

Available online at www.sciencedirect.com

Journal of Functional Analysis 239 (2006) 345-355

www.elsevier.com/locate/jfa

The Strong Approximation Conjecture holds for amenable groups

Gábor Elek¹

The Alfred Renyi Mathematical Institute of the Hungarian Academy of Sciences, PO box 127, H-1364 Budapest, Hungary Received 28 November 2005; accepted 22 December 2005 Available online 30 January 2006

Communicated by D. Voiculescu

Abstract

Let G be a finitely generated group and $G \triangleright G_1 \triangleright G_2 \triangleright \cdots$ be normal subgroups such that $\bigcap_{k=1}^{\infty} G_k = \{1\}$. Let $A \in \operatorname{Mat}_{d \times d}(\mathbb{C}G)$ and $A_k \in \operatorname{Mat}_{d \times d}(\mathbb{C}(G/G_k))$ be the images of A under the maps induced by the epimorphisms $G \to G/G_k$. According to the strong form of the Approximation Conjecture of Lück [W. Lück, L^2 -Invariants: Theory and Applications to Geometry and K-theory, Ergeb. Math. Grenzgeb. (3), vol. 44, Springer-Verlag, Berlin, 2002]

 $\dim_G(\ker A) = \lim_{k \to \infty} \dim_{G/G_k}(\ker A_k),$

where dim_G denotes the von Neumann dimension. In [J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates, Approximating L^2 -invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (7) (2003) 839–873] Dodziuk et al. proved the conjecture for torsion free elementary amenable groups. In this paper we extend their result for all amenable groups, using the quasi-tilings of Ornstein and Weiss [D.S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987) 1–141]. © 2005 Elsevier Inc. All rights reserved.

Keywords: von Neumann dimension; Amenable groups; The approximation conjecture

0022-1236/\$ – see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2005.12.016

E-mail address: elek@renyi.hu.

¹ Partially supported by OTKA grant T-049841.

1. Introduction

First, let us recall the approximation result of Dodziuk et al. [2]. Let G be a finitely generated group and let $A \in Mat_{d \times d}(\mathbb{C}G)$.

Let $l^2(G) = \{f : G \to \mathbb{C} \mid \sum_{g \in G} |f(g)|^2 < \infty\}$. By left convolution, A induces a bounded linear operator $A : (l^2(G))^d \to (l^2(G))^d$, which commutes with the right G-action. Let

$$\operatorname{proj}_{\ker A}: \left(l^2(G)\right)^d \to \left(l^2(G)\right)^d$$

be the orthogonal projection onto ker A. Then

$$\dim_G(\ker A) := \operatorname{Tr}_G(\operatorname{proj}_{\ker A}) := \sum_{i=1}^d \langle \operatorname{proj}_{\ker A} \mathbf{1}_i, \mathbf{1}_i \rangle_{(l^2(G))^d},$$

where $\mathbf{1}_i \in (l^2(G))^d$ is the function which takes the value e_i on the unit element of G and zero elsewhere $(\{e_1, e_2, \ldots, e_n\}$ is an orthonormal basis of \mathbb{C}^d). dim_{*G*}(ker *A*) is called the von Neumann dimension of ker *A*.

Now let $G \triangleright G_1 \triangleright G_2 \triangleright \cdots$ be normal subgroups such that $\bigcap_{k=1}^{\infty} G_k = \{1\}$.

Let $A_k \in \text{Mat}_{d \times d}(\mathbb{C}(G/G_k))$ be the images of A under the maps induced by the epimorphisms $G \to G/G_k$. According to the strong form of the Approximation Conjecture of Lück [5]

$$\dim_G(\ker A) = \lim_{k \to \infty} \dim_{G/G_k}(\ker A_k).$$

In [2] the authors prove the conjecture above in the case when *G* is a torsion-free elementary amenable group. The goal of this paper is to extend their result to arbitrary amenable groups. If $A \in \text{Mat}_{d \times d}(\mathbb{Z}(G))$ the problem is much easier to handle since one can use the method of Lück [4]. Then the conjecture holds for a large class of groups including amenable and residually finite groups. In the case of complex group algebra the situation seems much more complicated. Dodziuk et al. [2] used noncommutative algebra to prove the conjecture, we shall use the quasi-tilings of Ornstein and Weiss.

2. Preliminaries

Let *G* be a finitely generated amenable group with a finite symmetric set of generators *S*. Consider the Cayley-graph C_G , where $V(C_G) = G$ and

$$E(C_G) := \{ (x, y) \in G \times G \mid y = sx, s \in S \}.$$

Now we introduce some notation frequently used in the paper later on.

- 1. If $g \in G$, then its word-length w(g) is defined as $d_{C_G}(g, 1)$, where d_{C_G} is the shortest path distance on the Cayley-graph.
- 2. Let $F \subset G$ be a finite set, k > 0, then $B_k(F)$ denotes the *k*-neighborhood of *F* in the d_{C_G} -metric.
- 3. We denote by $\Omega_k(F)$ the set of vertices p in F, such that $d_{C_G}(p, F^c) > k$, where F^c is the complement of F.

- 4. For $A \in \operatorname{Mat}_{d \times d}(\mathbb{C}G)$, its propagation w(A) is just sup w(g), where g runs through the terms of non-zero coefficients in the entries of A. The propagation of the zero matrix is defined to be 0. Observe that if $f \in (l^2(G))^d$ and supp $f \subseteq U \subseteq G$, then $\operatorname{supp} A(f) \subseteq B_{w(A)}(U)$, and if $\operatorname{supp} f \subseteq \Omega_{w(A)}(U)$ then $\operatorname{supp} A(f) \subseteq U$. Here, $\operatorname{supp} f := \{g \in G \mid f(g) \neq 0\}$.
- 5. For a finite set $F \subset G$, ∂F denotes the set of vertices in F such that $d_{C_G}(p, F^c) = 1$. We shall denote the ratio $|\partial F|/|F|$ by i(F).
- 6. Since G is amenable, it has a *Følner-exhaustion*, that is a sequence of subsets $1 \in F_1 \subset F_2 \subset \cdots, \bigcup_{n=1}^{\infty} F_n = G$ such that $i(F_n) \to 0$.

Now we prove some approximation theorems for amenable groups. Let $1 \in F_1 \subseteq F_2 \subseteq \cdots$ be a Følner exhaustion of *G* and $P_n : (l^2(G))^d \to (l^2(F_n))^d$ be the orthogonal projections. Then by [2, Theorem 3.11] (or [3, Proposition 1]):

$$\dim_G(\ker A) = \lim_{n \to \infty} \frac{\dim_{\mathbb{C}}(\ker P_n A P_n^*)}{|F_n|}.$$

We define the following sequences of vector spaces:

$$Z_n := \left\{ f \in \left(l^2(G)\right)^d \mid \text{supp } f \subseteq B_{w(A)}(F_n), \ A(f)|_{F_n} = 0 \right\},$$
$$W_n := \left\{ f \in \left(l^2(G)\right)^d \mid \text{supp } f \subseteq \Omega_{w(A)}(F_n), \ A(f) = 0 \right\},$$
$$V_n := \ker(P_n A P_n^*).$$

Proposition 2.1.

$$\lim_{n \to \infty} \frac{\dim_{\mathbb{C}}(Z_n)}{|F_n|} = \dim_G(\ker A), \qquad \lim_{n \to \infty} \frac{\dim_{\mathbb{C}}(W_n)}{|F_n|} = \dim_G(\ker A).$$

Proof. It is enough to prove that

$$\lim_{n \to \infty} \frac{\dim_{\mathbb{C}}(Z_n)}{\dim_{\mathbb{C}}(V_n)} = 1$$
(1)

and

$$\lim_{n \to \infty} \frac{\dim_{\mathbb{C}}(W_n)}{\dim_{\mathbb{C}}(V_n)} = 1.$$
 (2)

Clearly, $W_n = V_n \cap \{f \in l^2(F_n)^d \mid \text{supp } f \subseteq \Omega_{w(A)}(F_n)\}$. Hence (2) follows from the fact that

$$\lim_{n \to \infty} \frac{|\Omega_{w(A)}(F_n)|}{|F_n|} = 1.$$

Also, $W_n = Z_n \cap \{f \in l^2(F_n)^d \mid \text{supp } f \subseteq \Omega_{w(A)}(F_n)\}$. Therefore (1) follows from the fact that

$$\lim_{n \to \infty} \frac{|\Omega_{w(A)}(F_n)|}{|B_{w(A)}(F_n)|} = 1. \qquad \Box$$

Definition 2.1. Let $F \subset G$ be a finite set and $\delta, \epsilon > 0$ be real numbers. We say that F has property $A(\epsilon, \delta, -)$ if for any subset $K \subseteq F$, $|K|/|F| > 1 - \epsilon$, the following holds:

• if $R = \{f \in l^2(F_n)^d \mid \text{supp } f \subseteq \Omega_{w(A)}(K), A(f) = 0\}$, then

$$\dim_{\mathbb{C}}(R) \ge (1-\delta) \big(\dim_G(\ker A) \big).$$

Also, we say that *F* has property $A(\delta, +)$ if the following holds:

• if Q is the restriction of the space $Z_F := \{f \in (l^2(G))^d | \text{supp } f \subseteq B_{w(A)}(F), A(f)|_F = 0\}$ onto F, then

$$\dim_{\mathbb{C}}(Q) \leq \left(\dim_{G}(\ker A)\right) + \delta.$$

Similarly to Proposition 2.1 one can easily prove the following proposition.

Proposition 2.2. Let $1 \in F_1 \subseteq F_2 \subseteq \cdots$ be a Følner exhaustion of G as above. Then for any pair of real numbers $\delta, \epsilon > 0$ there exists $n_{\delta,\epsilon}$ such that if $n \ge n_{\delta,\epsilon}$ then F_n has both properties $A(\epsilon, \delta, -)$ and $A(\delta, +)$.

3. Graph convergence and dimension averaging

Let C_G be the Cayley-graph of the previous section. Color the directed edge $(x \to y)$, x = sy by $s \in S$ (hence $(y \to x)$ shall be colored by s^{-1}). Thus we color all edges in both directions with the elements of the set S in such a way that for each $x \in G$ the edges outgoing from x are colored in different ways. The following definition is a variation of the one on random weak convergence in [1].

Let $B_1, B_2, ...$ be an infinite sequence of finite graphs. Assume that for any $x \in V(B_n)$: deg $(x) \leq |S|$. We also assume that the directed edges are colored by S in such a way that:

- the color of the edge $(x \rightarrow y)$ is the inverse of the color of $(y \rightarrow x)$;
- the outgoing edges from any vertex are colored differently.

We say that $p \in V(B_n)$ is k-similar to the identity of G, if its k-neighborhood in B_n is edgecolored isomorphic to the k-neighborhood of the identity in C_G . Let Q_k^B be the set of vertices in B that are k-similar to the identity. Then we say that $\{B_n\}_{n=1}^{\infty}$ converges to C_G if for any $\epsilon > 0$ and $k \in \mathbb{N}$ there exists $n_{\epsilon,k}$ such that if $n \ge n_{\epsilon,k}$ then

$$Q_k^{B_n} > (1-\epsilon) \big| V(B_n) \big|.$$

Example 1. Let G be a finitely generated group and $\{B_n\}_{n=1}^{\infty}$ be a sequence of finite induced subgraphs forming a Følner-exhaustion. Then $\{B_n\}_{n=1}^{\infty}$ converges to C_G .

Example 2. Let *G* be a finitely generated residually finite group and $G \triangleright G_1 \triangleright G_2 \triangleright \cdots$ be a sequence of finite index normal subgroups such that $\bigcap_{n=1}^{\infty} G_n = \{1\}$. Let C_n be the Cayley-graph of G/G_n . Then $\{C_n\}_{n=1}^{\infty}$ converges to C_G .

Now let $A \in \operatorname{Mat}_{d \times d}(\mathbb{C}G)$. One can define the transformation kernel of A, $\widetilde{A}: G \times G \to \operatorname{Mat}_{d \times d}(\mathbb{C})$ in the following way. First write A in the form of $\sum_{\gamma \in G} A_{\gamma} \cdot \gamma$, where $A_{\gamma} \in \operatorname{Mat}_{d \times d}(\mathbb{C})$. Then set $\widetilde{A}(\gamma, \delta) := A_{\gamma \delta^{-1}}$. Thus if $f \in l^2(G))^d$, then

$$A(f)(\delta) = \sum_{\gamma \in G} \widetilde{A}(\delta, \gamma) f(\gamma).$$

Now let $\{B_n\}_{n=1}^{\infty}$ be a sequence of graphs converging to C_G . Then we define the finitedimensional linear transformations $T_n: (l^2(V(B_n))^d \to (l^2(V(B_n))^d$ approximating A, the following way:

- if $x \in Q_{w(A)}^{B_n}$, $y \in V(B_n)$ and $d_{B_n}(y, x) \leq w(A)$, let $\widetilde{T}_n(y, x) := A(\gamma, 1)$, where γ is the element of *G* satisfying $\phi_{w(A)}^x(\gamma) = y$. Here $\phi_{w(A)}^x$ is the unique colored isomorphism between the w(A)-neighborhood of 1 in C_G and the w(A)-neighborhood of 1 in B_n ;
- if $x \notin Q_{w(A)}^{B_n}$ or $d_{B_n}(y, x) > w(A)$, then let $\widetilde{T}_n(x, y) := 0$.

Then if $f \in l^2(V(B_n))^d$ and $p \in V(B_n)$

$$T_n(f)(p) = \sum_{q \in V(B_n)} \widetilde{T}_n(p,q) f(q).$$

The main goal of our paper is to prove the following theorem.

Theorem 1. If G is a finitely generated amenable group and $\{B_n\}_{n=1}^{\infty}$, $\{T_n\}_{n=1}^{\infty}$ are as above, then

$$\lim_{n \to \infty} \frac{\dim_{\mathbb{C}} \ker T_n}{|V(B_n)|} = \dim_G(\ker A).$$

The Strong Approximation Conjecture for amenable groups follows from the theorem:

Corollary 3.1. If G is a finitely generated amenable group and $G \triangleright G_1 \triangleright G_2 \cdots$ are normal subgroups of G such that $\bigcap_{n=1}^{\infty} G_n = \{1\}$, then

$$\lim_{n \to \infty} \dim_{G/G_n}(\ker A_n) = \dim_G(\ker A),$$

where $A \in \operatorname{Mat}_{d \times d}(\mathbb{C}G)$ and $A_n \in \operatorname{Mat}_{d \times d}(\mathbb{C}(G/G_n))$ are the images of A under the maps induced by the epimorphisms $G \to G/G_n$.

Proof.

Case 1. Suppose that all G_n has finite index. Note that in this case $T_n = A_n$ if *n* is large enough, hence the corollary immediately follows.

Case 2. Assume that for large enough n, the amenable group G/G_n is infinite. Let $1 \in F_1^n \subset$ $F_2^n \subset \cdots$ be a Følner-exhaustion of the Cayley graph C_{G/G_n} (using the image of the generator system S). Then

$$\dim_{G/G_n}(A_n) = \lim_{k \to \infty} \frac{\dim_{\mathbb{C}}(\ker P_k^n A_n(P_k^n)^*)}{|F_k^n|}$$

where $P_k^n : (l^2(G/G_n))^d \to (l^2(F_k^n))^d$ is the orthogonal projection. Pick a sequence $F_{m_1}^1, F_{m_2}^2, \dots$ such that

- $i(F_{m_i}^j) \to 0;$
- $(\dim_{G/G_n}(A_n) \dim_{\mathbb{C}}(\ker P_{m_n}^n A_n(P_{m_n}^n)^*)/|F_{m_n}^n|) \to 0.$

Now let $B_{m_n}^n$ be the graph induced by $F_{m_n}^n$.

Lemma 3.1. $\{B_{m_n}^n\}_{n=1}^{\infty}$ converges to C_G .

Proof. Since $\bigcap_{k=1}^{\infty} G_k = \{1\}$, for any $d \in \mathbb{N}$ there exists $n_d > 0$ such that if $n \ge n_d$ then the *d*-balls in C_{G/G_n} are colored-isomorphic to the *d*-ball of C_G . Let $H_{m_n}^n = \Omega_d(F_{m_n}^n)$. Clearly $H_{m_n}^n \subseteq Q_d^{F_{m_n}^n}$. Since the vertex degrees of G/G_n are at most S, $|H_{m_n}^n| \ge |F_{m_n}^n| - |S|^d |\partial F_{m_n}^n|$. Now our lemma easily follows. \Box

Lemma 3.2.

$$\lim_{n \to \infty} \frac{\dim_{\mathbb{C}} (\ker P_k^n A_n (P_k^n)^*)}{\dim_{\mathbb{C}} \ker T_n} = 0.$$

Here T_n is the linear operator associated to $B_{m_n}^n$.

Proof. If supp $f \subset F_{m_n}^n \setminus B_{w(A)}(\partial F_{m_n}^n)$ then $T_n(f) = P_k^n A_n(P_k^n)^*(f)$. Since

$$\frac{|F_{m_n}^n \setminus B_{w(A)}(\partial F_{m_n}^n)|}{|F_{m_n}^n|} \to 1$$

our lemma follows.

Obviously, Lemmas 3.1 and 3.2 imply the corollary. \Box

4. Quasi-tilings

Let us recall the notion of quasi-tilings from [6]. Let X be a finite set and $\{A_i\}_{i=1}^n$ be finite subsets of X. Then we say that $\{A_1, A_2, \ldots, A_n\}$ are ϵ -disjoint if there exist subsets $\overline{A_i} \subseteq A_i$ such that:

- for any 1 ≤ i ≤ n, |A_i|/|A_i| ≥ 1 − ε;
 If i ≠ j then A_i ∩ A_j = Ø.

On the other hand, if $\{H_j\}_{j=1}^m$ are finite subsets of X, then we say that they α -cover X if

$$\frac{|X \cap (\bigcup_{j=1}^m H_j)|}{|X|} \ge \alpha.$$

Finally, we say that the collection $\{H_1, H_2, ..., H_m\}$ δ -evenly covers X if there exists some $M \in \mathbb{R}^+$ such that:

- for any $p \in X$, $\sum_{j: p \in H_i}^m 1 \leq M$;
- $\sum_{i=1}^{m} |H_j| \ge (1-\delta)M|X|.$

According to [6, Lemma 4], if $\{H_1, H_2, ..., H_m\}$ form a δ -even covering of X, then for any $0 < \epsilon < 1$ there exists an ϵ -disjoint subcollection of the H_i 's that $\epsilon(1 - \delta)$ -covers X.

Now we define *tiles* for our *S*-edge colored graphs. Let *G* be a finitely generated group with a symmetric generator set *S* and let $1 \in F_1 \subseteq F_2 \subseteq \cdots$, $\bigcup_{n=1}^{\infty} F_n = G$ be a Følner-exhaustion. Let *B* be a finite graph as in the previous section with edge-colorings by the elements of *S*. Also, let *L* be a natural number. Let $\{F_{\alpha_1}, F_{\alpha_2}, \ldots, F_{\alpha_n}\}$ be a finite collection of the Følner sets above such that for any $1 \leq i \leq n$, $F_{\alpha_i} \subset B_{1/2L}(1)$. Then for any $x \in Q_L^B$ and $1 \leq i \leq n$, $T_x(F_{\alpha_i})$ is the image of F_{α_i} under the unique colored isomorphism $\phi_L^x : B_L(1) \to B_L(x)$ mapping 1 to *x*. We call such a subset a tile of type F_{α_i} and say that *x* is the center of $T_x(F_{\alpha_i})$. A system of tiles ϵ -quasi-tile V(B) if they are ϵ -disjoint and form an $(1 - \epsilon)$ -cover. The following theorem is a version of [6, Theorem 6].

Theorem 2. For any $\epsilon > 0$, n > 0, there exist L > 0, $\delta > 0$ and a finite collection $\{F_{n_1}, F_{n_2}, \ldots, F_{n_s}\} \subset B_L(1)$ of the Følner sets, such that $n_i > n$ and if

$$\frac{|Q_L^B|}{|V(B)|} > 1 - \delta$$

then V(B) can be ϵ -quasi-tiled by tiles of the form $T_x(F_{n_i})$, $x \in Q_L^B$, $1 \leq i \leq s$.

5. The inductional step

First of all fix a constant $\epsilon_1 < \epsilon/100$. Let us call a finite set $H \subset G$ a set of type (K, α) , $K \in \mathbb{N}, \alpha \ge 0$, if

$$\frac{|B_K(H)|}{|H|} < 1 + \alpha. \tag{3}$$

Now let *B* be our *S*-edge colored finite graph and suppose that

$$\frac{|Q_L^B|}{|V(B)|} > 1 - \beta. \tag{4}$$

The exact values of β and L shall be given later. Assume that H is of type (K, α) , where

$$H \subset B_{L/100}(1) \quad \text{and} \quad K < \frac{L}{10}.$$
(5)

Now consider all tiles in B in the form $T_x(H)$, where $x \in Q_L^B$. Note that no vertex of B is covered by more than |H| tiles. Indeed, if z is covered, then the L/2-neighborhood of z in B is colored isomorphic to the L/2-neighborhood of 1 in G. Hence if $z \in T_x(H)$, then $z \in Q_{L/2}^B$ and $x \in T_{\tau}(H^{-1})$. Summarizing these:

- for any $y \in V(B)$, $\sum_{x:y \in T_x(H)} 1 \leq |H|$; $\sum_{x \in Q_L^B} |T_x(H)| = |Q_L^B| |H| \ge (1 \beta) |V(B)| |H|$.

Consequently, the tiles $\{T_x(H)\}_{x \in Q_I^B}$ form a δ -even covering of V(B), where $\delta = 1 - \beta$. Then by [6, Lemma 4], there exists an ϵ_1 -disjoint subcollection of tiles, $\bigcup_{x \in I} T_x(H)$ such that they form a $\epsilon_1(1 - \beta)$ -covering of V(B).

Now suppose that the number of vertices in V(B) not covered by this subcollection above is greater than $(\epsilon/2)|V(B)|$. Let B_1 be the graph induced by the uncovered vertices. We would like to estimate the quotient: $|Q_{K}^{B_{1}}|/|V(B)|$. Note that if $y \in V(B_{1})$ and

$$y \notin \bigcup_{x \in I} \left(T_x \left(B_K(H) \right) \setminus T_x(H) \right)$$

then $y \in Q_K^{B_1}$. Hence by ϵ_1 -disjointness,

$$\left|\bigcup_{x\in I} (T_x(B_K(H)) \setminus T_x(H))\right| \leq \alpha \sum_{x\in I} |H| \leq \alpha (1-\epsilon_1)^{-1} |V(B)|.$$

Hence

$$|Q_{K}^{B_{1}}| \ge |V(B_{1})| - \alpha(1-\epsilon_{1})^{-1}|V(B)|,$$

that is

$$\frac{|\mathcal{Q}_K^{B_1}|}{|V(B)|} \ge 1 - \beta_1,\tag{6}$$

where $\beta_1 = \alpha (1 - \epsilon_1)^{-1} (2/\epsilon)$. Also note that

$$\frac{\epsilon}{2} |V(B)| \leq |V(B_1)| \leq (1 - \epsilon_1(1 - \beta)) |V(B)|.$$

6. The proof of Theorem 2

Let $\{\alpha_k\}_{k=1}^{\infty}$ be a sequence of real numbers tending to zero and let $\{s_k\}_{k=1}^{\infty}$ be a sequence of real numbers tending to infinity, satisfying the following inequalities:

$$s_k \ge 1, \qquad s_{k+1} \ge 10s_k.$$

We call a subsequence of the Følner exhaustion $\{F_n\}_{n=1}^{\infty}$ an (α, s) -good subsequence if it satisfies the following conditions:

- $1 \in F_{n_1} \subset B_{s_1}(1) \subset F_{n_2} \subset B_{s_2}(1) \subset F_{n_3} \subset \cdots;$
- $F_{n_{i+1}}$ is of type $(100s_i, \alpha_i)$.

Obviously one can choose $\{s_k\}_{k=1}^{\infty}$ for any fixed $\{\alpha_k\}_{k=1}^{\infty}$ to have such (α, s) -good subsequences. Now let *M* be an integer such that

$$\left(1 - \frac{\epsilon_1}{2}\right)^M < \frac{\epsilon}{100}.\tag{7}$$

Also, pick $\beta > 0$ so that

$$\beta M < \frac{\epsilon}{100}.\tag{8}$$

And finally fix a sequence $\{\alpha_k\}_{k=1}^{\infty}$ such that

$$\alpha_i (1 - \epsilon_1)^{-1} \frac{2}{\epsilon} < \beta. \tag{9}$$

Now let *B* a finite *S*-colored graph such that

$$\frac{Q_{100s_M}^B}{|V(B)|} > 1 - \beta,$$

where β , M are as above. Then by the argument of the previous section we can $\epsilon_1(1 - \beta)$ -cover the vertices of B by ϵ_1 -disjoint tiles of type F_{n_M} . If B_1 is the graph induced by the uncovered vertices of V(B), by (6):

$$\frac{|Q_{s_M}^{B_1}|}{|V(B_1)|} > 1 - \beta_1,$$

where $\beta_1 = \alpha_M (1 - \epsilon_1)^{-1} (2/\epsilon)$. Now we can $\epsilon_1 (1 - \beta_1)$ -cover $V(B_1)$ by tiles of type $F_{n_{M-1}}$. If B_2 denotes the graph induced by the uncovered part of $V(B_1)$ then

$$\frac{|Q_{s_{M-1}}^{B_2}|}{|V(B_2)|} > 1 - \beta_2,$$

where $\beta_2 = \alpha_{M-1} (1 - \epsilon_1)^{-1} (2/\epsilon)$.

We proceed inductively. In each step the new tiles are disjoint from all previous ones. Also,

$$V(B_i) \leqslant V(B_{i-1})\left(1-\frac{\epsilon_1}{2}\right).$$

Hence by our conditions, in at most M steps we obtain an ϵ -disjoint $(1 - \epsilon)$ -covering of V(B).

7. The proof of Theorem 1

Let *G* be a finitely generated amenable group, $A \in \text{Mat}_{d \times d}(\mathbb{C}G)$ and $\{B_n\}_{n=1}^{\infty}$ be a sequence converging to C_G . Let $\{T_n\}_{n=1}^{\infty}$ be the sequence of approximating operators as in Section 3.

Proposition 7.1. For any pair $\delta, \epsilon > 0$ there exists $k_{\delta,\epsilon} > 0$ such that if $k \ge k_{\delta,\epsilon}$ then

$$\frac{\dim_{\mathbb{C}}(\ker T_k)}{|V(B_k)|} \ge \left(\dim_G(\ker A) - \delta\right)(1-\epsilon).$$

Proof. Let $1 \in F_1 \subseteq F_2 \subseteq \cdots$ be a Følner exhaustion of *G*, such that all the F_n 's have property $A(\epsilon, \delta, -)$ (see Lemma 2.1). Let $\{H_1, H_2, \ldots, H_s\}$ be an ϵ -quasi-tiling of B_k by tiles from this Følner sequence. Such ϵ -quasi-tiling exists by Theorem 2 if *k* is large enough. For $1 \leq i \leq s$ let $K_i \subset H_i$ be a subset such that:

- $|K_i|/|H_i| > 1 \epsilon;$
- $K_i \cap K_j = \emptyset$ if $i \neq j$.

Since the F_n 's have property $A(\epsilon, \delta, -)$ there exist subspaces $V_i \subset (l^2(B_n))^d$ such that:

- if $f \in V_i$ then supp $f \subseteq K_i$;
- $f \in \ker T_k$;
- $\dim_{\mathbb{C}} V_i/|H_i| \ge \dim_G(\ker A) \delta.$

Now consider the subspace $\bigoplus_{i=1}^{s} V_i \subseteq \ker T_k$. Then

$$\dim_{\mathbb{C}}\left(\bigoplus_{i=1}^{s} V_{i}\right) \ge \left(\sum_{i=1}^{s} |H_{i}|\right) \left(\dim_{G}(\ker A) - \delta\right) \ge (1 - \epsilon) \left|V(B_{k})\right| \left(\dim_{G}(\ker A) - \delta\right).$$

That is

$$\frac{\dim_{\mathbb{C}}(\ker T_k)}{|V(B_k)|} \ge \left(\dim_G(\ker A) - \delta\right)(1-\epsilon). \qquad \Box$$

Proposition 7.2. For any pair $\delta, \epsilon > 0$ there exists $m_{\delta,\epsilon} > 0$ such that if $k \ge m_{\delta,\epsilon}$ then

$$\frac{\dim_{\mathbb{C}}(\ker T_k)}{|V(B_k)|} \leqslant (1-\epsilon)^{-1} \big(\dim_G(\ker A) + \delta\big) + \epsilon.$$

Proof. Again let $1 \in F_1 \subseteq F_2 \subseteq \cdots$ be a Følner exhaustion of *G*, such that all the F_n 's have property $A(\delta, +)$ (see Lemma 2.1). Consider the ϵ -quasi-tilings of the previous proposition. Now let $W_i \subset l^2(H_i)$ be the restriction of ker T_k onto H_i . By our assumption,

$$\dim_G(\ker T_k) \leqslant |H_i| \big(\dim_G(\ker A) + \delta\big).$$

Since $\{H_i\}_{i=1}^s$ form an ϵ -covering

$$\dim_{\mathbb{C}}(\ker T_k) \leqslant \epsilon \left| V(B_k) \right| + \sum_{i=1}^s |H_i| (\dim_G(\ker A) + \delta).$$

Note that by ϵ -disjointness

$$\sum_{i=1}^{s} |H_i| \leq (1-\epsilon)^{-1} |V(B_k)|.$$

Thus

$$\frac{\dim_{\mathbb{C}}(\ker T_k)}{|V(B_k)|} \leq (1-\epsilon)^{-1} \left(\dim_G(\ker A) + \delta\right) + \epsilon. \qquad \Box$$

Clearly, Propositions 7.1 and 7.2 imply Theorem 1.

References

- I. Benjamini, O. Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab. 6 (23) (2001), 13 pp. (electronic).
- [2] J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates, Approximating L²-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (7) (2003) 839–873.
- [3] G. Elek, On the analytic zero divisor conjecture of Linnell, Bull. London Math. Soc. 35 (2) (2003) 236–238.
- [4] W. Lück, Approximating L^2 -invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994) 455–481.
- [5] W. Lück, L²-Invariants: Theory and Applications to Geometry and K-theory, Ergeb. Math. Grenzgeb. (3), vol. 44, Springer-Verlag, Berlin, 2002.
- [6] O.S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987) 1–141.