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Abstract: Previous methods for exact linearization by feedback have relied on solving Frobenius 
systems of partial differential equations of dimensions equal to the Kronecker indices. We will 
describe an algorithm whereby one may find the linearizing feedback for any controlable lineariz- 
able system having distinct Kronecker indices with p-controls by purely algebraic calculations 
and integration of at most p one-dimensional Frobenius systems. The paper concludes with a 
concrete example considered by Hunt-Su-Meyer in their paper [3]. 
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1. Introduction 

The basic idea is to use the symmetries of a system which can be brought into a 

Brunovsky normal form to establish a standard presentation and then use the sym- 

metries to uncouple the various blocks. The analysis proceeds by utilizing the method 
of equivalence [l] to compute the structure equations of the symmetry pseudo-group 

of a controlable linearizable system. Off of rest points this symmetry pseudo-group is 
transitive on the space of states and controls and the structure equations coincide with 
those of the original control system. Finally in the case that the Kronecker indices are 

distinct each block can be put into linearized normal form by computations involving 
at most integration of one one-dimensional Frobenius system. 

2. The Algorithm 

The details of the computation and characterization of the structure equations of the 
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symmetry pseudo-group of a controlable linearizable system have already been given 
in [2]. The structure equations become more difficult to describe if there are repeated 
Kronecker indices and hence in this short report we will assume that all Kronecker 

indices {FC~} are distinct and are ordered 61 > , . . > np. In this case we will have as 

part of the structure equations, those of the general group on the line prolonged (i.e. 
differentiated) ~1 times. These will appear as the equations generated by one of the 

form 
dq; = 77: A 77; 

and all the equations one obtains by taking exterior derivatives. One derivative yields 

drlh = 7: A 7: 

and its derivative yields 

and so on with all of the equations taking the form 

The coefficients of the terms which are congruent modulo 721,. . . , $-I are obtained by 

applying the identity d2 = 0 to the previous line so these may all be computed by 
symbolic manipulation if a concrete value of 61 is given. 

In order to obtain the linearizing coordinates one proceeds as follows. The l-form 
7711 satisfies d$ # 0, but dqf A q1f = 0, so 7; is exact up to a factor. Hence we obtain 

linearly independent functions x1 r, 2; of the original variables such that 

We also have the structure equation 

which tells us that dq: determines 77: up to a multiple of 7:. In fact that multiple 
determines CC: from 

dxf 4 1 ?j; = -i”- - 7771. 

x2 22 

Likewise the remaining state variables {zf}, 4 < i < ~1 corresponding to this longest 

Brunovsky block are obtained by purely algebraic calculations. 
Next we proceed to calculate the state variables corresponding to the other Bru- 

novsky blocks. The structure equations will have the form 



An algorithm jor feedback linearization 155 

This means that modulo ~11, 712 is exact up to a factor, thus we may solve 

where zf, 23 are linearly independent functions of the original variables, linearly in- 

dependent from _z:, . . . , ct&. As before, we obtain all the successive state variables 

x;, . . . ) z& by purely algebraic calculations. All of the calculations of 2” for 2 < A 6 p 

are identical with the one for xf. 

3. Example of the linearization algorithm for (3,2) systems 

We illustrate our method for the control system 

dxl . 
dt = sm x2, 

dx2 . 
dt = sm x3, 

dx4 
- = 2s + (x4)” - (x1)ru, 
dt 

an example of Hunt-Su-Meyer [3]. 

I) Set up the associated exterior differential system Cu on the space of states and 
controls as in [2]. Thus given 

dxl 

dt= 
f’, !g = f2, g = f3, g = f4, T!g = f5, 

take the matrix 

and set qu = Aodx, and ~0 = dv. This results in 

)i 

- sin x3dx1 + sin x2dx2 

-((x4)” + v’)dx’ + sin x2dx3 
ZZ 

-(x5 + (x4)” - (xl)lo)dxl + sin x2dx4 

-v2dx1 + sin x2dx5 

with independence condition 17; = dx’/ sin x2. 

11) Compute the derived flag, which amounts to putting Ku, the 5 x 2 matrix defined 

by 
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into normal form. This results in 

by the change of generators 

fl: = ?i$ ?jt = 7703, ji’ = sin x2$, ji2 = sin x2p2. 

Now modulo Ce 

and we see the derived flag is Co (‘1 = {$,ij,}, and Cf) = (0). In the inductive notation 

of the general theory we noti set the complement of Ct) in CC, equal to 

indicating that these forms act as the new controls for $1. 

III) Normalize the exterior derivatives of CF’, which amounts to putting Kc), the 

2 x 2 matrix defined by 

into normal form. 

In our example 

d7$ G (dx’/ sin x2) cos x3(sin x2dx3 - ((x4)” + v’)dx’) = 7: cm x3 A $, 

d$ E (dx’/ sin x2) A (sin x2dx5 - w2dx1), 

hence 

&l) = (..gx3 y) normalizes to> (i 0) 

by the change of generators Fjt = cosx”Fj,‘j. 
(1) IV) Normalize dqi with respect to Co , which amounts to putting ~(~1 defined by 

into normal form. 
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dq; = 
(sin x2)2 

cos x2 
dx2 A dx’ 

dx’ cos x2 =- -(sin x2dx2 
sin x2 sin x2 

- sin x3dx’) = 7; co652 2 
sin x2 ‘O’ 

Hence 

A2) = (cos x2/sin x2, 0) normalizes to 
- (LO) 

by the change of generators F$ = cos x2/sin x2 7702 and results in 

d$, = q; A ?j;. 

If we follow the inductive notation, we set 

711 = dx’/ sinx2 and qi = ?o!_? (sinx2dx2 - sinx3dx1), 
sin x2 

V) Compute representative forms for the eta’s satisfying the previous structure 

equations. We already have qi and 7;. Next 

dq; = -d 
cos x2 

(sin x2)2 
sin x3 

> 
A dx’ 

= dx’/(sin x2) A d 
cos x2 

(sin x2)2 
sinx3 . 

> 

Hence we may take 

qj = d 
cos x2 

(sin x2)2 
sinx3 . 

> 

Similarly we may take 

712 = -(x5 + (x4)3 - (xl)lO)dxl + sin x2dx3, 

qz = -v*dx’ + sin x2dx5. 
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VI) Use the coordinate algorithm and solve for xi, xi, x;, ul, x4, xi, 2~~ where 

77: = dx;/x;, 

77; = dx:/x; - (x:/x377;, 

7j; = dx;/x; - 2(xQx9$ - @l/x;)& 

712 E X(dxT - xiql) mod $,qi, 

722 2 C(dxi - ~~7:) mod &r&&r& 

Since 7711 = dxl/ sin x2 we may take xi = x1 and xf = sin x2. We may rewrite r& in the 

form 
* 3 

7; = d(sin x2)/ sin x2 - sln~n~~ x2 dx’/ sin x2 

and hence read off xi = sin x3 cos x2. The form 7; can be rewritten 

7; = 2 
sidx (d( 

cos x2 sin x3) - (r? + (x4)“) cos x2 cos x3 

- sin’ x3 sin x2))qi - 2 cos x2 sin x37$ 

from which we see 

u1 = cos x3 sin x2( r+ + (x4)“) cos x2 cos x3 - sin2 x3 sin x2. 

Since 

712 = -(x5 + (x4)3 - (xl)lO)dxl + sin x2dx4 

= sin x2(dx4 - (x5 + (x4)” - (x~)~‘)Q~, 

we do not have to use the congruence and may take xf = x4, and xi = x5 + (x”)~ - 

(xl)lo. Similarly 

7722 = -v2dx’ + sinx2dx5 

= sinx2d(x5 + (x4)3 - (x’)l’) - 3(x4)2dx4 + 10(x’)gdxl - v2dx1, 

and using the congruence to replace sin x2dx4 by (x5 + (x4)” - (xl)lo we see that we 

may take 

u2 = 02 

This completes 
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