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Abstract

We propose a theory of degenerations for derived module categories, analogous to degenerations in
module varieties for module categories. In particular we define two types of degenerations, one alge-
braic and the other geometric. We show that these are equivalent, analogously to the Riedtmann—-Zwara
theorem for module varieties. Applications to tilting complexes are given, in particular that any two-
term tilting complex is determined by its graded module structure.
© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

Geometrical methods were introduced in representation theory of finite dimensional
algebras in order to parameterize possible module structures on a given vector space by
algebraic varieties. These varieties carry an action of a reductive algebraic @rewgh
that the orbits correspond to isomorphism classes of modules. One says that a Module
degenerates tN if N is in the closures - M of the orbit ofM under theG-action, and in
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this case one write&/ < N. Riedtmann defined if10] a relation< 4 by settingM < 5gN
if there is a modul& and a short exact sequence

O—N-—-M&Z—>7Z—0

of A-modules. She showed that < 44N implies M <N and in[12] Zwara proved that
M < N implies M <agN.

Since the derived category became a powerful tool in representation theory, it seems
desirable to study derived categories from such a geometric point of view. De Concini
and Strickland3] studied geometric properties of varieties of bounded complexes of free
modules. For a finite dimensional algeBdHuisgen-Zimmermann and Saofirl] defined
an affine variety which parameterizes bounded complexdsrmabdules. For this variety
no group action seems available so that the quasi-isomorphism classes correspond to orbits
under the action. Bekkert and Drozd studiedih minimal right bounded complexes of
projective modules, where quasi-isomorphism is the same as homotopy equivalence. There
homotopy equivalence classes are obtained as orbits of an action of a group; however
Bekkert and Drozd did not study the topology of their space and in particular they did not
study degeneration.

The purpose of the present paper is to define and to study a geometric structure on a set
of right bounded complexes of projective modules and to show a result analogous to the
result of Zwara and Riedtmann. More precisely, we define a topological spage-oj<
parameterizing right bounded complexes of projective modules depending on a dimension
arrayd replacing the dimension vector for module varieties. This topological space is a
projective limit of affine varieties and a projective lindtof affine algebraic groups is acting
on it. TheG-orbits correspond to quasi-isomorphism classes of right bounded complexes
of projective modules. For two right bounded complekéandN, we defineM < 4N if
there is a compleX and a distinguished triangle

N-—>M®dZ— Z— NI[1].

For two right bounded complex&s andN in comprojZ, we sayM <iopN if N € G - M.
Our main result is the following.

Theorem. Let A be a finite dimensional k-algebra over an algebraically closed field k and
let N and M be complexes in the bounded derived category of A-mofles). Then
there is a dimension array so that N and M belong teomproj¢ and moreoveM < 4N

if and only if M <(opN .

Using < agand< 4, we show that for twé-modulesvl andN one can choose a dimension
arrayd so that the modul® degenerates tdl in the module variety if and only if the
projective resolution oM degenerates to the projective resolutiorNoih comproj2. To
illustrate how the topology afomproj% can be used, we show that a partial two-term tilting
complex is determined, up to isomorphism, by its structure as a graded module. We give an
example showing that this is not true for longer tilting complexes.

The paper is organized as follows. In Section 1 we define the vatietyroj<, define
a group acting on it, and show some basic properties. In Section 2 we defirmend show
that < 4 implies the topological degeneration for two complexes with bounded homology.
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In Section 3 we show the converse. Section 4 finally develops consequences for complexes
without self-extensions.

1. General definitions and elementary properties

Let A be afinite dimensional algebra over an algebraically closedKigldtmod (A, d)
denote the affine variety @fdimensionalA-modules. The general linear groGi, (k) acts
onmod(A, d) by change of basis and the orbits correspond to the isomorphism classes of
d-dimensional modules.

Let P1, ..., P, be a complete set of projective indecomposablaodules, one in each
isomorphismclass. Foranelemért(d?, ..., d') € N/, leta(d) be defined b@lj:lP;” €
mod (A, a(d)). ’

For every sequencé: Z —> N/ for which there is arg € Z with d; = (0, . .., 0) for
i <ip we definecomp(A, a(d)) to be the subset of

(H mod (A, oc(d,))) X (H Homy (k™) ka(dil))>

ieZ ieZ
consisting of element§M,); .7, (0,);cz) With the properties that, is anA-homomorphism
when viewed as a map froM; to M;_, ando;0;_, = 0.

i
The group[ [;.7Glxa;) acts oncomp(A, a(d)) by change of basis and the orbits corre-
spond to isomorphism classes of complexes.
We have a projectiony; : comp(A, a(d)) — [[;czmod(A, a(d;)) and we define

I .

. - dl

compm]i = an 1_[ @ Pj’
ieZ j=1

We say thatd is bounded if there is an € Z with d; = (0, ..., 0) for i >i1. In this
case we identifyomp(A, a(d)) with the affine variety of bounded complexes defined by
Huisgen-Zimmermann and Saorin[ibl]; in particular it has the Zariski topology. Also
comproj< is then an affine variety, being a closed subsetoip(A, a(d)).

Naive truncation on the left induces surjective morphisms of varieties

®, - comprojin — comprojin—l
[Twm 1o )= IT m T &
i<n i<n i<n—1 i<n—1
and similarly surjective maps
. id id,
T, : comproj= — comproje

(1‘[ Mi,l_[ai> - (1 . T

ieZ ieZ i<n i<n
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We givecomproj< the weak topology with respect to the mdpg}. So, the open sets in
comprojé are of the forn/ = J 77 1(U,) for open setd, in comproj andng € Z.

n=no’'n
Similarly, the closed sets iromproj< are of the formC =, -, 7, *(C,) for closed sets

C, in comproj%: and amg € Z. Note thatcomproj< is the projective limit of the varieties
comproj%: in the category of topological spaces.
The group

l . I .
G := 1_[ S[abGZ%(di) @ de,, ~ 1—[ AMZ‘A @ de,,

ieZ j=1 ieZ j=1

acts onthe spaeemproj< by conjugation and the orbits correspond to isomorphism classes
of complexes of projectivA-modules. The action @& on comproj¢ induces naturally an
action ofG on comprojé» for all n such that, ande, areG-equivariant maps.

We see thaG is a connected algebraic groupdifis bounded since the endomorphism
ring is a linear space, hence irreducible, and the automorphism group is an open dense
subvariety. Moreover, the action & is the action of a connected algebraic group on an
affine variety ifd is bounded.

The following lemma is well known to the experts, but we could not find a reference
and include a proof below. We do not require the field to be algebraically closed for the
remainder of this section.

Lemma 1. Let X = (B;c7Qi. P;cz05) and ¥ = (P;c70i, B;z0!) be two right
bounded complexes of projective A-modules with the same homogeneous com@gnents
in each degreé € Z. Then X is isomorphic to Y if and only if X is homotopy equivalent
toY.

Proof. If X is isomorphic toy in the category of complexes, then cleaXys homotopy
equivalent toy. So, suppose that is homotopy equivalent t, that is there is a mapping
of complexesp : X — Y and a mapping/ : Y — X of complexes so that there is
a maph of degree 1 so thapy — idy = hd* + 3%k and likewise there is ah’ with
Yo —idy =h'0Y +0Yh’. We shall show thak ~ X’ @ Ny whereim (0¥ |x) € rad(X")
and Ny is contractible, and likewise fof.

Suppose for the moment that this is shown. Then, sivigeand Ny are contractible,
we get thatX’ andY’ are quasi-isomorphic and therefore, since both are right bounded
complexes of projective modules, homotopy equivalent. Once we can show that'then
andY’ are isomorphic as complexes, then alspandNy are isomorphic. Indeed/y and
Ny are isomorphic as graded modules. Now, singeand Ny are contractible, they are
both isomorphic to a direct sum of copies of shifted copies of complexes of the form

i 00— M S M —>0—> ...
Comparing the direct factors, and using the fact ftigtand Ny are isomorphic as graded

modules, one sees thaty >~ Ny as complexes. So, we suppose for the moment in the
statement of the lemma that (0%) C rad(X). But then,py — idy = hd* + 0%k, and
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therefore(py — idx)(X;) C rad(X;) for any degreé. Nakayama’s Lemma implies that
@y is invertible. Likewisej ¢ is invertible. Henceg is an isomorphism.

We need to show thaX >~ X’ & Ny for a contractibleNy and a complexX’ with
im@%|x) € rad(X’). SincedX (rad(X;)) € rad(X;_1), the complexX induces a com-
plex(X/rad(X), 6X) of semisimple modules. Latbe the smallest degree such tigt
is non-zero. Denot& := X/rad(X). If

=X —_— p— J— p— p—
0#£0, : Xy — Xp1, thenX,, 1 ~X, 1&X, 1

) thatéfnf : X, — X, _, is surjective. But ther is also surjective onto the projective
coverx” _, of X, _;.SinceX” _, isprojective, there is a splitting, 1 : X/ _; — X, of
0X and thereforeX,, ~ X, ® X/ _jandX,,_1~ X, @ X/ _,sothady istransformed

0 0

X/

0 id
l 4

Xm—l

by these isomorphisms in(o ) Now, by induction defin&Vy := X” and one

getsX ~ X’'@® Ny andoX |y induces the 0-mapping modulo the radical. This is tantamount
to saying thaim (0% |y/) € rad(X’). O

As a consequence of the lemma, we see that the orhitsiiproj< under the action of;
correspond to homotopy equivalence classes, or equivalently quasi-isomorphism classes, of
right bounded complexes of projective modules with fixed dimension driidgte however
thatd is not preserved under quasi-isomorphism.

Lemma 2. Let M and N be right bounded complexes of finitely generated projective mod-
ules. Thenthere is a dimension array and homotopy equivalent complexgs~ M’ and
N ~ N’ sothatM’, N’ € comproj<.

Proof. Let n be the smallest degree such that the homogeneous compondnirdfl is
non-zero.

m m m m
M, =P M; &P N; andn;, .= P N; & P M,
j=n j=n j=n j=n

where the differentiady, is chosen to bé,, on M,,, and the differentiadl,ys is chosen to
bedy on N,,. Moreover,

id if m—kisodd
0 else

id if m—k>0is even

dw'|lm, = {0 else whereasiyy |y, = {

Define the differential oV’ likewise, and get this way that, ~ N, for all m, and also
M~ M aswellasv ~ N'. O

We define for a compleX the complexX[1] shifted by one degree to the left by
(X1, = Xpm—1 anddXt .= X
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2. Algebraic relation implies topological relation

Let A be an algebra over an algebraically closed flgltet D~ (A) be the derived cat-
egory of right bounded complexes of finitely generatethodules, and leD”(A) be its
full subcategory formed by bounded complexe®Aahodules. Letk ~(A) be the homo-
topy category of right bounded complexes of finitely generated projestivedules and
K~"(A) the image ofD’(A) in K~ (A) under the equivalenc& ~(A) ~ D~ (A). Con-
cerning conventions for derived categories we shall fol[@jv

For anyX andYin D~ (A), let X < 47 if there is a distinguished triangle

Y > X&pZ—Z— Y[1]

for an objecZin D™ (A).
On the topological side we define a relatignop by

for X, Y € comproj<.
We denote bylim(X) the dimension array of a compléke K~ (A).
Observe that i andY are inD?(A), thenX < ,Y implies[X] = [Y]in Ko(D?(A)).

Theorem 1. Let M and N be right bounded complexes of finitely generated projective
modules with the same dimension areayrhen M < 4N implies M <opN in comproj<.

Proof. LetU be a subset afomproj<. We show thall = N, 7, * (%, (U)). The inclusion
C is obvious. LetC be a closed subset ebmproj< with U < C. ThenC = (N, 7, 1(C,)
for closed subsets, C comproj:. HenceU < =;1(C,) and sor,(U) < C,for everyn,
which proves the other inclusion.

Now, if one can prove that whenevéf < 4N, thenn,, (M) < 47, (N), and moreover, if
this implies thatr, (N) € G - ©, (M), then by the abovey € G - M. This means that/
degenerates tN in the topological sense.

We still have to show that iM < 4N thenn,(N) € G - w,,(M). We shall use the very
same proof as in the module case by Riedtn]a0h Let M < 4N. Then, there is a complex
Z of projective modules so that

N—M®dZ— Z— NI[]1]
is a distinguished triangle. This implies that
Z[-1] — N — M & Z — (Z[-1D[1]

is adistinguished triangle. Hendd,® Z ~ cone(Z[—1] — N) inthe homotopy category.
Now, we use that the dimension arraydfnd ofM coincide. Indeed,

dim(cone(Z[—1] — N)) =dim(Z) + dim(N) = dim(Z) + dim(M)
=dim(M & Z).
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Hence,cone(Z[-1] — N) ~ M & Z in the category of complexes and so there is a
sequence

p
O—>N(¢—’“>)Z®M(l22—>0

which is exact in the category of complexes. This shows at onceMhaty N implies
(M) < 41, (N) for anyn.
The first assertion is thatis invertible if and only ifx is invertible and in this case,

(¥)

O—>N(¢—’“>)ZGBM—>Z—>O

is isomorphic to

8
0—>N(°—’>°‘)Z@M(—OZZ—>0

and thereforév >~ M. Indeed, we get an isomorphism of exact sequences

B
0 N (©.2) ZoM &) 7z
( idg 0 )
PYB~1  idm
B
0 N O |, zé6Mm () Z 0

and likewise forx invertible. '
For anyr € k we have a homomorphism of comple e@ﬂ;dz). Let

)

in the category of complexes. For anyith f; := being surjective we have that

f is locally split. Here we call a homomorphism of complegdscally split if g is split
in each degree, but not necessarily split as a homomorphism of complexes. For dll such
we see thaitV; is a complex of projective modules with the same dimension arraly e
now considerr, (N;), n,(N), n,(M), n,(Z) and the induced mappings on the truncated
complexes. Of course, we still haver (7, ( f;)) = 7, (N;).

We shall prove that

ﬁ-l—t-l'dz
U2

t > 1, (Ny) € comprojdimm(N)
is a rational morphism of varieties, imitating Christine Riedtmann’s pro@f@j.

There is an open neighborhobbf 0 in k so thatr, (f;) is surjective for alk € U, using
the fact that being surjective is an open condition and#théfo) is surjective.

Let

(B.9%)Ls4, 0% — 0
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be a surjective map of complexes of projective modules. We want to compute the kernel
(C, 8%) of this map. Since the structure®fs graded module is clear, we may choose bases
in B so that we can identifd with C & A as graded modules. Lgt= (g¢, g4) : C — B

be the inclusion of the kernel. We haye= ({,ﬁ) wheref4 is an isomorphism. Thegy is
an isomorphism as well and we may assume ghat id . But then,

ga=—fcfit

since f4 is invertible. The differential oker (f) depending offiis

_ id
acz(idc,—fcfAl)~aB~< 0C>.
Thus we get a rational morphism of varietilem (B, A) — comproj4m(© defined on
the open neighborhood ¢gf € Hom (B, A) for which f4 is an isomorphism.
We may now apply this construction to the mgpand by composing with the map

o (17

we get the promised rational morphism of varieties.

Finally, for thoset for which =, ( + ¢ - idz) is an isomorphism, that is for all but
the finite number of eigenvalues off}, we getn,(N;) ~ mn,(M) and fort = 0 we get
7, (No) ~ 7, (N). Therefore

T(N) € G -y (M). O

3. Geometric relation implies algebraic relation

We shall prove in this section that under some conditions the inverse implication of
Theorem 1 is true as well.

Letd = (d,, ..., d,) be a bounded dimension array. We associate to the affine variety
comproj(k) an affinek-schemeomproj<(—). Thisk-scheme has the following functorial
description. LeR be a commutativé-algebra. Letomproj<(R) denote the subset of

1_[ HomR(R“(di), R“(di—l))
ieZ
consisting of element&; ),z with the properties thad; is an RQ); A-homomorphism

J J
when viewed as a map fro@lj:l(R@kPj") to @’j:l(R@kP’.l"*l) and,0, ; = 0.
For ak-algebra homomorphisnf : § — R, there is naturallly a corresponding map
f* = comproji(S) — comproje(R) sending a tuple of matric&8,) to the tuple( £ (9,)).
Similarly we may associate to the affine algebraic grGup smooth affine group scheme
G (—) overk. The action ofc oncomproj¢ extends to an action @ (—) oncomproj(—).
We may verify Grunewald—O’Halloran’s conditions which are necessary to apply

[5, Theorem 1.2]
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Theorem 2. Letd be a dimension array. LeW, N € comproj< be two complexes with
bounded homology. ¥ <opN thenM < 4N.

Proof. Letnbe an integer such that the homologywbandN vanishes in all degrees larger
than or equal te. We will construct a short exact sequence of complexes

0— nm,(N) - n,(M)® Z(y — Zu) — O,

where Z,, is a complex of projectivé\-modules. We are going to follow the steps of
Zwara’s proof for the module case.

By Grunewald—O’Halloran’s resuls, Theorem 1.2]there is a discrete valuatidn
algebraR with maximal idealm and residue fielk and with overk finitely generated
quotient fieldK of transcendence degree 1 and a complér comproj%:(R) so that
kQrY = m,(N) and as complexes & Q) , A-modules,K QY = g - (K, 7, (M)) for
ag € G(K). Since the valuation oR is discretemm is principal, generated by an elemént

Sinced,, is bounded, there is a non-zero elemert R so thatzgis a tuple of matrices
with entries inR. Using the explicit definition of the action, we get

K®RY =g- (K®k77:,,(M)) =zg- (K®k77:n(M))~

So, we may assume thgtis a tuple of matrices with entries RR. Restricting the multi-
plication withg to R, 7, (M) gives a morphism of complexes &), A-modulesy :
R m,(M) — Y. LetX denote the image of this morphism. BotlandY are complexes
of free R-modules, with equal rank in all degrees; therefore there exists s@meh that
m'Y C X.

Now we take the point of view that the complex¢andY are gradedR(), A-modules
with differentials. Fix &k-basisZ of R. As complexes oA-modules we have

X:@ Xp,

beA

whereX;, = ((b)Q,m,(M)) =, (M) and whergb) denotes the-subspace dRgenerated
by b.
For eacth we have a short exact sequence of complexes

0— Y/mY — Y/m"*ly — y/m"y — 0.

We will show that there exists drsuch that /m" 1y ~ 7, (M) & (Y /m"Y) as complexes
of A-modules where the mappirig/mY) ~ (m"y/m'*1y) — (¥/m"*1y) is induced
by multiplication by " and canonical inclusion. Lét = P, Vi be a graded vector space
formed by taking vector space complements{efin ¥; in each degree Note thatV is a
finite dimensional vector space sinéés bounded and*Y C X. Let Zg be the smallest
A-subcomplex off containingV. ThenZy is a finite dimensional complex @-modules,
sinceY is bounded. Now = X + Zg as complexes oAi-modules. Let/” be a finite subset
of # suchthatZoN &P, ., X» = ZoN X. Such a subset exists singg s finite dimensional
overk. LetZ1=Zo+ @, Xp. ThenY =Z1 @ EBbW"Xb- Since?  is finite there exists
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an integett such thatn’*1x N @, ., X, = 0. Thus there is a finite subs#t of % such
that

mtx @ @ Xb@@ Xp=X.
beW beV”

Let Zo = Z1 + @pey Xp- ThenY = m'*1X @ Z5.
It follows that we have a chain of inclusions

where the last two inclusions have direct complements as complexXemofiules. Thus

Y/ms+l+2Y ~ (n1l+2X/n,IS+T+2y) @ o, (M) @ (Y/]nt+lX)
~ 1, (M) ® (Y /m Ty,

where the last isomorphism follows since

mt+2X/rnS+l+2Y ~ ml"'rlx/mS'f't"rlY and

Tnl+1x/nIS+1+1Y @ Y/ml-'rlX ~ Y/1ns+l+1Y.

Now sinceY/mY =r,(N) we get the promised short exact sequence of complexes 0
T(N) —> (M) ® Zny —> Zun) — 0 by choosingZ,y = ¥ /m'T'+1y.

Now construct a complexy’ by splicing r,, (N) with a projective resolutionPy of
H, (m,,(N)). Similarly we form a compleX by splicing a projective resolutio®; of
H,(Z)) with Z,). By the horseshoe lemma, there exists a short exact sequeree 0
Py — Pygz — Pz —> 0 of projective resolutions whemy ¢,z >~ Py &® Pz as graded
modules and whergyg 7 is a projective resolution ol (, (M) ® Z,)) = H, (1,(M)) &
H,(Z)). Moreover we have a short exact sequence of complexes

0O—N —M —Z7Z—0,

where the complex/’ is formed by splicingPy gz With the complexn, (M) & Z,).
Now N’, M" are homotopy equivalent t4, M @ Z, respectively. Thus we get a triangle
N — M & Z — Z — NI[1], which completes the proof of the theorem.]

4. Consequences for the geometry of complexes

We continue with some consequences and observationsgmroj< and the orders<
and gtop.

Example 4.1. We consider the quiveD defined bye; —> 5. Then, up to isomorphism,
there are 3 indecomposalk¥€-modules: the indecomposable projective modeileorre-
sponding to the vertex 1 and the two simple mod$leand P,. Moreover, in the representa-

tion varietymod (k Q, (1, 1)) of 2-dimensionakQ-modules with two different composition
factors, one has that the projective module with top 1 degenerates to the direct sum of the
two simple modules. The projective indecomposable module with top 1 can be considered
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as being il’bomproj«g)’(é)), where(Z) indicates that in a certain degree the module is
0 1
Py @ sz. The semi-simple modul&; @ S» is in comproj((l)’(l)). So, the modules are
represented in different varietiesmproj< and here it is not possible to consider degen-
erations between them if one declares that a comjldrgenerates to a compléxif Y
is in the closure of the orbit aX. Nevertheless, one may consider another non-minimal
projective resolution oP; as
(idpy.0)
P,——P> P Py.
0 1
This complex can be seen as being&mproj«l)’(l)), and the minimal projective reso-
lutionof S1 @ P is

0,
Pz(—l>) P& P

for 1 being the embedding, — P;. Therefore,P1 andS; @& P> can be both visualized

0 1
in comproj((l)’<1)>. Moreover it is easy to see th&{ <iopS1 @ P2. This observation is

one of the motivations not to ask for the complexes to be minimal as is dqagamd to
allow zero homotopic direct summands.

Let M andN be d-dimensionalA-modules. We writeM < N if M degenerates thl in
mod(A, d).

Proposition 3. LetM, N € mod(A, d) for some dimensiond and 18;, Py € comprojZ
for some dimension arraybe a projective resolution of M and kespectively. Thed < N
inmod(A, d) if and only if Py <topPy in comproj<.
Proof. If M <N, then by Zwara’s theoreifi2] there is an exact sequence
O—N—wZoeM—72—0
for anA-moduleZ. This implies a distinguished triangle
Py — Pz ® Py — Pz — Pyl[1]

in K~ (A) wherePy is a projective resolution a. Hence,Py; < 4 Py and so by Theorem
1 we havePy <iopPn.

Conversely, supposky, <opPy and so by Theorem 2 we hav, < 4 Py. Then, there
is a complexXZ and a distinguished triangle

Py — Z® Py — Z — Py[1].
Taking homology of this triangle gives a long exact sequence

— Hi11(Z) — H;(Py) — Hi(Z) ® H{(Py) — Hi(Z) — H;—1(Py) —
whereH; (Py) = H;(Py) = 0 fori > 0. Fori = 0 one gets an exact sequence

0 — Hi(Z) — Hi(Z) — N —> Ho(Z) & M —> Ho(Z) —> 0.



292 B.T. Jensen et al. / Journal of Pure and Applied Algebra 198 (2005) 281—-295

This implies that
O— N— Hy(Z)®M — Ho(Z) — 0O

is a short exact sequence and hemt& N in mod(A, d), again by Zwara's theorefi 2].
This proves the statement[]

Lemma 4. Letd be any dimension array and let T be an elemenbinproj< so thatG - T
is open. ThenT is a minimal element fo< 4 and for <.

Proof. If G - T is open, themomproj\{G - T} is closed and for an % T one has that
G-XC compraj”l\{G -T}.

Hence,T is minimal with respect to<op, and since< 4 implies <qp, the complexT is
minimal also with respectteg 4. O

Observe that we only used the topology of the space in the previous argument. We shall
see that for bounded the orbits ofT with Hom py4)(T, T[1]) = 0 are open.

Lemma 5. Letd be a bounded dimension array and let X be a complexinproj<. If
Hom pp4)(X, X[1]) = 0,thenG - X is open incomproj<.

Proof. First assume that is a bounded dimension array. From Theorem [1i] we see
that the orbit ofX in comp(A, a(d)) is open if Hom pi4)(X, X[1]) = 0. The result now
follows sincecomproj? is a subvariety ofomp (A, a(d)) and sinceG - X = comproj4n
(Gly@wy - X). O

Lemma 6. The relation<qp is a partial order on the set of isomorphism classes of com-
plexes with bounded homology with fixed dimension adray

Proof. f N € G-M andM € G-L,thenclearlyN e G-L.If N € G- M andM ¢
G - N, then by the proof of Theorem 1 we get(N) € G - m,,(M) andn, (M) € G - m,(N)
foralln € Z. This impliesn,(N) ~ n,(M) foralln € Z.

We show that wheneveX is a complex with bounded homology iwmproj, then
denoting bym an integer so that the homology Xfis 0 in all degrees higher than, then
Y eG-XifandonlyifY € n;l(G - (X)) for all £=m + 1. Indeed, assume that
Y e n;l(G - (X)) for all £ =m + 1. Then we have an isomorphism of homology groups
H,(Y) ~ H,(X) for all n, which shows thati,,(Y) =0 for alln >m + 1. Then there is an
isomorphismr,,+1(Y) >~ m,,+1(X), which lifts to a homotopy equivalendé~ X and so
Y € G - X. The reverse implication is trivial.

Hence, one ha¥ ~ M. [

Remark 4.2. Saorin and Huisgen-Zimmermaijhl, Theorem 7]cited in the proof of
Lemma 5 shows that the tangent space of the variety of complexes(A, «) at some
point X modulo the tangent space of the orbitXtinder the group which is acting At



B.T. Jensen et al. / Journal of Pure and Applied Algebra 198 (2005) 281—-295 293

is isomorphic toH om py 4, (X, X[1]). A similar result can be proven faomprojd and

the action of our smaller group. We also mention that Lemma 5 has a converse in the case
whered is bounded. Namely, i - X is open incomproj< thenHom py 4y (X, X[1]) = 0.

This can again be seen frgil, Theorem 7]

Corollary 7. Complexes withH om py 4, (X, X[1]) = 0 are minimal with respect to both
<4 and <iop. In particular, partial tilting complexes are minimal with respect to both
orders

We also give a consequence which does not require an algebraically closed field.

Corollary 8. Let A be an algebra over a field K. Tharp to homotopy equivalence there
is at most one two-term partial tilting complex

T=..—~-~0— PL— Pp—0— ...

with fixed homogeneous componehssand P;.

Proof. Since two-term complexes of projective modules are entirely determined by their
homology, and since for any field extensibrof K one hasH (LQ)  X) ~ LR x H(X)

for any complexX, we may assume th#t is algebraically closed. Let; = dim(P;) for

i € {0,1} anda := (a1, ag). The varietycomproj¢® is an affine space, and therefore
irreducible as algebraic variety. Moreover, sincés a partial tilting complex, the orbit

G - T is open incomproj¢®. ThereforeG - T is dense. LeS be another partial tilting
complex incomproj?®. Also G - S is open and dense, and therefére top? as well as

T <topS. Hence,S ~ T by Lemma 6. [

Example 4.3. Corollary 8 does not hold for general dimension arrays.A.be given by
the quiver

with relationsxffo. = foff = 0. For this algebra, take the indecomposable complex (unique
up to isomorphism so that is in degree 0)

n=-—-0—wP —P—>P—>0— ...

andT, := P1 — P,. Then,T := T1 @ T» is a tilting complex. Letd be the dimension
array ofT. The complexs

(5 o)
©,id) 0 0

PiL—sP1®PL—>Pd P>
is homotopy equivalent to the tilting compléx

,0
Pl(“—g P> ® Po.



294 B.T. Jensen et al. / Journal of Pure and Applied Algebra 198 (2005) 281—-295

Here both tilting complexef andShave the same dimension array, but are not isomorphic,
and therefore belonging to different irreducible componentsaifproj<. Using[8] and a
slightly more detailed examination ebmproj<, one observes thabmproj< has exactly
two irreducible components.

The complexiy & P1[2] is a tilting complex as well and denote byhe dimension array
of T1 & P1[2]. A short examination yields thabmproj¢ has two irreducible components,
oneCj3 of dimension 3 and another componéhtof dimension 4. The orbit dfy & P1[2] is
open inCs, whereas the complexes corresponding to the pointg iare not partial tilting
complexes. Observe, however(nthatthere is an open orbit of a complgx>~ P1[2]® P
with Hompp4y(U, U[1]) =0 # Hom py 4y (U, U[2)]).

Remark 4.4. Observe that a tilting complékoverA is the imageF (B) of an equivalence

F : D"(B) — DP"(A) of triangulated categories. By Rickard’s and Keller’s main theorem
[9,6] there is a so-called two-sided tilting complgxof A, B°’-modules which are
projective on the left and on the right, so the@%— is an equivalence. For any dimension
arrayd, let X ® d be the dimension array which is obtained by tensoring a complex with
dimension arrayl by X, and taking the total complex of the resulting bi-complex. Then, by
definition X ) ; — induces a morphism of varieties

. .d . X®d
comproj(X) : comproj g —> comproj, .

Itshould be an interesting question to study the image of this morphism 'tmziq&ojif@i.
Note that studying varieties using functors is already far from trivial in the module case (see
[2,13)).

There is another consequence of these statements. Indeed, define for any two complexes
XandYin K—?(A)

X< promY 1 YU € DP(A) : dimp(Hom pp4)(U, X)) <dimy(Hom py (U, Y)).

Lemma 9. Let X and Y be two complexesdomproj< for bounded dimension array.
Then thOpY = XSH[)H‘LY'

Proof. Define for any two complexeX andY with appropriate bounded dimension array
d ande the mapping

(»DX,Y : 1_[ HOn’IA(Xi, Yi+1) — HOme(A)(X, Y)
ieZ

by ¢x y(f) := 0y f + fOy. Itis clear that this image is exactly the set of 0-homotopic
homomorphisms. Hence, we have that

dimk(HOme(A) (X, Y)) = din’lk(HOmcb(A) (X, Y)) — dlmk(lm(qox!y))
We use the argument frofd, Section 3, Theorem 2, special cagefhow that

(U} x comproj¢ — N
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given by (U, X) + dimi(Hom py4,(U, X)) is upper semi-continuous. Then, setting-
dimg(Hom pp4)(U, X)), one getd Z|dimy(Hom ps4,(U, Z)) >n} is closed, and it €
G - X,thenY € {Z|dimy(Hompy4)(U, Z)) >n}. Hence,

dimg(Hompp4) (U, Y)) Zdimg(Hompy4) (U, X)).

This proves the statement[]
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