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Abstract

The information contained in a stringabout a string is the difference between the Kolmogorov
complexity ofyand the conditional Kolmogorov complexityydivenx, i.e.,l (x : y)=C(y)—C (y|x).
The Kolmogorov—Levin Theorem says thiatx : y) is symmetric up to a small additive term. We
investigate if this property also holds for several versions of polynomial time-bounded Kolmogorov
complexity.

We study symmetry of information for some variants of distinguishing complexity CD whe¢e)CD
is the length of a shortest program which accep#md onlyx. We show relativized worlds where
symmetry of information does not hold in a strong way for deterministic and nondeterministic polyno-
mial time distinguishing complexities @Y and CND®Y. On the other hand, for nondeterministic
polynomial time distinguishing complexity with randomness, CARI, we show that symmetry of
information holds for most pairs of strings in any set in NP. Our techniques extend work of Buhrman
et al. (Language compression and pseudorandom generators, in: Proc. 19th IEEE Conf. on Computa-
tional Complexity, IEEE, New York, 2004, pp. 15-28) on language compression by AM algorithms,
and have the following application to the compression of samplable sources, introduced in Trevisan
et al. (Compression of sample sources, in: Proc. 19th IEEE Conf. on Computational Complexity,
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IEEE, New York, 2004, pp. 1-15): any elemeih the support of a polynomial time samplable source
X can be given a description of sizelog P{X = x] + O(log® ), from whichx can be recovered by
an AM algorithm.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most beautiful theorems in Kolmogorov Complexity is the principle of “Sym-
metry of Information”, independently proven by Kolmogorov and Lej@8]. Roughly
speaking, symmetry of information states that for any two stringsdy, the information
contained irx abouty is equal to the information containedyraboutx, up to logarithmic
factors. More formally, letting” (x) be the length of a shortest program which prigtand
C(y|x) be the length of a shortest program which printghen given inpuk, symmetry of
information can be stated 85y) — C(y|x) =~ C(x) — C(x|y). Besides its inherent attrac-
tiveness, this principle has also seen applications in diverse areas of theoretical computer
science, for example in [2,12,27].

In this paper, we investigate the principal of symmetry of information when resource
bounds are placed on the program to desgrigeenx. While the argument of Kolmogorov—
Levin [29] can be used without modification to show that symmetry of information holds
for programs using exponential time or polynomial space, things become trickier with
polynomial time bounds. Though this question has been around for some time, indeed as
early as 1967 Kolmogorov suggested time-bounded versions of symmetry of information
as an interesting avenue of research [16], still few definite answers are known. See Section
7.1 of [18] for a survey and open problems.

The main contributions to the problem of polynomial time symmetry of information
appear in the series of works [17,19] which show, in particular, the following:

e If P = NP then polynomial time symmetry of information hofd9].

o If cryptographic one-way functions exist, then polynomial time symmetry of information
does not hold up to a g n) factor[17,19].

The intuition behind the second result isfils a polynomial time computable one-way

function, andf (x) = y, theny is simple givenx. On the other hand, ik is simple in

polynomial time givery then this would provide a way to invert the function, by cycling

through all small programs.

Revisiting these works, several interesting questions arise:

e Can polynomial time symmetry of information hold up to a factor larger thdadg)?

The same argument sketched above shows that if symmetry of information holds up to

a factor ofé(n) then there do not exist polynomial time computable cryptographical

functions which cannot be inverted in timé"2. However, as, for example, factoring

n-bit integers can be done P2 time [7], it is not implausible that symmetry of
information could hold up to a factor @f(n) = en or evend(n) = n/?*¢, It is the
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casethatZ(x, y) > C(x) + C(y|x), could we show2 —&)C(x, y) > C(x) + C(y|x) for

somee?

e Can symmetry of information hold for complexity measures other than polynomial time
printing complexity? En route to showing that BPP is in the polynomial hierarchy, Sipser
[23] introduced a relaxation of printing complexity called distinguishing complexity,
denoted CD. For a string CD(x) is the length of a shortest program which accejatsd
only x. The arguments of [17,19] leave open the question if symmetry of information can
hold for distinguishing complexity. Now ifis a polynomial time computable one-way
permutation andf (x) = y, then CI®Y(x|y) is constant, as with a description ©ofon
input z we accept if and only iff (z) = y. More recently, distinguishing complexity
measures using nondeterminism, denoted CND, and nondeterminism and randomness
(based on the complexity class AM), denoted CAMD, have been introduced [6,9]. Does
symmetry of information hold for these measures?

e Is there an assumption weaker thaa=FNP which implies polynomial time symmetry
of information?

Addressing the first two questions, we show relativized worlds where symmetry of in-

formation fails in a strong way for Ct9Y and CNIP°Y (the existence of such worlds was

claimed in[5], though without a complete proof). On the other hand, we show that for any set

A € NP symmetry of information holds for most pairs of strigsy) € A with respectto

the measure CAMP?Y. We also unconditionally show thaP®¥(x, y) > CAMDPY (x) +

CAMDPY(y|x). This implies that symmetry of information holds under the condition

CPY(x|y) <SCAMDPY(x|y). We show that this statement, however, is equivalent

to P= NP.

The main tool of our positive results is an extension of the language compression tech-
nigue of [9]. This extension itself has an interesting implication for the compression of
samplable sources, the study of which is introduced in [25]. We show that for any polyno-
mial time samplable sourcg any elemenx in the support oK can be given a description
of size—log P{X = x] + log® n, such thai can be recovered from this description by
an AM algorithm. Note that this means the source can be compressed to expected length
H(X) + O(log® n), differing from optimal by just a Qog® ») additive factor.

Another interesting approach to the definition of time-bounded Kolmogorov complexity is
L. Levin's Kt complexity introducedin [15]. Recently D. Ronneburger proved that symmetry
of information does not hold for Kt complexity in a very strong sense [22].

2. Preliminaries

We use the following notation:

denote byB the set{0, 1}; similarly, B" is the set of all binary strings of length
denote bylx| the length of a binary string;

denote byj| A the cardinality of a finite se4;

for a setA c B* denote byA=" the sef{x : x € A and|x| = n}.

forasetof pairs of stringd c B* x B* denote byA=" the se{(x, y) € A : |x|+|y| = n}.
We will make use of the complexity classes P, NP, UP, RP, and BPIPLFeedefinitions.
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2.1. Kolmogorov complexity measures
We use notation for Kolmogorov complexity frofh8]:

Definition 1. The Kolmogorov complexity (y|x) is defined as
ﬁ}jn{lpl s Up,x) =y}

whereU is a universal recursive function. Also we defiGéz) = C(z|4), where/ is the
empty word.

The choice ofU affects the Kolmogorov complexity by at most an additive constant.
We consider several flavors of time bounded Kolmogorov complexity.

Definition 2. Timet printing complexityC’ (y|x) is defined as

C'(y|lx) = min{|p| : U(p, x) = yandU (p, x) runs in at most (|x| + |y|) step$
p
for a universal maching. Also C’(z) = C'(z|A).

The choice of universal maching affectsC’ (x|y) by at most an additive constant and
the time bound by at most a log) multiplicative factor.
We also make use of a randomized version of printing complexity:

Definition 3. Randomized printing complexity CB& |y) is defined as the minimal length
of a progranp such that

Q) PiU(p,y,r) =x]> % where the probability is taken over all|x| + |y|) bit stringsr.
(2) U(p, y,r) runsin at most(|x| + |y|) steps for alk.

Definition 4. Distinguishing complexity COy|x) is defined as the minimal length of a
programp such that

(1) U(p, x, y) accepts,

(2) U(p, x, z) rejectsvz # y,

(3) U(p, x, z) runs in at most (x| + |z|) steps.

Once again, COz) = CD'(z]4).

There are a few other variants of distinguishing complexityf6lna nondeterministic
variant of distinguishing complexity is defined. This definition is very similar to Definition
4 except that the universal machine is nondeterministic. This version of complexity is
denoted CND, wheret is a time bound:

Definition 5. Let U,, be anondeterministiauniversal machine. Nondeterministic distin-
guishing complexity CNEXy|x) is defined as the minimal length of a progransuch
that

(1) U,(p, x,y) accepts,

(2) Uy(p, x, z) rejectsvz # v,
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(3) U,(p,x,z) runs in at most (|x| + |z|) steps.

Further, in[9] a complexity based on the class AM was defined. In this case the universal
machine is nondeterministic and probabilistic. This complexity is denoted CAMD

Definition 6. Let U,, be a nondeterministic universal machine. CAMDx) is defined as
the minimal length of a programsuch that

(1) Py[Un(p. x.y.r) accepty> 3,

(2) Pr[Uy(p.x,z,r) accepty < 3 forall z # y,

3) U,(p,x,z,r) runsin at most(jx| + |z|) steps.

The probabilities above are taken over allx| + |y|) (respectivelyz(|x| + |z])) bit
stringsr.

As usual, we let CNiz) = CND'(z|4), and CAMD (z) = CAMD’(z|1). We also use
relativizedversion of Kolmogorov complexities, allowing the universal machine to query
an oracle set.

2.2. Symmetry of information properties

Denote byCP% a version of polynomial time-bounded Kolmogorov complexity, which
can beCPoY, CDPOY, CNDPY, or CAMDPOY. To formulate the problem of symmetry of
information more precisely, we isolate three associated properties. The first Easlye
Direction of Symmetry of Information

For any polynomiap there exists a
polynomialg such that for alk, y :

C4M (x, y) <CP™ (x) 4 CP™ (y|x) + O(log (n)),
wheren = |x| + |y|.

(EDSI)

Itis easy to verify that (EDSI) holds for any of the above complexity measures. Next is the
Hard Direction of Symmetry of Information

For any polynomiap there exists a
polynomialg such that for alk, y :

C40) (x) + €1 (y|x) <CP™ (x, y) 4+ O(log (n)),
wheren = |x| + |y|.

(HDSI)

Finally we also consider the property 8ymmetry of Mutual Information

For any polynomiap there exists a
polynomialg such that for alk, y : (SMI)
Cl(x) + CU(ylx) <CP(y) + CP(x|y) + O(log n)

Notice that if both (EDSI) and (HDSI) hold for a complexity measdré¢hen also (SMI)
holds forC. The converse is not necessarily true.
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2.3. Language compression theorems

A fundamental theorem of Kolmogorov complexity, and one that is very useful in appli-
cations, is the following:

Theorem 7(Language Compression Theorenfor any recursively enumerable setahd
all x € A=" we haveC(x) < log |[A="|| + O(log n).

This is asx can be described by its index in the enumeratioA of.

This theorem is essentially used in the proof of (HDSI) in the resource unbounded case
given in[29]. Similarly, our results about resource bounded symmetry of information (both
positive and negative) crucially rely on recent resource bounded language compression
theorems. In [9] the following analogue of the Language Compression Theorem is shown
for CND complexity.

Theorem 8(Buhrman et al[9]). There is a polynomialp(n) such that for any set
Ac B* and for all xe A=" we have CND”"™" (x)< log |A="|| + O(d(n)) where

o(n) = (y/log | A="|| + log(n)) log(n).

Furthel{9] show that with the power of Arthur—Merlin protocols a Language Compression
Theorem holds which is optimal up to an additivelogterm:

Theorem 9(Burhman et al[9]). There is a polynomigb(n) such that for any set C B*
and for allx € A=" we haveCAMD?”4™" (x) < log ||A="]| + O(log®(n)).

For comparison we remark that for CD complexity the situation is somewhat different.
In [6] it is shown that there is a polynomialn) such that for any s and for allx € A="
it holds that CO¥-4™" (x) <2 log||A="|| + O(log n). Furthermore, [8] show that there is
a setA where this bound is tight up to@g n) terms. That is, the factor of 2 in general
cannot be improved.

3. On CD complexity

In this section we show a relativized world where the inequalities (SMI) and, hence,
(HDSI) fail in a strong way for CP?"Y complexity. The proof of the next proposition
follows the idea outlined in [5]:

Proposition 10. There exists an oracle A and a polynomjgl) satisfying the following
condition. For any > 0 and large enough n there exists a péir, y) € B" x B” such that

e CD?" A7 (y) > (1— &)n — O(log n),

o CDPMA™ (1) — O(1),

o CDPMA™ (y13) — O(1) and everC P-4~ (y|x) = O(1),

i.e, CDPMA™ (1) 1 CDPMA™ (y]x) « CD2" A" (y) + CD?"“A™ (x|y). Thus (SMI)
does not hold with the oracle. A
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Proof. Fix n and choose an incompressible pai, y,) € B" x B". Define a mapping
fn : B" — B" as follows:
o fu(xp) = yu,
e f,(z) =zforall z # x,.
Now we defineA=2". At first define two auxiliary oracles,, andC,: let B, contain the
graph of the functiory,, (on input(z, i) the oracleB,, returns theath bit of y = f,(z)) and
C, contain a single string, (on inputz € B" the oracleC, returns 1 if and only it = x,,).
A query to B, consists ofn + log n) bits, and a query t@,, consists oh bits. So a query
to B, ® C, can be encoded as a strings of lengtht log n + 1), which is less than2
Thus, we may set=%" = B, & C,,.

Obviously, for some polynomiai(n) we have CO™-A~" (x,) = O(1) (it is enough to
queryC, to distinguishx from other stings) and?™-4~ (y,|x,) = O(1) (it is enough to
query fromB,, the valuef; (x,)).

Onthe other hand, G834~ (y,,) > (1— &)n — O(log n). Really, letsbe a shortest C&
program fory, and assume

Is|<(A—¢en—Dlogn

for a large enough constabt If this program queries at some step 2*” the pointx, from
the oracleC,, or any point(x,, i) from the oracleB,, then

C(xnlyn) <Is| +log ¢t + O(log n)
and
C(xn, yn) <lyul + Is| +log ¢t + O(log n) < 2n.

We get a contradiction, as the pair,, y,) is incompressible. Hencedoes not query any
‘interesting’ points from the oracle. Thus, it can work with a trivial oraBle® C;, (B,
returns theth bit of zfor anypair (z, i), andCj, returns O foranystringz). This means that

Cn)<Is|+0(1) K n
and we again get a contradiction. So, we have: (1 — ¢)n — O(log n). [

4. On CND complexity

In this section we prove that (HDSI) and (SMI) are not true for a relativized version of
polynomial time bounded CND complexity. Our proof is based on the Language Compres-
sion Theorem for CND complexity, Theoren

Theorem 11. Letm = m(n), s = s(n), t = t(n) be functions such that
2s(n) +2m(n) <o
and

1(n)2"m L 2n3,
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Then there is a polynomial(n), and setsA, X such that
X" C B, X" =220,

o A=2n c B" x B",

Iy : (x,y) € A=21}||>§ - 2" foranyx € X=",

U y: oy e A=< 2"
xgX

and for large enough sfor all x € X=", for at Ieast% - 2" stringsy € B" the following
conditions hold (x, y) € A=2",

CND"»A=2”3|y> <s(n) + 0(3(n)).
CND'™ A" (x)  >m(n) — O(1),
CND/ ™A™ (y|x) >n — O(1),

whered(n) = /n log(n).
Note that the ternd(n) = /n log(n) comes from Theorera.

Corollary 12. There exists an oracle A such tha€AIDP°Y version of(HDSI) and (SMI)
do not hold. Moreoverfor any e € (0, 1) there exists a polynomial p such that for any
polynomial g for large enough n

(2 — &)CND”A™ (x, y) < CND?4™ (x) + CND%4™ (y|x)
and

CND”4™ (y) + CNDP 4™ (x]y) < CND#A™" (x) + CND# 4~ (y[x)
for most(x, y) € A=2",

Proof. It follows from Theoremll fors(n) = en/3,m(n) = (1 — &/3)n, t(n) = 26"/8.
O

The bound(2 — ¢) in the first inequality of Corollary 12 is tight. This can be easily
seen as

CNDPOW-A™ (1 ) > CNDPOY-A™ (x) — O(1)
and

CNDPO-A™ (3 ) > CNDPOY-A~ (y[x) — O(D).
Hence for any oraclé

2CNDP A~ (x, y) = CNDZA™ (x) + CNDZA™ (y]x) — O().

Proof (Theorem 11 Fix an integem > 0. We denote by the characteristic function of
A=2 e, F((x,y)) = 1if (x,y) € A=2" and F(x, y) = O otherwise. We define this
function in a few stages: construct a sequence of functieng, . .., Fonm_1,

F; :B" x B" — {0, 1, undef}.
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Fori < j the functionF; should be an extension &, i.e.,
V{a, b) if F;(a, b) # undef thenF;(a, b) = Fi(a, b).

The initial function is trivial: Fo(a, b) = undef for all{(a, b). In the sequel we shall define
F as an extension afyum)_1.
Let us introduce some notation. We say that aBset B" x B" respects functionf; if

Fi(a,b) =1= (a,b) € B,
Fi(a,b) =0= (a,b) ¢ B.

Lets1, ..., somm_q be the list of all CND-programs of length less thatn). We suppose
each program; can access an oradl(the oracle is not fixed in advance). Also we suppose
that eachs; is clocked and runs at mostn) steps. We say that; is awell definedCND
program for an oracl® if s accepts exactly one string
. LT ) .
Further defineF; by induction. Let the functiongp, ..., F;_1 be already defined. We

must construct a functiof, which is an extension af;_1. Consider the progras. There
are two possibilities:
(1) foranyB c B" x B" that respectg_1, the programs; is not well defined for the

oracleB;
(2) there exists at least one #iC B" x B” that respect$}_1, and the prograry, is well

defined for the oraclB.
The first case is trivial: we séf. (x, y) = Fr_1(x, y) forall (x, y). Inthe second case there
exists a seB and a string« such thatv,f acceptxin time 7'(B, x), which is at most (n),
and rejects all other strings. If there is more than one such set, we choos® witiethe
minimal possibleT (B, x). Denote byx; the fixed stringx. Let the list of all queries of the
programs,ﬁg (x) to the oracle (for one of the shortest path, i.e., for an accepting path of
lengthT (B, x)) be

(ao, bo), (a1, b1), ..., (ar, br),
r < t(n). We include all these pairs in the oracle. More precisely, ddfinas follows:

Fi(a,b) = Fe_1(a,b) if Fr_1(a,b) # undef

Fk(aj,bj)z:l. if(aj,bj)EB, j=0,...,r
Fk(aj,bj)ZO if(aj,bj)¢B,j=0,...,r,
Fi(a,b) = undef if Fi_1(a, b) = undef anda, b) # (aj, b;), Vj.

For any seR that respect$y, the program,f accepts the string; in time 7'(B, x). Note
that for a time bouney > 7' (B, x) the CND program,f may accept also a few other strings
exceptx,. But for anyrg < T'(B, x) the program;,f does not accept in timg any string,
because we chosg that provides minimum to the vali&(B, x). Thus, if for a time bound
fo<t(n) the prograrm,f’ accepts at least one string, it must accept ajson other words,
it cannotdistinguishany string excepty.

We have described an inductive procedure, which defines the funé@ons., Fomm _1.
Ateach stepwe setF;(a, b) # F;_1(a, b) forat most (n) values{a, b). Hence the function
Foma_q is equal to undef for all values ii" x B" except for at most(rn)2"™ values.
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Besides we get the list of stringsx; which can be possibly accepted by distinguishing
programs® if a setR respectsonwm _1. This setis rather smalf.L || < 2",
Further we choose an arbitrary set

X=" C B"\L
of size 2™ . Now define the functiofr as follows:

F()C, y) - Fzm(")_]_(xy y) |f Fzm(n)_l(x, y) # Undef,
Fix,y)=1 if Fonm_1(x,y) =undef andr € X,
F(x,y)=0 if Fomm_41(x, y) =undef andv ¢ X.

The characteristic functiol defines the oracla=2" and the construction is finished. Note
that for anyx € X="

Iy : (e,y) e A=) =L 2"

and

. =2n 1 on
U v e )<l

xgx=n

Now fix any stringxo € X. Obviously, CNB"™-4~" (x0) >m(n) becauseyq ¢ L. Further,
there are at least

-3 3
2= 2"ty — 23 > 3. 2"

stringsy such that
e (x0,y) € A=,
e (x,y) & A=%" foranyx ¢ X=", and

o CA 7 (ylxo)=n - 3.

Denote byyg any of these strings. From the conditions above it follows that

o CND'™47 (y0|x0) > n — O(1) since resource bounded complexity is not less than
plain complexity;

o CND?™A™ (xo]y0) < log [[{x : (x,y0) € A=2"}]| + O3(n)) <s(n) + O(3(n)) from
Theorem8. 0O

5. On CAMD complexity

In this section we study symmetry of information under the CAMD complexity measure.
In contrast to the case of CD and CND complexity, with the power of nondeterminism
and randomness we can prove some positive results, showing that some weaker versions of
(HDSI) hold for CAMD.

Our proof will follow the proof in the resource unbounded case as given in [29]. We first
review this proof to see how it can be used in our casex gbe two strings such thit| +
|f| = n, and suppose thét(«, f) = m. We define the set,. ,, = {y : C(x, y) <m}. Notice
that||Ax m| < 2"+1 and that giverx andmthe SetA, ., is recursively enumerable. Thus as
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p € A, by the Language Compression Theorem (Theor@nt (f|a) < log || Aw.ml +
O(log n). Letk* be such that? < NAgml < 2K +1 Then the above says thatf|«) <k*+
O(log n).

Now consider the s&®,, x = {x : [|Ax.nll > 2%}, Notice that the size @B, « is less than
2n—k+1 and that: € B,.ik+. The setB,, « is recursively enumerable given k, thus by the
Language Compression Theorefiz) <m — k* 4+ O(log n). And so

C() + C(Bloy < m — k™ + k* + O(log n)
< C(a, ) + O(log n).

If we substitute polynomial time printing complexity in the above argument, then the set
Ay m isin NP. Further, by the approximate lower bound counting property of AM [3] there
is an AM algorithm which accepts with high probability fore B,  and rejects with high
probability forx ¢ B, x—1. We have, however, no guarantee on the algorithm’s behavior
for x € By k—1. In the next theorem, we extend the language compression results of [9] to
work for AM ‘gap’ sets of this type, allowing the above argument to go through. This result
also implies near optimal AM compression of polynomial time samplable sources, recently
studied in [25].

5.1. AM compression of AM gap sets

Lemma 13. Let A C B*. Suppose there is a polynomial time bous@), and predicate

Q such that

o forallu e A=",Pr_gom[3v Q(u,v,r) =1]>%,

o [{ueB":Pr_gsw[Iv Qu,v,r) =1] > 3}I<2*

and for allu, v, r the predicateQ (u, v, r) can be computed in polynomial time. Then there
is a pé)lynomial time boung(n) such that for allu € A=", we haveCAMD? (1) <k +
O(log® n).

Before going into the proof of Lemm&3, we briefly recall the technique of [9]. Let
TR : B" x BY — B™ be the function underlying Trevisan’s extractor [24], that is the
composition of a good error correcting code with the Nisan—Wigderson generator [20]. The
output of TRu, e) is the evaluation of the Nisan—-Wigderson generator on segten
usingu as the ‘hard’ function supplied to the generator, wheigthe image ofi under an
error correcting code. The key property of this function, what makes it a good extractor and
compressor, is that if TR, ¢) is not close to uniform over choice efe B on some set
B c B™, thenu has a short description given oracle acce® ta [9] it is shown thati can
be printed in polynomial time from this description and oracle acceBsfhis construction
works ford = O(log® n), where this term arises from teeak desigmonstruction of [21].

To give the elements of a sdt C B" short descriptions, we let the $8tbe the image
of A x B under the function TR. That i = U,ca U,cpe TR(x, e). Notice that for any
x € A, Pr,[TR(x, ¢) € B] = 1. On the other hand if we takato be log||A|| + d + 1 then
the probability that a uniformly chosene B™ isinBis less than}. Thus all the elements
of A have a short description relative B> Now notice that with nondeterminism and an
oracle forA, we can decide membershipBythus all the elements éfhave a short CND
description. The elements Afcan be given an even more succinct CAMBescription by
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using the randomness in the AM protocol to simulate part of the probabilistic argument in
[20,24].

Proof (Lemma13. By amplification and the results of [10], we can transform the predicate
Q into a predicateQ’ taking random strings of length a polynomigkn) and with the
property
o ifu e AZthen Pr[Fv Q'(u, v, r) =1] =1,
o [[{u:Pr[Fv Q'(u,v,r) =1]=27" 2 <2
for r chosen uniformly oveB? ™. Let L = {u : Pr,[3v Q' (u, v, r) = 1]>27"72}.

For each- € BY' ™ we define a set

B ={w:3uecB", v, eTRu,e) =wA Q' (u,v,r) =1}.

In the sequel we denote I8 (w) the propertyw € B, .

Clearlyifu € A=",then Pg[B,(TR(u, ¢))] = 1, for anyr € BY ™. Now for a randomly
chosenw € B and randomly chosene BY ™, we calculate the probability that € B, .
As for a (/1 variable the probability of being 1 is equal to the expectation of the variable,
we have

Put;[w € B;] = E,w[Br(w)].

By linearity of expectation, we can divide the latter into two contributions, that from elements
w for which3u € L and see@ such that TRu, ¢) = w, and thosev for which this is not
the case:

Eyw[Br(w)] = Z E[B;(w)] + Z E[B(w)].
w:Teleil,e) w;iTERL(jl,e)

By takingm = k + d + 2 the first term can be bounded %yThe second term is bounded
by 27272 < %. Going back to probability notation, we have for ang A="

PB,(TR(u. ¢))] — Pr[B,(w)]>3.
r,e r,w
The value of Trevisan'’s function T®, ¢) can be viewed as a sequence of bits

ia(e)...im(e),

wherei; = ii(els,), i.e., the result of application of the boolean functibto theith set of
theweak design set systdfor details se¢21] or [9]). Thus,i; depends orS; | variables.
By definition of a weak design the cardinalities$ffor all i are equal to each other. Denote
i = 2l We choose a weak design system as in the proof of AM language compression
in [9, Theorem 3]. For this weak desigris polynomial inn.

It follows by the hybrid argument that there is ar [m] and a setting of the bits @&
outside of the sef; such that

PrIB(1(x) . 1 () ()T = P [Br(@1(x) . i1 (b)) > 5m. (1)
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When the bits o€ outside ofS; are fixed, all the functiong; only depend on the bits inside
of S;, thus the variabl& in the above ranges uniformly ovgs; || bit strings.

Let F(x,b,r’) = 1(x)...u;_1(x)br’. Our algorithm to approximatg; will do the
following: on inputx, choose uniformly at randoi r, v’ and evaluateB, (F (x, b, r')); if
this evaluates to 1, then outpuytotherwise output 3 5. Call the output of this algorithm
gp(e, r, r"). We now estimate the probability thai (e, r, r") agrees withs; (x).

Pro[gp(x,r,r)y=a(x)]= Pr [gy(x,r,r') =i(x)|b=i(x)] Prib=ii(x)]
x,r,r’,b x,r,r',b x,b

+ frr, RELCHE ') = a0l # ﬁ(X)]f}[[b # i(x)]

= % Pr b[B,(F(x, b,r") =1b = i(x)]

x,rr',

+% Pr , [Br(F(x. b, r')) = 0lb # ii(x)]

X, rr,

1 1
= Z+2( PrOIBAFG, b)) =1k =i(x)]
2 2 \x,rr'b

- Pr ,Br(Fx, b,r')) =1b # ft(X)])

X, rre,

+ %( Pr [B,(F(x,i(x),r")) = 1]

X,F,r

NI =

— Pr, [B-(F(x,1—i(x),r")) = 1]>

X,r,r
1
=S+ Pr [B.(F(x,i(x),r") =1]
2 xrrlb

— Pr[B(F(x.b.r) =1]

x,r,r',

1 1

2 2 + 2m’

The last line follows from Eq.1). We fix the bitb to a valueb; which preserves this
prediction advantage. Notice thgy, (x, r, ') cannot be computed by Arthur himself, as
he needs Merlin to demonstrate witnesses for acceptansBeg. isWe now show how the
computation ofgy, (x, r, #’) can be simulated by an Arthur—Merlin protocol.

We say thatr, r’) gives aru-approximation tai if Pry[gs, (x, r, r’) = ii(x)] > o. Forfixed
(r,r"), we identifyg,, (x, r, r') with the stringzy, ., wherezy, .~ has bitby in positionx
if and only if g5, (x, r, ¥') = 1. For convenience we assume without loss of generality that
b1 = 1 and drop the subscript. Note that with this choice the number of ongsisrnthe
number of stringx for which B acceptsii(x) ... u;_1(x)b1r. With w(z) we denote the
number of ones in a string

Arthur randomly selects strings, . ...,y € {0, 1}4'™ andrf, ..., r, € {0,1)"~, and
asks Merlin to provide witnesses @, (F(x, b1, r})). Included as part of our description
will be the average number of acceptances over all choicesofi = 274/ ™2y~
&b, (x, r,r"). To limit Merlin’s freedom in choosing which acceptances to demonstrate in
an adverse way, we want that the total number of acceptances of the cheice.of rg
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andrj, ..., r; is close to the expected- a. This is insured by an easy Chernoff bound
argument:

Claim 1. For anyy = y(m,n) > 0, there exists = O(i12/7%) such that with proba-

bility at least3 over Arthui's choice of(r1, r}), . .., (r;, r}) the following two things will
simultaneously happen
(1) A Zm fraction of (r1, r}), . .., (ry, r}) will give 3 + 1/4m approximations tai.
(2) Thetotal number of acceptances by B over the strings-)), . . ., (r;, ;) will be within
ys of the expected. That,is
N
> w(zj) —sal <ys.
j=1

Proof. To lower bound the probability that both of these events happen, we upper bound
the probability that each event individually does not happen and use a union bound.
Item (1): Notice that for a givery, '), if

PriB; (l1(x) ... dj—1(0)ia(x)r")] — F;F[Br(ftl(x) o li—1(x)b1r')]1>1/4m

then(r, r’) gives a é + 1/4m)-approximation ofi. We will say that the paitr, r’) is bad
if it does not yield a% + 1/4m approximation ta:. By Eq. (1) and Markov’s inequality,

1—1/2m
Pri(r, ) e bad< =" 1 1/4m.
prlry ebads g 7, < 1= 1/4n

By a Chernoff bound, for some constanat> 0,

Pr [llbad|>(1— 1/8m)s]< exp(—cis/m?).

(P11 ses (rs.r

Item (2): By a Chernoff bound, for some constant> 0,

|

By takings = c3112/y2 for a sufficiently large constaag, the probability of each item will
be less thar, and the claim follows. [

1/s i: w(zj) —a

J=1

> V} <2exp—c2)’s /ii?).

From this point the proof follows verbatim as in the proof of AM language compression
[9, Theorem 3]. O

One application of this lemma is for the AM compression of samplable sources. The
study of the compression of samplable sources is introduced in [25]. They give evidence
that it is unlikely that all polynomial time samplable sources can be (near) optimally com-
pressed by probabilistic polynomial time algorithms. We show, by contrast, that with AM
algorithms, and when we only consider decompression efficiency, we can achieve nearly
optimal compression.
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Definition 14. Let X, be a probability distribution on strings of lengthWe say thatX,,
is polynomial time samplable if there is a polynomjgl) and algorithmS such that

Pr [SA%r) =x]=PrX, =x]
re{0.2jpm

for everyx € {0, 1}, and where the running time 6%1", r) is bounded by (n).

Theorem 15. Let X,, be a polynomial time sampable source. There is a polynoptia)
such that for every x in the support &f;,

CAMD”™ (x)< — log PX, = x]+ O(log® n).

Proof. Consider the set; = {x : Pi{X,, = x]>2"%}. As the source,, is samplable, say

by an algorithnS, the set{r : S(1", r) = x} isin P. Thus by the approximate lower bound
counting property of AM3], there is an AM algorithm which accepts amye L; with
probability greater thar%, and rejects any elemertot in L;_; with probability greater
than%. Thus the total number of stringswhich will be accepted by the AM lower bound
counting algorithm will be less than the number of strings which receive probability more
than 27 ¥~ which is less than’?"1. Now applying Lemma 13 we obtain that there exists a
polynomialp such that CAMD (x) <k + O(log® n) forallx € L;. O

Finally, we remark that these results relativize.

5.2. Application to symmetry of information

Theorem 16. There is a polynomiap(n) such that for any sed c B* x B* and all
(x,y) e A=

log |A="||>CAMD?4™" (x) + CAMD”4™" (y|x) — O(log® n).
Furthermorg if A € NP then there is a polynomial(n) such that

log |A="|| > CAMD? (x) + CAMDY (y|x) — O(log® n).

Proof. Fix nand(a, f) € A=". Denotem = log ||A="| andA, = {y : (x,y) € A="}.
Membership in the set, can be decided in polynomial time giverand the oraclet=".
As i € A, it follows from Theoren® that CAMD? 4™ (Ba) < log || Ax || + O(log® n).

Now consider the seB, = {x : ||Ac||>2F}. Letk* be such that? < || A,| < 2¢"+1.
Thena € By«. By the approximate lower bound counting property of AM [3], there is a
predicateQ (computable in polynomial time given the oracl€™) such that
o if x € B then PF[3yQ(x, y,r) = 11> 2,

o if x & By_1then PF[3yQ(x, y,r) = 1]<%.
Thus if Pr[3yQ(x, y,r) = 1] > % thenx € B;_1. However||A="|| = 2" implies that
| Be_1]| <2™**+1 Now by Theoren® we obtain CAMD'A™" () <m — k* + O(log® n).
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Putting the above together we have
CAMD? 4™ (2) + CAMD?A™" (Bloy <m — k* + k* + O(log® n) <m + O(log® n)
which gives the first statement of the theorem.
To prove the “furthermore”, note that approximate lower bound counting of NP sets can
be done in AM[3], and apply Lemma 13 to give the bound on (unrelativized) CAMD
complexity of NP sets. (]

Corollary 17. For any setA C B* x B* and any polynomiap(n) there is a polynomial
g such that for all but at most &/n fraction of (x, y) € A=",

CAMDP™-A7" (x| y) > CAMD?™-A7" (x) + CAMD?™-47" (y|x) — O(log® n).
Furthermore if A € NP then

CAMD”™ (x, y) > CAMD?™ (x) + CAMDY™ (y|x) — O(log® n).

Proof. For all but at most a /I fraction of (x, y) € A=" we have
CAMD?™-A™ (x y) > log [|A=" || — Olog n).

Applying Theoren16 we get the first statement of the corollary. Applying the “furthermore”
of Theorem 16 gives the furthermore heré.l

Theorem 18. For any stringsx, y € B”, and polynomialp(n) there is a polynomiag (n)
such thatC? (x, y) > CAMDY (x) + CAMDY (y|x) — O(log® n).

Proof. Fix a pair of strings(a, ). Letn = |«| + |f], and suppose that? («, f) = m.
Consider the seft = {(x,y) : CP(x, y)<m}. As membership irA can be decided in
nondeterministic polynomial time, we may invoke the “furthermore” of Theoténo give
log||A|| = CAMDY () + CAMDY (B|a) — O(log® n) for some polynomiat;. On the other
hand,|A|| <2"*1, and the theorem is proven]

From Theorem 18 we obtain as a corollary a result of [19], up to an additieen))
factor: if P= NP then

CP(x,y)>C?(x) + C4(ylx) — O(log® n).
More generally, the following corollary holds.
Corollary 19. Suppose that for any polynomial = p(n) there is a polynomialj =

g (n) such that for any, y, C?(x|y) <CAMD? (x|y) + O(Iog3 n). Then(HDSI) holds for
polynomial time printing complexityip to anO(log® 1) additive factor.
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6. What implies symmetry of information?

Isthere an assumption weaker thagmNP which would imply symmetry of information?
Corollary 19 shows that symmetry of information (up to atogfactor) follows from the
assumption:

For any polynomiap there exists a

polynomialg such that for alk, y :

C4(x]y) < CAMD? (x]) + O(log (n). )
wheren = |x| + |y|.

It is easily seen that this property follows from P NP. We now see that it is in fact
equivalent to P= NP.

Theorem 20. Property(x) impliesP = NP.
We first prove the following lemma.

Lemma 21. Suppose the following hald

e NP C BPP.

e Forevery polynomial g there exists a polynomial p such that for,@(x) < CBP? (x) +
O(log |x]).

ThenP = NP.

Proof. By the results of Kd13], the first item implies PHC BPP and NP= RP. Thus
to show P= NP it suffices to derandomize RP. Lete RP witnessed by a machiné
running in polynomial time and using = m(n) random bits on an inpwtof lengthn. We
shall assume that > n.

By standard amplification we transforih into a polynomial machiné/’, which uses
m(n)3 random bits and for which the probability th&t' (x, r) rejects whenx € L is less
than 27°. As the set of random strings e B"* which give the ‘wrong’ answer is in P
givenx, we can apply the Language Compression Theorem for nondeterministic complexity
to give that for a polynomial time boung, CNDq'(r|x) <|r| — m? + O(5(m)), for any
such ‘bad’r, whered(m) = /m log m as in Theorem 8. In particular, this means that if
CND? (r) = |r| = m® thenM’(x, r) must accept.

We now claim that for a given lengthwe can construct a string of lengifi = (m(n))3
with high CNDY' complexity in the polynomial hierarchy. Indeed, checking that a string
has maximal CND complexity can be done wittE4 oracle. Thus the lexicographically
first string of lengthm’ with maximal CND complexity, call it*, can be found with &%

oracle by doing a prefix search. This means a3 (r*) = O(log n). As the hypothesis
of the theorem implies Pl& BPP, and following the proof that BBP® = BPP, we obtain
CBP!" (+*) = O(log n). Finally applying the second hypothesis of the theorem we have
CP(r*) = O(log n).

Thus to decide ifc € L we evaluateM’(x, U(p)) for all programsp of lengthd log n
for some constard. We reject if and only ifM’ rejects on all these computatiords.will
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outputr* for one of these prograngsand by the above argumentyife L thenM’(x, r*)
must accept. [

Proof (Theorem 20 Two consequences follow from assumption (*):

e CP(x]y)<CBP!(x|y) + O(log n),

o CP(x|y)<CNDY(x|y) + O(log n).

The second item is shown [fi1] to imply NP = RP. This fact can be proven as follows.

If ¢ is a formula with exactly one satisfying assignmaihen CNI¥ (a|¢) = O(1). Thus
printing complexity being less than nondeterministic distinguishing complexity gives that
unique SAT can be solved in polynomial time, and so by Valiant—Vazirani [26ENRP.

We can now apply the Lemma 21 to obtairsANP. [

A corollary of Lemma 21 is that polynomial time symmetry of information implies
BPP # EXP. We first need the following lemma.

Lemma 22. If (SMI) holds for polynomial time printing complexjtthen for every poly-
nomial q there is a polynomial p such that for aJl&” (x) < CBF? (x) + O(log |x|).

Proof. Suppose that CBRx) = k. This means there is a progrgnof lengthk such that
U(p,r) = x forat Ieasl% of the strings- € {0, 1}97". By counting, it must be the case that
C(r|x)>|r| — O(1) for one of these strings call it #*. Using (SMI), there is a polynomial
p for which

Ci(r*) + CY(x|r*) = CP(x) + CP(r*|x) — O(log n).
As C9(r*) = CP(r*|x) + O(1) this impliesC? (x) <k + O(log n). O

Corollary 23. If for every polynomial g there exists a polynomial p such that for every
X, CP(x)<CBP!(x) 4+ O(log |x|), thenBPP £ EXP. In particular, if (SMI) holds for
polynomial time printing complexity the8PP # EXP.

Proof. Suppose, for contradiction, that EX® BPP. This implies that NRE BPP, and
thus by Lemma21 that P= NP. We now have EXR- BPP < NPNP = P a contradiction
to the time hierarchy theorem.[

We now turn to relativizations to help us find a good candidate hypothesis, weaker than
P = NP, which would imply symmetry of information. As we know that symmetry of
information implies the nonexistence of cryptographic one-way functions, it is natural to
askifthe converse holds. This is a tantalizing hypothesis as it is known that the nonexistence
of one-way functions does imply a strong compression result [28, Theorem 6.3]. We show
that this implication does not hold in every relativized world. That is, we show there is an
oracleX such that B = UPX yet symmetry of information does not hold relativexo

Theorem 24. There is an oracle X such thet' = UPX yet symmetry of information does
not hold relative to X
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Proof. Let X be an oracle where®P= UPX and P* £ NPX. Such an oracle is constructed
in [4]. With respect to this oracle NP= RPX. Suppose also that symmetry of information
holds relative toX. As the proofs of Lemmas 21 and 22 relativize, this would then imply
PX = NP¥, a contradiction. [J
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