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Abstract

Let G be a finitely generated group and G � G1 � G2 � · · · be normal subgroups such that⋂∞
k=1 Gk = {1}. Let A ∈ Matd×d(CG) and Ak ∈ Matd×d(C(G/Gk)) be the images of A under the maps

induced by the epimorphisms G → G/Gk . According to the strong form of the Approximation Conjec-
ture of Lück [W. Lück, L2-Invariants: Theory and Applications to Geometry and K-theory, Ergeb. Math.
Grenzgeb. (3), vol. 44, Springer-Verlag, Berlin, 2002]

dimG(kerA) = lim
k→∞ dimG/Gk

(kerAk),

where dimG denotes the von Neumann dimension. In [J. Dodziuk, P. Linnell, V. Mathai, T. Schick, S. Yates,
Approximating L2-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (7) (2003) 839–873]
Dodziuk et al. proved the conjecture for torsion free elementary amenable groups. In this paper we extend
their result for all amenable groups, using the quasi-tilings of Ornstein and Weiss [D.S. Ornstein, B. Weiss,
Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987) 1–141].
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1. Introduction

First, let us recall the approximation result of Dodziuk et al. [2]. Let G be a finitely generated
group and let A ∈ Matd×d(CG).

Let l2(G) = {f :G → C | ∑
g∈G |f (g)|2 < ∞}. By left convolution, A induces a bounded

linear operator A : (l2(G))d → (l2(G))d , which commutes with the right G-action. Let

projkerA :
(
l2(G)

)d → (
l2(G)

)d

be the orthogonal projection onto kerA. Then

dimG(kerA) := TrG(projkerA) :=
d∑

i=1

〈projkerA 1i ,1i〉(l2(G))d ,

where 1i ∈ (l2(G))d is the function which takes the value ei on the unit element of G and zero
elsewhere ({e1, e2, . . . , en} is an orthonormal basis of C

d ). dimG(kerA) is called the von Neu-
mann dimension of kerA.

Now let G � G1 � G2 � · · · be normal subgroups such that
⋂∞

k=1 Gk = {1}.
Let Ak ∈ Matd×d(C(G/Gk)) be the images of A under the maps induced by the epimorphisms

G → G/Gk . According to the strong form of the Approximation Conjecture of Lück [5]

dimG(kerA) = lim
k→∞ dimG/Gk

(kerAk).

In [2] the authors prove the conjecture above in the case when G is a torsion-free elementary
amenable group. The goal of this paper is to extend their result to arbitrary amenable groups.
If A ∈ Matd×d(Z(G)) the problem is much easier to handle since one can use the method of
Lück [4]. Then the conjecture holds for a large class of groups including amenable and residually
finite groups. In the case of complex group algebra the situation seems much more complicated.
Dodziuk et al. [2] used noncommutative algebra to prove the conjecture, we shall use the quasi-
tilings of Ornstein and Weiss.

2. Preliminaries

Let G be a finitely generated amenable group with a finite symmetric set of generators S.
Consider the Cayley-graph CG, where V (CG) = G and

E(CG) := {
(x, y) ∈ G × G | y = sx, s ∈ S

}
.

Now we introduce some notation frequently used in the paper later on.

1. If g ∈ G, then its word-length w(g) is defined as dCG
(g,1), where dCG

is the shortest path
distance on the Cayley-graph.

2. Let F ⊂ G be a finite set, k > 0, then Bk(F ) denotes the k-neighborhood of F in the dCG
-

metric.
3. We denote by Ωk(F ) the set of vertices p in F , such that dCG

(p,F c) > k, where Fc is the
complement of F .
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4. For A ∈ Matd×d(CG), its propagation w(A) is just supw(g), where g runs through the terms
of non-zero coefficients in the entries of A. The propagation of the zero matrix is defined to
be 0. Observe that if f ∈ (l2(G))d and suppf ⊆ U ⊆ G, then suppA(f ) ⊆ Bw(A)(U), and
if suppf ⊆ Ωw(A)(U) then suppA(f ) ⊆ U . Here, suppf := {g ∈ G | f (g) 	= 0}.

5. For a finite set F ⊂ G, ∂F denotes the set of vertices in F such that dCG
(p,F c) = 1. We

shall denote the ratio |∂F |/|F | by i(F ).
6. Since G is amenable, it has a Følner-exhaustion, that is a sequence of subsets 1 ∈ F1 ⊂ F2 ⊂

· · ·, ⋃∞
n=1 Fn = G such that i(Fn) → 0.

Now we prove some approximation theorems for amenable groups. Let 1 ∈ F1 ⊆ F2 ⊆ · · · be
a Følner exhaustion of G and Pn : (l2(G))d → (l2(Fn))

d be the orthogonal projections. Then by
[2, Theorem 3.11] (or [3, Proposition 1]):

dimG(kerA) = lim
n→∞

dimC(kerPnAP ∗
n )

|Fn| .

We define the following sequences of vector spaces:

Zn := {
f ∈ (

l2(G)
)d ∣∣ suppf ⊆ Bw(A)(Fn), A(f )|Fn = 0

}
,

Wn := {
f ∈ (

l2(G)
)d ∣∣ suppf ⊆ Ωw(A)(Fn), A(f ) = 0

}
,

Vn := ker(PnAP ∗
n ).

Proposition 2.1.

lim
n→∞

dimC(Zn)

|Fn| = dimG(kerA), lim
n→∞

dimC(Wn)

|Fn| = dimG(kerA).

Proof. It is enough to prove that

lim
n→∞

dimC(Zn)

dimC(Vn)
= 1 (1)

and

lim
n→∞

dimC(Wn)

dimC(Vn)
= 1. (2)

Clearly, Wn = Vn ∩ {f ∈ l2(Fn)
d | suppf ⊆ Ωw(A)(Fn)}. Hence (2) follows from the fact that

lim
n→∞

|Ωw(A)(Fn)|
|Fn| = 1.

Also, Wn = Zn ∩ {f ∈ l2(Fn)
d | suppf ⊆ Ωw(A)(Fn)}. Therefore (1) follows from the fact that

lim
n→∞

|Ωw(A)(Fn)|
|Bw(A)(Fn)| = 1. �
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Definition 2.1. Let F ⊂ G be a finite set and δ, ε > 0 be real numbers. We say that F has property
A(ε, δ,−) if for any subset K ⊆ F , |K|/|F | > 1 − ε, the following holds:

• if R = {f ∈ l2(Fn)
d | suppf ⊆ Ωw(A)(K), A(f ) = 0}, then

dimC(R) � (1 − δ)
(
dimG(kerA)

)
.

Also, we say that F has property A(δ,+) if the following holds:

• if Q is the restriction of the space ZF := {f ∈ (l2(G))d | suppf ⊆ Bw(A)(F ),A(f )|F = 0}
onto F , then

dimC(Q) �
(
dimG(kerA)

) + δ.

Similarly to Proposition 2.1 one can easily prove the following proposition.

Proposition 2.2. Let 1 ∈ F1 ⊆ F2 ⊆ · · · be a Følner exhaustion of G as above. Then for any
pair of real numbers δ, ε > 0 there exists nδ,ε such that if n � nδ,ε then Fn has both properties
A(ε, δ,−) and A(δ,+).

3. Graph convergence and dimension averaging

Let CG be the Cayley-graph of the previous section. Color the directed edge (x → y), x = sy

by s ∈ S (hence (y → x) shall be colored by s−1). Thus we color all edges in both directions
with the elements of the set S in such a way that for each x ∈ G the edges outgoing from x

are colored in different ways. The following definition is a variation of the one on random weak
convergence in [1].

Let B1,B2, . . . be an infinite sequence of finite graphs. Assume that for any x ∈ V (Bn):
deg(x) � |S|. We also assume that the directed edges are colored by S in such a way that:

• the color of the edge (x → y) is the inverse of the color of (y → x);
• the outgoing edges from any vertex are colored differently.

We say that p ∈ V (Bn) is k-similar to the identity of G, if its k-neighborhood in Bn is edge-
colored isomorphic to the k-neighborhood of the identity in CG. Let QB

k be the set of vertices in
B that are k-similar to the identity. Then we say that {Bn}∞n=1 converges to CG if for any ε > 0
and k ∈ N there exists nε,k such that if n � nε,k then

Q
Bn

k > (1 − ε)
∣∣V (Bn)

∣∣.
Example 1. Let G be a finitely generated group and {Bn}∞n=1 be a sequence of finite induced
subgraphs forming a Følner-exhaustion. Then {Bn}∞n=1 converges to CG.

Example 2. Let G be a finitely generated residually finite group and G � G1 � G2 � · · · be a
sequence of finite index normal subgroups such that

⋂∞
n=1 Gn = {1}. Let Cn be the Cayley-graph

of G/Gn. Then {Cn}∞ converges to CG.
n=1
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Now let A ∈ Matd×d(CG). One can define the transformation kernel of A, Ã :G × G →
Matd×d(C) in the following way. First write A in the form of

∑
γ∈G Aγ · γ , where Aγ ∈

Matd×d(C). Then set Ã(γ, δ) := Aγδ−1 . Thus if f ∈ l2(G))d , then

A(f )(δ) =
∑
γ∈G

Ã(δ, γ )f (γ ).

Now let {Bn}∞n=1 be a sequence of graphs converging to CG. Then we define the finite-
dimensional linear transformations Tn : (l2(V (Bn))

d → (l2(V (Bn))
d approximating A, the fol-

lowing way:

• if x ∈ Q
Bn

w(A), y ∈ V (Bn) and dBn(y, x) � w(A), let T̃n(y, x) := A(γ,1), where γ is the ele-
ment of G satisfying φx

w(A)(γ ) = y. Here φx
w(A) is the unique colored isomorphism between

the w(A)-neighborhood of 1 in CG and the w(A)-neighborhood of 1 in Bn;
• if x /∈ Q

Bn

w(A)
or dBn(y, x) > w(A), then let T̃n(x, y) := 0.

Then if f ∈ l2(V (Bn))
d and p ∈ V (Bn)

Tn(f )(p) =
∑

q∈V (Bn)

T̃n(p, q)f (q).

The main goal of our paper is to prove the following theorem.

Theorem 1. If G is a finitely generated amenable group and {Bn}∞n=1, {Tn}∞n=1 are as above, then

lim
n→∞

dimC kerTn

|V (Bn)| = dimG(kerA).

The Strong Approximation Conjecture for amenable groups follows from the theorem:

Corollary 3.1. If G is a finitely generated amenable group and G � G1 � G2 · · · are normal
subgroups of G such that

⋂∞
n=1 Gn = {1}, then

lim
n→∞ dimG/Gn(kerAn) = dimG(kerA),

where A ∈ Matd×d(CG) and An ∈ Matd×d(C(G/Gn)) are the images of A under the maps
induced by the epimorphisms G → G/Gn.

Proof.

Case 1. Suppose that all Gn has finite index. Note that in this case Tn = An if n is large enough,
hence the corollary immediately follows.
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Case 2. Assume that for large enough n, the amenable group G/Gn is infinite. Let 1 ∈ Fn
1 ⊂

Fn
2 ⊂ · · · be a Følner-exhaustion of the Cayley graph CG/Gn (using the image of the generator

system S). Then

dimG/Gn(An) = lim
k→∞

dimC(kerP n
k An(P

n
k )∗)

|Fn
k | ,

where P n
k : (l2(G/Gn))

d → (l2(F n
k ))d is the orthogonal projection.

Pick a sequence F 1
m1

,F 2
m2

, . . . such that

• i(F
j
mj

) → 0;
• (dimG/Gn(An) − dimC(kerP n

mn
An(P

n
mn

)∗)/|Fn
mn

|) → 0.

Now let Bn
mn

be the graph induced by Fn
mn

.

Lemma 3.1. {Bn
mn

}∞n=1 converges to CG.

Proof. Since
⋂∞

k=1 Gk = {1}, for any d ∈ N there exists nd > 0 such that if n � nd then the
d-balls in CG/Gn are colored-isomorphic to the d-ball of CG. Let Hn

mn
= Ωd(Fn

mn
). Clearly

Hn
mn

⊆ Q
Fn

mn

d . Since the vertex degrees of G/Gn are at most S, |Hn
mn

| � |Fn
mn

| − |S|d |∂Fn
mn

|.
Now our lemma easily follows. �
Lemma 3.2.

lim
n→∞

dimC(kerP n
k An(P

n
k )∗)

dimC kerTn

= 0.

Here Tn is the linear operator associated to Bn
mn

.

Proof. If suppf ⊂ Fn
mn

\Bw(A)(∂Fn
mn

) then Tn(f ) = P n
k An(P

n
k )∗(f ). Since

|Fn
mn

\ Bw(A)(∂Fn
mn

)|
|Fn

mn
| → 1

our lemma follows. �
Obviously, Lemmas 3.1 and 3.2 imply the corollary. �

4. Quasi-tilings

Let us recall the notion of quasi-tilings from [6]. Let X be a finite set and {Ai}ni=1 be finite
subsets of X. Then we say that {A1,A2, . . . ,An} are ε-disjoint if there exist subsets Ai ⊆ Ai

such that:

• for any 1 � i � n, |Ai |/|Ai | � 1 − ε;
• If i 	= j then Ai ∩ Aj = ∅.
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On the other hand, if {Hj }mj=1 are finite subsets of X, then we say that they α-cover X if

|X ∩ (
⋃m

j=1 Hj)|
|X| � α.

Finally, we say that the collection {H1,H2, . . . ,Hm} δ-evenly covers X if there exists some
M ∈ R

+ such that:

• for any p ∈ X,
∑m

j : p∈Hj
1 � M ;

• ∑m
j=1 |Hj | � (1 − δ)M|X|.

According to [6, Lemma 4], if {H1,H2, . . . ,Hm} form a δ-even covering of X, then for any
0 < ε < 1 there exists an ε-disjoint subcollection of the Hj ’s that ε(1 − δ)-covers X.

Now we define tiles for our S-edge colored graphs. Let G be a finitely generated group with
a symmetric generator set S and let 1 ∈ F1 ⊆ F2 ⊆ · · ·, ⋃∞

n=1 Fn = G be a Følner-exhaustion.
Let B be a finite graph as in the previous section with edge-colorings by the elements of S. Also,
let L be a natural number. Let {Fα1,Fα2 , . . . ,Fαn} be a finite collection of the Følner sets above
such that for any 1 � i � n, Fαi

⊂ B1/2L(1). Then for any x ∈ QB
L and 1 � i � n, Tx(Fαi

) is
the image of Fαi

under the unique colored isomorphism φx
L :BL(1) → BL(x) mapping 1 to x.

We call such a subset a tile of type Fαi
and say that x is the center of Tx(Fαi

). A system of tiles
ε-quasi-tile V (B) if they are ε-disjoint and form an (1 − ε)-cover. The following theorem is a
version of [6, Theorem 6].

Theorem 2. For any ε > 0, n > 0, there exist L > 0, δ > 0 and a finite collection {Fn1,Fn2 , . . . ,

Fns } ⊂ BL(1) of the Følner sets, such that ni > n and if

|QB
L |

|V (B)| > 1 − δ

then V (B) can be ε-quasi-tiled by tiles of the form Tx(Fni
), x ∈ QB

L , 1 � i � s.

5. The inductional step

First of all fix a constant ε1 < ε/100. Let us call a finite set H ⊂ G a set of type (K,α),
K ∈ N, α � 0, if

|BK(H)|
|H | < 1 + α. (3)

Now let B be our S-edge colored finite graph and suppose that

|QB
L |

|V (B)| > 1 − β. (4)

The exact values of β and L shall be given later. Assume that H is of type (K,α), where

H ⊂ BL/100(1) and K <
L

. (5)

10
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Now consider all tiles in B in the form Tx(H), where x ∈ QB
L . Note that no vertex of B is

covered by more than |H | tiles. Indeed, if z is covered, then the L/2-neighborhood of z in B is
colored isomorphic to the L/2-neighborhood of 1 in G. Hence if z ∈ Tx(H), then z ∈ QB

L/2 and

x ∈ Tz(H
−1). Summarizing these:

• for any y ∈ V (B),
∑

x:y∈Tx(H) 1 � |H |;
• ∑

x∈QB
L

|Tx(H)| = |QB
L ||H | � (1 − β)|V (B)||H |.

Consequently, the tiles {Tx(H)}x∈QB
L

form a δ-even covering of V (B), where δ = 1 − β . Then

by [6, Lemma 4], there exists an ε1-disjoint subcollection of tiles,
⋃

x∈I Tx(H) such that they
form a ε1(1 − β)-covering of V (B).

Now suppose that the number of vertices in V (B) not covered by this subcollection above is
greater than (ε/2)|V (B)|. Let B1 be the graph induced by the uncovered vertices. We would like
to estimate the quotient: |QB1

K |/|V (B)|. Note that if y ∈ V (B1) and

y /∈
⋃
x∈I

(
Tx

(
BK(H)

)∖
Tx(H)

)
then y ∈ Q

B1
K . Hence by ε1-disjointness,∣∣∣⋃

x∈I

(
Tx

(
BK(H)

)∖
Tx(H)

)∣∣∣ � α
∑
x∈I

|H | � α(1 − ε1)
−1

∣∣V (B)
∣∣.

Hence

|QB1
K | � ∣∣V (B1)

∣∣ − α(1 − ε1)
−1

∣∣V (B)
∣∣,

that is

|QB1
K |

|V (B)| � 1 − β1, (6)

where β1 = α(1 − ε1)
−1(2/ε). Also note that

ε

2

∣∣V (B)
∣∣ �

∣∣V (B1)
∣∣ �

(
1 − ε1(1 − β)

)∣∣V (B)
∣∣.

6. The proof of Theorem 2

Let {αk}∞k=1 be a sequence of real numbers tending to zero and let {sk}∞k=1 be a sequence of
real numbers tending to infinity, satisfying the following inequalities:

sk � 1, sk+1 � 10sk.

We call a subsequence of the Følner exhaustion {Fn}∞n=1 an (α, s)-good subsequence if it satisfies
the following conditions:
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• 1 ∈ Fn1 ⊂ Bs1(1) ⊂ Fn2 ⊂ Bs2(1) ⊂ Fn3 ⊂ · · · ;
• Fni+1 is of type (100si, αi).

Obviously one can choose {sk}∞k=1 for any fixed {αk}∞k=1 to have such (α, s)-good subsequences.
Now let M be an integer such that

(
1 − ε1

2

)M

<
ε

100
. (7)

Also, pick β > 0 so that

βM <
ε

100
. (8)

And finally fix a sequence {αk}∞k=1 such that

αi(1 − ε1)
−1 2

ε
< β. (9)

Now let B a finite S-colored graph such that

QB
100sM

|V (B)| > 1 − β,

where β,M are as above. Then by the argument of the previous section we can ε1(1 − β)-cover
the vertices of B by ε1-disjoint tiles of type FnM

. If B1 is the graph induced by the uncovered
vertices of V (B), by (6):

|QB1
sM |

|V (B1)| > 1 − β1,

where β1 = αM(1 − ε1)
−1(2/ε). Now we can ε1(1 − β1)-cover V (B1) by tiles of type FnM−1 . If

B2 denotes the graph induced by the uncovered part of V (B1) then

|QB2
sM−1 |

|V (B2)| > 1 − β2,

where β2 = αM−1(1 − ε1)
−1(2/ε).

We proceed inductively. In each step the new tiles are disjoint from all previous ones. Also,

V (Bi) � V (Bi−1)

(
1 − ε1

2

)
.

Hence by our conditions, in at most M steps we obtain an ε-disjoint (1 − ε)-covering of V (B).
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7. The proof of Theorem 1

Let G be a finitely generated amenable group, A ∈ Matd×d(CG) and {Bn}∞n=1 be a sequence
converging to CG. Let {Tn}∞n=1 be the sequence of approximating operators as in Section 3.

Proposition 7.1. For any pair δ, ε > 0 there exists kδ,ε > 0 such that if k � kδ,ε then

dimC(kerTk)

|V (Bk)| �
(
dimG(kerA) − δ

)
(1 − ε).

Proof. Let 1 ∈ F1 ⊆ F2 ⊆ · · · be a Følner exhaustion of G, such that all the Fn’s have property
A(ε, δ,−) (see Lemma 2.1). Let {H1,H2, . . . ,Hs} be an ε-quasi-tiling of Bk by tiles from this
Følner sequence. Such ε-quasi-tiling exists by Theorem 2 if k is large enough. For 1 � i � s let
Ki ⊂ Hi be a subset such that:

• |Ki |/|Hi | > 1 − ε;
• Ki ∩ Kj = ∅ if i 	= j .

Since the Fn’s have property A(ε, δ,−) there exist subspaces Vi ⊂ (l2(Bn))
d such that:

• if f ∈ Vi then suppf ⊆ Ki ;
• f ∈ kerTk ;
• dimC Vi/|Hi | � dimG(kerA) − δ.

Now consider the subspace
⊕s

i=1 Vi ⊆ kerTk. Then

dimC

(
s⊕

i=1

Vi

)
�

(
s∑

i=1

|Hi |
)(

dimG(kerA) − δ
)
� (1 − ε)

∣∣V (Bk)
∣∣(dimG(kerA) − δ

)
.

That is

dimC(kerTk)

|V (Bk)| �
(
dimG(kerA) − δ

)
(1 − ε). �

Proposition 7.2. For any pair δ, ε > 0 there exists mδ,ε > 0 such that if k � mδ,ε then

dimC(kerTk)

|V (Bk)| � (1 − ε)−1(dimG(kerA) + δ
) + ε.

Proof. Again let 1 ∈ F1 ⊆ F2 ⊆ · · · be a Følner exhaustion of G, such that all the Fn’s have
property A(δ,+) (see Lemma 2.1). Consider the ε-quasi-tilings of the previous proposition.
Now let Wi ⊂ l2(Hi) be the restriction of kerTk onto Hi . By our assumption,

dimG(kerTk) � |Hi |
(
dimG(kerA) + δ

)
.
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Since {Hi}si=1 form an ε-covering

dimC(kerTk) � ε
∣∣V (Bk)

∣∣ +
s∑

i=1

|Hi |
(
dimG(kerA) + δ

)
.

Note that by ε-disjointness

s∑
i=1

|Hi | � (1 − ε)−1
∣∣V (Bk)

∣∣.
Thus

dimC(kerTk)

|V (Bk)| � (1 − ε)−1(dimG(kerA) + δ
) + ε. �

Clearly, Propositions 7.1 and 7.2 imply Theorem 1.
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