A=n
it holds that CDp(n),A

=n
(x)�2 log‖A=n‖ +O(log n). Furthermore, [8] show that there is

a setA where this bound is tight up to O(log n) terms. That is, the factor of 2 in general
cannot be improved.

3. On CD complexity

In this section we show a relativized world where the inequalities (SMI) and, hence,
(HDSI) fail in a strong way for CDpoly complexity. The proof of the next proposition
follows the idea outlined in [5]:

Proposition 10. There exists an oracle A and a polynomialp(n) satisfying the following
condition. For any� > 0 and large enough n there exists a pair〈x, y〉 ∈ Bn×Bn such that
• CD2�n,A=2n(y) > (1− �)n−O(log n),
• CDp(n),A=2n(x) = O(1),
• CDp(n),A=2n(y|x) = O(1) and evenCp(n),A=2n(y|x) = O(1),
i.e., CDp(n),A

=2n
(x)+CDp(n),A=2n(y|x)� CD2

�n,A=2n(y)+CD2�n,A=2n(x|y).Thus, (SMI)
does not hold with the oracle A.

392 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

Proof. Fix n and choose an incompressible pair〈xn, yn〉 ∈ Bn × Bn. Define a mapping
fn : Bn → Bn as follows:
• fn(xn) = yn,
• fn(z) = z for all z �= xn.
Now we defineA=2n. At first define two auxiliary oraclesBn andCn: let Bn contain the
graph of the functionfn (on input〈z, i〉 the oracleBn returns theith bit of y = fn(z)) and
Cn contain a single stringxn (on inputz ∈ Bn the oracleCn returns 1 if and only ifz = xn).
A query toBn consists of(n+ log n) bits, and a query toCn consists ofn bits. So a query
to Bn ⊕ Cn can be encoded as a strings of length(n + log n + 1), which is less than 2n.
Thus, we may setA=2n = Bn ⊕ Cn.
Obviously, for some polynomialp(n) we have CDp(n),A

=2n
(xn) = O(1) (it is enough to

queryCn to distinguishx from other stings) andCp(n),A=2n(yn|xn) = O(1) (it is enough to
query fromBn the valuefn(xn)).
On the other hand, CD2

�n,A=2n(yn)�(1−�)n−O(log n). Really, letsbe a shortest CD2
�n

program fory, and assume

|s|�(1− �)n−D log n

for a large enough constantD. If this program queries at some stept�2�n the pointxn from
the oracleCn or any point〈xn, i〉 from the oracleBn, then

C(xn|yn)� |s| + log t +O(log n)

and

C(xn, yn)� |yn| + |s| + log t +O(log n) < 2n.

We get a contradiction, as the pair〈xn, yn〉 is incompressible. Hence,sdoes not query any
‘interesting’ points from the oracle. Thus, it can work with a trivial oracleB ′n ⊕ C′n (B ′n
returns theith bit of z for anypair 〈z, i〉, andC′n returns 0 foranystringz). This means that

C(yn)� |s| +O(1)� n

and we again get a contradiction. So, we have|s|�(1− �)n−O(log n). �

4. On CND complexity

In this section we prove that (HDSI) and (SMI) are not true for a relativized version of
polynomial time bounded CND complexity. Our proof is based on the Language Compres-
sion Theorem for CND complexity, Theorem8.

Theorem 11. Letm = m(n), s = s(n), t = t (n) be functions such that

2s(n) + 2m(n) < 2n

and

t (n)2m(n)�2n−3.

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 393

Then there is a polynomialp(n), and setsA,X such that
• X=n ⊂ Bn, ‖X=n‖ = 2s(n),
• A=2n ⊂ Bn × Bn,
• ‖{y : (x, y) ∈ A=2n}‖� 7

8 · 2n for anyx ∈ X=n,
• ‖ ⋃

x �∈X
{y : (x, y) ∈ A=2n}‖� 1

8 · 2n

and for large enough n, for all x ∈ X=n, for at least 34 · 2n stringsy ∈ Bn the following
conditions hold: 〈x, y〉 ∈ A=2n,

CNDp,A=2n(x|y) �s(n)+O(�(n)),
CNDt (n),A=2n(x) �m(n)−O(1),
CNDt (n),A=2n(y|x) �n−O(1),

where�(n) = √
n log(n).

Note that the term�(n) = √
n log(n) comes from Theorem8.

Corollary 12. There exists an oracle A such that aCNDpoly version of(HDSI) and(SMI)
do not hold. Moreover, for any ε ∈ (0,1) there exists a polynomial p such that for any
polynomial q for large enough n

(2− ε)CNDp,A=2n(x, y) < CNDq,A=2n(x)+ CNDq,A=2n(y|x)
and

CNDp,A=2n(y)+ CNDp,A=2n(x|y)� CNDq,A=2n(x)+ CNDq,A=2n(y|x)
for most〈x, y〉 ∈ A=2n.

Proof. It follows from Theorem11 for s(n) = εn/3,m(n) = (1− ε/3)n, t (n) = 2εn/6.
�

The bound(2 − ε) in the first inequality of Corollary 12 is tight. This can be easily
seen as

CNDpoly,A
=2n

(x, y)�CNDpoly,A=2n(x)−O(1)
and

CNDpoly,A
=2n

(x, y)�CNDpoly,A=2n(y|x)−O(1).
Hence for any oracleA

2CNDp,A
=2n

(x, y)�CNDq,A=2n(x)+ CNDq,A=2n(y|x)−O(1).

Proof (Theorem 11). Fix an integern > 0. We denote byF the characteristic function of
A=2n, i.e.,F(〈x, y〉) = 1 if 〈x, y〉 ∈ A=2n andF(x, y) = 0 otherwise. We define this
function in a few stages: construct a sequence of functionsF0, F1, . . . , F2m(n)−1,

Fi : Bn × Bn → {0,1,undef}.

394 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

For i < j the functionFj should be an extension ofFi , i.e.,

∀〈a, b〉 if Fi(a, b) �= undef thenFj (a, b) = Fi(a, b).

The initial function is trivial:F0(a, b) = undef for all〈a, b〉. In the sequel we shall define
F as an extension ofF2m(n)−1.
Let us introduce some notation. We say that a setB ⊂ Bn×Bn respectsa functionFi if

Fi(a, b) = 1⇒ 〈a, b〉 ∈ B,

Fi(a, b) = 0⇒ 〈a, b〉 �∈ B.

Let s1, . . . , s2m(n)−1 be the list of all CND-programs of length less thanm(n). We suppose
each programsj can access an oracleO (the oracle is not fixed in advance). Alsowe suppose
that eachsj is clocked and runs at mostt (n) steps. We say thatsj is awell definedCND
program for an oracleO if sOj accepts exactly one stringx.
Further defineFi by induction. Let the functionsF0, . . . , Fk−1 be already defined. We

must construct a functionFk which is an extension ofFk−1. Consider the programsk. There
are two possibilities:
(1) for anyB ⊂ Bn × Bn that respectsFk−1, the programsk is not well defined for the

oracleB;
(2) there exists at least one setB ⊂ Bn×Bn that respectsFk−1, and the programsk is well

defined for the oracleB.
The first case is trivial: we setFk(x, y) = Fk−1(x, y) for all 〈x, y〉. In the second case there
exists a setB and a stringx such thatsBk acceptsx in timeT (B, x), which is at mostt (n),
and rejects all other strings. If there is more than one such set, we choose a setBwith the
minimal possibleT (B, x). Denote byxk the fixed stringx. Let the list of all queries of the
programsBk (xk) to the oracle (for one of the shortest path, i.e., for an accepting path of
lengthT (B, x)) be

〈a0, b0〉, 〈a1, b1〉, . . . , 〈ar , br 〉,
r < t(n). We include all these pairs in the oracle. More precisely, defineFk as follows:

Fk(a, b) = Fk−1(a, b) if Fk−1(a, b) �= undef,
Fk(aj , bj) = 1 if 〈aj , bj 〉 ∈ B, j = 0, . . . , r,
Fk(aj , bj) = 0 if 〈aj , bj 〉 �∈ B, j = 0, . . . , r,
Fk(a, b) = undef ifFk−1(a, b) = undef and〈a, b〉 �= 〈aj , bj 〉, ∀j.

For any setR that respectsFk, the programsRk accepts the stringxk in timeT (B, x). Note
that for a time boundt0�T (B, x) the CND programsRk may accept also a few other strings
exceptxk. But for anyt0 < T (B, x) the programsRk does not accept in timet0 any string,
because we chosexk that provides minimum to the valueT (B, x). Thus, if for a time bound
t0� t (n) the programsRk accepts at least one string, it must accept alsoxk. In other words,
it cannotdistinguishany string exceptxk.
We have described an inductive procedure, which defines the functionsF0, . . .,F2m(n)−1.

At each stepi wesetFi(a, b) �= Fi−1(a, b) for atmostt (n) values〈a, b〉. Hence the function
F2m(n)−1 is equal to undef for all values inBn × Bn except for at mostt (n)2m(n) values.

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 395

Besides we get the listL of stringsxi which can be possibly accepted by distinguishing
programssRi if a setR respectsF2m(n)−1. This set is rather small:‖L‖ < 2m(n).
Further we choose an arbitrary set

X=n ⊂ Bn\L
of size 2s(n). Now define the functionF as follows:

F(x, y) = F2m(n)−1(x, y) if F2m(n)−1(x, y) �= undef,
F (x, y) = 1 if F2m(n)−1(x, y) = undef andx ∈ X,

F(x, y) = 0 if F2m(n)−1(x, y) = undef andx �∈ X.

The characteristic functionF defines the oracleA=2n and the construction is finished. Note
that for anyx ∈ X=n

‖{y : (x, y) ∈ A=2n}‖� 7
8 · 2n

and ∥∥∥∥∥ ⋃
x �∈X=n

{y : (x, y) ∈ A=2n}
∥∥∥∥∥ < 1

8 · 2n.

Now fix any stringx0 ∈ X. Obviously, CNDt (n),A
=2n

(x0)�m(n) becausex0 �∈ L. Further,
there are at least

2n − 2m(n)t (n)− 2n−3 > 3
4 · 2n

stringsy such that
• (x0, y) ∈ A=2n,
• (x, y) �∈ A=2n for anyx �∈ X=n, and
• CA=2n(y|x0)�n− 3.
Denote byy0 any of these strings. From the conditions above it follows that
• CNDt (n),A=2n(y0|x0) > n − O(1) since resource bounded complexity is not less than
plain complexity;

• CNDp(n),A=2n(x0|y0)� log ‖{x : (x, y0) ∈ A=2n}‖ + O(�(n))�s(n) + O(�(n)) from
Theorem8. �

5. On CAMD complexity

In this section we study symmetry of information under the CAMD complexity measure.
In contrast to the case of CD and CND complexity, with the power of nondeterminism
and randomness we can prove some positive results, showing that some weaker versions of
(HDSI) hold for CAMD.
Our proof will follow the proof in the resource unbounded case as given in [29]. We first

review this proof to see how it can be used in our case. Let�, � be two strings such that|�|+
|�| = n, and suppose thatC(�, �) = m.We define the setAx,m = {y : C(x, y)�m}. Notice
that‖Ax,m‖�2m+1 and that givenx andm the setAx,m is recursively enumerable. Thus as

396 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

� ∈ A�,m by the Language Compression Theorem (Theorem7), C(�|�)� log‖A�,m‖ +
O(log n). Letk∗ be such that 2k∗ �‖A�,m‖ < 2k

∗+1. Then the above says thatC(�|�)�k∗+
O(log n).
Now consider the setBm,k = {x : ‖Ax,m‖�2k}. Notice that the size ofBm,k is less than

2m−k+1, and that� ∈ Bm,k∗ . The setBm,k is recursively enumerable givenm, k, thus by the
Language Compression Theorem,C(�)�m− k∗ +O(log n). And so

C(�)+ C(�|�) � m− k∗ + k∗ +O(log n)

� C(�, �)+O(log n).

If we substitute polynomial time printing complexity in the above argument, then the set
Ax,m is in NP. Further, by the approximate lower bound counting property of AM [3] there
is an AM algorithm which accepts with high probability forx ∈ Bm,k and rejects with high
probability forx �∈ Bm,k−1. We have, however, no guarantee on the algorithm’s behavior
for x ∈ Bm,k−1. In the next theorem, we extend the language compression results of [9] to
work for AM ‘gap’ sets of this type, allowing the above argument to go through. This result
also implies near optimal AM compression of polynomial time samplable sources, recently
studied in [25].

5.1. AM compression of AM gap sets

Lemma 13. LetA ⊆ B∗. Suppose there is a polynomial time boundq(n), and predicate
Q such that
• for all u ∈ A=n,Pr

r∈Bq(n)[∃v Q(u, v, r) = 1]� 2
3,

• ‖{u ∈ Bn : Pr
r∈Bq(n)[∃v Q(u, v, r) = 1] > 1

3}‖�2k
and for allu, v, r the predicateQ(u, v, r) can be computed in polynomial time. Then there
is a polynomial time boundp(n) such that for allu ∈ A=n, we haveCAMDp(u)�k +
O(log3 n).

Before going into the proof of Lemma13, we briefly recall the technique of [9]. Let
TR : Bn × Bd → Bm be the function underlying Trevisan’s extractor [24], that is the
composition of a good error correcting code with the Nisan–Wigderson generator [20]. The
output of TR(u, e) is the evaluation of the Nisan–Wigderson generator on seede when
usingû as the ‘hard’ function supplied to the generator, whereû is the image ofu under an
error correcting code. The key property of this function, what makes it a good extractor and
compressor, is that if TR(u, e) is not close to uniform over choice ofe ∈ Bd on some set
B ⊂ Bm, thenuhas a short description given oracle access toB. In [9] it is shown thatucan
be printed in polynomial time from this description and oracle access toB. This construction
works ford = O(log3 n), where this term arises from theweak designconstruction of [21].
To give the elements of a setA ⊂ Bn short descriptions, we let the setB be the image

of A× Bd under the function TR. That is,B = ∪x∈A ∪e∈Bd TR(x, e). Notice that for any
x ∈ A, Pre[TR(x, e) ∈ B] = 1. On the other hand if we takem to be log‖A‖ + d + 1 then
the probability that a uniformly choseny ∈ Bm is inB is less than12. Thus all the elements
of A have a short description relative toB. Now notice that with nondeterminism and an
oracle forA, we can decide membership inB, thus all the elements ofAhave a short CNDA

description. The elements ofA can be given an even more succinct CAMDA description by

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 397

using the randomness in the AM protocol to simulate part of the probabilistic argument in
[20,24].

Proof (Lemma13). By amplification and the results of [10], we can transform the predicate
Q into a predicateQ′ taking random strings of length a polynomialq ′(n) and with the
property
• if u ∈ A=n then Prr [∃v Q′(u, v, r) = 1] = 1,
• ‖{u : Prr [∃v Q′(u, v, r) = 1]�2−n−2}‖�2k
for r chosen uniformly overBq ′(n). LetL = {u : Prr [∃vQ′(u, v, r) = 1]�2−n−2}.
For eachr ∈ Bq ′(n) we define a set

Br = {w : ∃u ∈ Bn, ∃v, e TR(u, e) = w ∧Q′(u, v, r) = 1}.
In the sequel we denote byBr(w) the propertyw ∈ Br .
Clearly ifu ∈ A=n, then Pre[Br(TR(u, e))] = 1, for anyr ∈ Bq ′(n). Now for a randomly

chosenw ∈ Bm and randomly chosenr ∈ Bq ′(n), we calculate the probability thatw ∈ Br .
As for a 0/1 variable the probability of being 1 is equal to the expectation of the variable,
we have

Pr
r,w
[w ∈ Br] = Er,w[Br(w)].

By linearityof expectation,wecandivide the latter into twocontributions, that fromelements
w for which∃u ∈ L and seede such that TR(u, e) = w, and thosew for which this is not
the case:

Er,w[Br(w)] = ∑
w=TR(u,e)

u∈L′
E[Br(w)] + ∑

w �=TR(u,e)
u∈L′

E[Br(w)].

By takingm = k + d + 2 the first term can be bounded by14. The second term is bounded
by 2m2−n−2� 1

4. Going back to probability notation, we have for anyu ∈ A=n

Pr
r,e
[Br(TR(u, e))] − Pr

r,w
[Br(w)]� 1

2.

The value of Trevisan’s function TR(u, e) can be viewed as a sequence of bits

û1(e) . . . ûm(e),

whereûi = û(e|Si), i.e., the result of application of the boolean functionû to theith set of
theweak design set system(for details see[21] or [9]). Thus,ûi depends on‖Si‖ variables.
By definition of a weak design the cardinalities ofSi for all i are equal to each other. Denote
n̄ = 2‖Si‖. We choose a weak design system as in the proof of AM language compression
in [9, Theorem 3]. For this weak designn̄ is polynomial inn.
It follows by the hybrid argument that there is ani ∈ [m] and a setting of the bits ofe

outside of the setSi such that

Pr
x,r,r ′

[Br(û1(x) . . . ûi−1(x)ûi(x)r ′] − Pr
x,r,r ′,b

[Br(û1(x) . . . ûi−1(x)br ′)]� 1
2m. (1)

398 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

When the bits ofeoutside ofSi are fixed, all the functionŝui only depend on the bits inside
of Si , thus the variablex in the above ranges uniformly over‖Si‖ bit strings.
Let F(x, b, r ′) = û1(x) . . . ûi−1(x)br ′. Our algorithm to approximatêui will do the

following: on inputx, choose uniformly at randomb, r, r ′ and evaluateBr(F (x, b, r ′)); if
this evaluates to 1, then outputb, otherwise output 1− b. Call the output of this algorithm
gb(e, r, r

′). We now estimate the probability thatgb(e, r, r ′) agrees withui(x).

Pr
x,r,r ′,b

[gb(x, r, r ′) = û(x)] = Pr
x,r,r ′,b

[gb(x, r, r ′) = û(x)|b = û(x)] Pr
x,b
[b = û(x)]

+ Pr
x,r,r ′,b

[gb(x, r, r ′) = û(x)|b �= û(x)] Pr
x,b
[b �= û(x)]

= 1

2
Pr

x,r,r ′,b
[Br(F (x, b, r ′)) = 1|b = û(x)]

+1
2

Pr
x,r,r ′,b

[Br(F (x, b, r ′)) = 0|b �= û(x)]

= 1

2
+ 1

2

(
Pr

x,r,r ′,b
[Br(F (x, b, r ′)) = 1|b = û(x)]

− Pr
x,r,r ′,b

[Br(F (x, b, r ′)) = 1|b �= û(x)]
)

= 1

2
+ 1

2

(
Pr

x,r,r ′
[Br(F (x, û(x), r ′)) = 1]

− Pr
x,r,r ′

[Br(F (x,1− û(x), r ′)) = 1]
)

= 1

2
+ Pr

x,r,r ′,b
[Br(F (x, û(x), r ′)) = 1]

− Pr
x,r,r ′,b

[Br(F (x, b, r ′)) = 1]

� 1

2
+ 1

2m
.

The last line follows from Eq. (1). We fix the bitb to a valueb1 which preserves this
prediction advantage. Notice thatgb1(x, r, r

′) cannot be computed by Arthur himself, as
he needs Merlin to demonstrate witnesses for acceptance inBr . We now show how the
computation ofgb1(x, r, r

′) can be simulated by an Arthur–Merlin protocol.
Wesay that(r, r ′)givesan�-approximation tôu if Prx[gb1(x, r, r ′) = û(x)]��. For fixed

(r, r ′), we identifygb1(x, r, r ′) with the stringzb1,r,r ′ wherezb1,r,r ′ has bitb1 in positionx
if and only if gb1(x, r, r

′) = 1. For convenience we assume without loss of generality that
b1 = 1 and drop the subscript. Note that with this choice the number of ones inzr is the
number of stringsx for which B acceptsû1(x) . . . ûi−1(x)b1r. With w(z) we denote the
number of ones in a stringz.
Arthur randomly selects stringsr1, . . . , rs ∈ {0,1}q ′(n) andr ′1, . . . , r ′s ∈ {0,1}m−i , and

asks Merlin to provide witnesses forBri (F (x, b1, r
′
i)). Included as part of our description

will be the average number of acceptances over all choices ofr, r ′: ā = 2−q ′(n)2i−m ∑
x,r,r ′

gb1(x, r, r
′). To limit Merlin’s freedom in choosing which acceptances to demonstrate in

an adverse way, we want that the total number of acceptances of the choice ofr1, . . . , rs

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 399

andr ′1, . . . , r ′s is close to the expecteds · ā. This is insured by an easy Chernoff bound
argument:

Claim 1. For any � = �(m, n̄) > 0, there existss = O(n̄2/�2) such that with proba-
bility at least 34 over Arthur’s choice of(r1, r ′1), . . . , (rs, r ′s) the following two things will
simultaneously happen:
(1) A 1

8m fraction of(r1, r ′1), . . . , (rs, r ′s) will give
1
2 + 1/4m approximations tôu.

(2) The total number of acceptances byBover the strings(r1, r
′
1), . . . , (rs, r

′
s)will bewithin

�s of the expected. That is,∣∣∣∣∣
s∑

j=1
w(zj)− sā

∣∣∣∣∣ ��s.

Proof. To lower bound the probability that both of these events happen, we upper bound
the probability that each event individually does not happen and use a union bound.
Item (1): Notice that for a given(r, r ′), if

Pr
x
[Br(û1(x) . . . ûi−1(x)û(x)r ′)] − Pr

x
[Br(û1(x) . . . ûi−1(x)b1r ′)]�1/4m

then(r, r ′) gives a (12 + 1/4m)-approximation of̂u. We will say that the pair(r, r ′) is bad
if it does not yield a12 + 1/4m approximation tôu. By Eq. (1) and Markov’s inequality,

Pr
r,r ′
[(r, r ′) ∈ bad]� 1− 1/2m

1− 1/4m < 1− 1/4m.

By a Chernoff bound, for some constantc1 > 0,

Pr
(r1,r

′
1),...,(rs ,r

′
s)
[‖bad‖�(1− 1/8m)s]� exp(−c1s/m2).

Item (2): By a Chernoff bound, for some constantc2 > 0,

Pr

[∣∣∣∣∣1/s
s∑

j=1
w(zj)− ā

∣∣∣∣∣ ��

]
�2 exp(−c2�2s/n̄2).

By takings = c3n̄
2/�2 for a sufficiently large constantc3, the probability of each item will

be less than18, and the claim follows. �

From this point the proof follows verbatim as in the proof of AM language compression
[9, Theorem 3]. �

One application of this lemma is for the AM compression of samplable sources. The
study of the compression of samplable sources is introduced in [25]. They give evidence
that it is unlikely that all polynomial time samplable sources can be (near) optimally com-
pressed by probabilistic polynomial time algorithms. We show, by contrast, that with AM
algorithms, and when we only consider decompression efficiency, we can achieve nearly
optimal compression.

400 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

Definition 14. LetXn be a probability distribution on strings of lengthn. We say thatXn

is polynomial time samplable if there is a polynomialp(n) and algorithmSsuch that

Pr
r∈{0,1}p(n)

[S(1n, r) = x] = Pr[Xn = x]

for everyx ∈ {0,1}n, and where the running time ofS(1n, r) is bounded byp(n).

Theorem 15. LetXn be a polynomial time sampable source. There is a polynomialp(n)

such that for every x in the support ofXn,

CAMDp(n)(x)� − log Pr[Xn = x] +O(log3 n).

Proof. Consider the setLk = {x : Pr[Xn = x]�2−k}. As the sourceXn is samplable, say
by an algorithmS, the set{r : S(1n, r) = x} is in P. Thus by the approximate lower bound
counting property of AM[3], there is an AM algorithm which accepts anyx ∈ Lk with
probability greater than23, and rejects any elementx not inLk−1 with probability greater
than 23. Thus the total number of stringsxwhich will be accepted by the AM lower bound
counting algorithm will be less than the number of strings which receive probability more
than 2−k−1 which is less than 2k+1. Now applying Lemma 13 we obtain that there exists a
polynomialp such that CAMDp(x)�k +O(log3 n) for all x ∈ Lk. �

Finally, we remark that these results relativize.

5.2. Application to symmetry of information

Theorem 16. There is a polynomialp(n) such that for any setA ⊂ B∗ × B∗ and all
〈x, y〉 ∈ A=n

log ‖A=n‖�CAMDp,A=n(x)+ CAMDp,A=n(y|x)−O(log3 n).

Furthermore, if A ∈ NP then there is a polynomialq(n) such that
log ‖A=n‖�CAMDq(x)+ CAMDq(y|x)−O(log3 n).

Proof. Fix n and〈�, �〉 ∈ A=n. Denotem = log ‖A=n‖ andAx = {y : (x, y) ∈ A=n}.
Membership in the setAx can be decided in polynomial time givenx and the oracleA=n.
As � ∈ A� it follows from Theorem9 that CAMDq,A

=n
(�|�)� log‖A�‖ +O(log3 n).

Now consider the setBk = {x : ‖Ax‖�2k}. Let k∗ be such that 2k∗ �‖A�‖ < 2k
∗+1.

Then� ∈ Bk∗ . By the approximate lower bound counting property of AM [3], there is a
predicateQ (computable in polynomial time given the oracleA=n) such that
• if x ∈ Bk then Prr [∃yQ(x, y, r) = 1]� 2

3,
• if x �∈ Bk−1 then Prr [∃yQ(x, y, r) = 1]� 1

3.
Thus if Prr [∃yQ(x, y, r) = 1] > 1

3 thenx ∈ Bk−1. However‖A=n‖ = 2m implies that

‖Bk−1‖�2m−k+1. Now by Theorem9 we obtain CAMDq,A=n(�)�m− k∗ +O(log3 n).

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 401

Putting the above together we have

CAMDq,A=n(�)+ CAMDq,A=n(�|�)�m− k∗ + k∗ +O(log3 n)�m+O(log3 n)

which gives the first statement of the theorem.
To prove the “furthermore”, note that approximate lower bound counting of NP sets can

be done in AM[3], and apply Lemma 13 to give the bound on (unrelativized) CAMD
complexity of NP sets. �

Corollary 17. For any setA ⊂ B∗ × B∗ and any polynomialp(n) there is a polynomial
q such that for all but at most a1/n fraction of〈x, y〉 ∈ A=n,

CAMDp(n),A=n(x, y)�CAMDq(n),A=n(x)+ CAMDq(n),A=n(y|x)−O(log3 n).

Furthermore, if A ∈ NP then

CAMDp(n)(x, y)�CAMDq(n)(x)+ CAMDq(n)(y|x)−O(log3 n).

Proof. For all but at most a 1/n fraction of〈x, y〉 ∈ A=n we have

CAMDp(n),A=n(x, y)� log ‖A=n‖ −O(log n).

ApplyingTheorem16weget the first statement of the corollary. Applying the “furthermore”
of Theorem 16 gives the furthermore here.�

Theorem 18. For any stringsx, y ∈ Bn, and polynomialp(n) there is a polynomialq(n)
such thatCp(x, y)�CAMDq(x)+ CAMDq(y|x)−O(log3 n).

Proof. Fix a pair of strings〈�, �〉. Let n = |�| + |�|, and suppose thatCp(�, �) = m.
Consider the setA = {〈x, y〉 : Cp(x, y)�m}. As membership inA can be decided in
nondeterministic polynomial time, wemay invoke the “furthermore” of Theorem16 to give
log‖A‖�CAMDq(�) + CAMDq(�|�) − O(log3 n) for some polynomialq. On the other
hand,‖A‖�2m+1, and the theorem is proven.�

From Theorem 18 we obtain as a corollary a result of [19], up to an additive O(log3(n))
factor: if P= NP then

Cp(x, y)�Cq(x)+ Cq(y|x)−O(log3 n).

More generally, the following corollary holds.

Corollary 19. Suppose that for any polynomialp = p(n) there is a polynomialq =
q(n) such that for anyx, y, Cq(x|y)�CAMDp(x|y)+O(log3 n). Then(HDSI) holds for
polynomial time printing complexity, up to anO(log3 n) additive factor.

402 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

6. What implies symmetry of information?

Is thereanassumptionweaker thanP= NPwhichwould imply symmetryof information?
Corollary19 shows that symmetry of information (up to a log3 n factor) follows from the
assumption:

For any polynomialp there exists a
polynomialq such that for allx, y :
Cq(x|y)�CAMDp(x|y)+O(log(n)),
wheren = |x| + |y|.

(∗)

It is easily seen that this property follows from P= NP. We now see that it is in fact
equivalent to P= NP.

Theorem 20. Property(∗) impliesP= NP.

We first prove the following lemma.

Lemma 21. Suppose the following hold:
• NP⊆ BPP.
• For every polynomial q there exists a polynomial p such that for all x,Cp(x)�CBPq(x)+
O(log |x|).

ThenP= NP.

Proof. By the results of Ko[13], the first item implies PH⊆ BPP and NP= RP. Thus
to show P= NP it suffices to derandomize RP. LetL ∈ RP witnessed by a machineM
running in polynomial time and usingm = m(n) random bits on an inputx of lengthn. We
shall assume thatm > n.
By standard amplification we transformM into a polynomial machineM ′, which uses

m(n)3 random bits and for which the probability thatM ′(x, r) rejects whenx ∈ L is less
than 2−m2. As the set of random stringsr ∈ Bm3 which give the ‘wrong’ answer is in P
givenx, we can apply the LanguageCompression Theorem for nondeterministic complexity
to give that for a polynomial time boundq ′, CNDq ′(r|x)� |r| − m2 + O(�(m)), for any
such ‘bad’r, where�(m) = √

m log m as in Theorem 8. In particular, this means that if
CNDq ′(r) = |r| = m3 thenM ′(x, r) must accept.
We now claim that for a given lengthnwe can construct a string of lengthm′ = (m(n))3

with high CNDq
′
complexity in the polynomial hierarchy. Indeed, checking that a string

has maximal CND complexity can be done with a�p

2 oracle. Thus the lexicographically
first string of lengthm′ with maximal CND complexity, call itr∗, can be found with a�p

3

oracle by doing a prefix search. This means thatCq ′,�p
3 (r∗) = O(log n). As the hypothesis

of the theorem implies PH⊆ BPP, and following the proof that BPPBPP= BPP, we obtain
CBPq

′′
(r∗) = O(log n). Finally applying the second hypothesis of the theorem we have

Cp(r∗) = O(log n).
Thus to decide ifx ∈ L we evaluateM ′(x, U(p)) for all programsp of lengthd log n

for some constantd. We reject if and only ifM ′ rejects on all these computations.U will

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 403

outputr∗ for one of these programsp and by the above argument, ifx ∈ L thenM ′(x, r∗)
must accept. �

Proof (Theorem 20). Two consequences follow from assumption (*):
• Cp(x|y)�CBPq(x|y)+O(log n),
• Cp(x|y)�CNDq(x|y)+O(log n).
The second item is shown in[11] to imply NP= RP. This fact can be proven as follows.
If � is a formula with exactly one satisfying assignmenta then CNDq(a|�) = O(1). Thus
printing complexity being less than nondeterministic distinguishing complexity gives that
unique SAT can be solved in polynomial time, and so by Valiant–Vazirani [26] NP= RP.
We can now apply the Lemma 21 to obtain P= NP. �

A corollary of Lemma 21 is that polynomial time symmetry of information implies
BPP �= EXP. We first need the following lemma.

Lemma 22. If (SMI) holds for polynomial time printing complexity, then for every poly-
nomial q there is a polynomial p such that for all x, Cp(x)�CBPq(x)+O(log |x|).

Proof. Suppose that CBPq(x) = k. This means there is a programp of lengthk such that
U(p, r) = x for at least23 of the stringsr ∈ {0,1}q(n). By counting, it must be the case that
C(r|x)� |r| −O(1) for one of these stringsr, call it r∗. Using (SMI), there is a polynomial
p for which

Cq(r∗)+ Cq(x|r∗)�Cp(x)+ Cp(r∗|x)−O(log n).

AsCq(r∗) = Cp(r∗|x)+O(1) this impliesCp(x)�k +O(log n). �

Corollary 23. If for every polynomial q there exists a polynomial p such that for every
x, Cp(x)�CBPq(x) + O(log |x|), thenBPP �= EXP. In particular, if (SMI) holds for
polynomial time printing complexity thenBPP �= EXP.

Proof. Suppose, for contradiction, that EXP⊆ BPP. This implies that NP⊆ BPP, and
thus by Lemma21 that P= NP. We now have EXP⊆ BPP⊆ NPNP = P a contradiction
to the time hierarchy theorem.�

We now turn to relativizations to help us find a good candidate hypothesis, weaker than
P = NP, which would imply symmetry of information. As we know that symmetry of
information implies the nonexistence of cryptographic one-way functions, it is natural to
ask if the converse holds. This is a tantalizing hypothesis as it is known that the nonexistence
of one-way functions does imply a strong compression result [28, Theorem 6.3]. We show
that this implication does not hold in every relativized world. That is, we show there is an
oracleX such that PX = UPX yet symmetry of information does not hold relative toX.

Theorem 24. There is an oracle X such thatPX = UPX yet symmetry of information does
not hold relative to X.

404 T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405

Proof. LetXbe an oracle where PX = UPX and PX �= NPX. Such an oracle is constructed
in [4]. With respect to this oracle NPX = RPX. Suppose also that symmetry of information
holds relative toX. As the proofs of Lemmas 21 and 22 relativize, this would then imply
PX = NPX, a contradiction. �

Acknowledgements

We would like to thank Leonid Levin, and Paul Vitanyi for anecdotes on the early days
of symmetry of information, and Harry Buhrman and Lance Fortnow for helpful comments
on [5] and [6] and the modern history of the problem. We thank Harry Buhrman and Dieter
van Melkebeek for beneficial comments and conversations about Section 5. The first author
would like to thank Peter Bro Miltersen for his hospitality and many fruitful discussions
during a visit in which part of this work took place. We also thank Detlef Ronneburger for
sharing his result on Kt complexity and Michal Koucky for pointing out this result to us.

References

[1] S. Aaronson, The complexity zoo,http://www.cs.berkeley.edu/∼aaronson/zoo.html.
[2] E. Allender, H. Buhrman, M. Koucky, D. van Melkebeek, D. Ronneburger, Power from random strings, in:

Proc. 47th IEEE Symp. on Foundations of Computer Science, IEEE, New York, 2002, pp. 669–678.
[3] L. Babai, Trading group theory for randomness, in: Proc. 17th ACM Symp. on the Theory of Computing,

ACM, New York, 1985, pp. 421–429.
[4] R. Beigel, H. Buhrman, L. Fortnow, NP might not be as easy as detecting unique solutions, in: Proc. 30th

ACM Symp. on the Theory of Computing, ACM, New York, 1998, pp. 203–208.
[5] H. Buhrman, L. Fortnow, Distinguishing complexity and symmetry of information, Technical Report TR-95-

11, Department of Computer Science, The University of Chicago, 1995.
[6] H.Buhrman, L. Fortnow,S. Laplante,ResourceboundedKolmogorov complexity revisited, SIAMJ.Comput.

31 (3) (2002) 887–905.
[7] J. Buhler, H.W. Lenstra Jr., C. Pomerance, Factoring integers with the number field sieve, in: A.K. Lenstra,

H.W. Lenstra Jr. (Eds.), The Development of the Number Field Sieve, Lecture Notes in Mathematics,
Vol. 1554, Springer, Berlin, 1993, pp. 50–94.

[8] H. Buhrman, S. Laplante, P.B. Miltersen, New bounds for the language compression problem, in: Proc. 15th
IEEE Conf. on Computational Complexity, IEEE, New York, 2000, pp. 126–130.

[9] H. Buhrman, T. Lee, D. vanMelkebeek, Language compression and pseudorandom generators, in: Proc. 19th
IEEE Conf. on Computational Complexity, IEEE, New York, 2004, pp. 15–28.

[10] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, S. Zachos, On completeness and soundness in interactive
proof systems, in: S. Micali (Ed.), Randomness and Computation, Advances in Computing Research, Vol. 5,
JAI Press, Greenwich, 1989, pp. 429–442.

[11] L. Fortnow, M. Kummer, On resource-bounded instance complexity, Theoret. Comput. Sci. A 161 (1996)
123–140.

[12] T. Jiang, J. Seiferas, P. Vitányi, Two heads are better than two tapes, J. ACM 44 (2) (1997) 237–256.
[13] K. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Inform. Process. Lett. 14

(1) (1982) 39–43.
[14] T. Lee, A. Romashchenko, On polynomially time bounded symmetry of information, in: Proc. 29th Int.

Symp. on the Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,
Vol. 3153, Springer, Berlin, 2004, pp. 463–475.

[15] L.A. Levin, Universal search problems, Problems Inform. Transmission 9 (3) (1973) 265–266.
[16] L.A. Levin, Personal communication, 2004.

http://www.cs.berkeley.edu/aaronson/zoo.html.

T. Lee, A. Romashchenko / Theoretical Computer Science 345 (2005) 386–405 405

[17] L. Longpré, S. Mocas, Symmetry of information and one-way functions, Inform. Process. Lett. 46 (2) (1993)
95–100.

[18] M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, second ed., Springer,
New York, 1997.

[19] L. Longpré, O. Watanabe, On symmetry of information and polynomial time invertibility, Inform. Comput.
121 (1) (1995) 14–22.

[20] N. Nisan, A. Wigderson, Hardness vs. randomness, J. Comput. System Sci. 49 (1994) 149–167.
[21] R. Raz, O. Reingold, S. Vadhan, Extracting all the randomness and reducing the error in Trevisan’s extractors,

J. Comput. System Sci. 65 (1) (2002) 97–128.
[22] D. Ronneburger, Personal communication, 2004.
[23] M. Sipser, A complexity theoretic approach to randomness, in: Proc. 15th ACM Symp. on the Theory of

Computing, ACM, New York, 1983, pp. 330–335.
[24] L. Trevisan, Construction of extractors using pseudo-random generators, J. ACM 48 (4) (2001) 860–879.
[25] L. Trevisan, S. Vadhan, D. Zuckerman, Compression of samplable sources, in: Proc. 19th IEEE Conf. on

Computational Complexity, IEEE, New York, 2004, pp. 1–15.
[26] L.G. Valiant, V.V. Vazirani, NP is as easy as detecting unique solutions, Theoret. Comput. Sci. 47 (1986)

85–93.
[27] N. Vereshchagin, P. Vitányi, Kolmogorov’s structure function with an application to the foundations of

model selection, in: Proc. 47th IEEE Symp. on Foundations of Computer Science, IEEE, New York, 2002,
pp. 751–760.

[28] H. Wee, On pseudoentropy versus compressibility, in: Proc. 19th IEEE Conf. on Computational Complexity,
IEEE, New York, 2004.

[29] A. Zvonkin, L. Levin, The complexity of finite objects and the algorithmic concepts of information and
randomness, Russian Math. Surveys 25 (1970) 83–124.

