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Abstract

We describe free differential algebras for non-Abelian one and two form gauge potentials in four dimensions deri
integrability conditions for the corresponding curvatures. We show that a realization of these algebras occurs in M
compactifications on twisted tori with constant four-form flux, due to the presence of antisymmetric tensor fields in the
theory.
 2005 Published by Elsevier B.V. Open access under CC BY license.
n-
ct-
bi-
ns

nd

nd
–

est-

ost
lge-

cur-
1. Introduction

Flux compactifications on twisted tori provide i
teresting examples of string and M-theory compa
ifications where most of the moduli fields are sta
lized [2–8]. Particular cases of such compactificatio
include heterotic string, type II orientifold models a
M-theory in the presence of constantp-form fluxes
(wherep depends on the particular string model a
p = 4 in M-theory). When fluxes and (or) Scherk
Schwarz geometrical fluxes are turned on, inter
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ing gauge algebraic structures emerge which in m
cases have the interpretation of a gauged Lie a
bra[5,9–12].

In this case the Maurer–Cartan equations (zero
vature conditions) read

(1.1)dAΛ + 1

2
f Λ

ΣΓ AΣ ∧ AΓ = 0,

where integrability implies the Jacobi identities

(1.2)f Λ[ΣΓ f Π
∆]Λ = 0.

This comes from the vanishing of the cubic term

(1.3)d2AΠ = −1
f Λ f Π AΣ ∧ AΓ ∧ A∆ = 0.
2
ΣΓ ∆Λ

nse.
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When fundamental tensor fields are present in
theory, in absence of gauge couplings in the superg
ity theory, one can transform them into scalars and
is the way the full duality symmetry (sometimes call
U-duality) is recovered. However, in presence of n
abelian gauge couplings, an obstruction can aris
the dualization of such antisymmetric tensors, so
the theory only preserves some subalgebra of the
duality group. Moreover, the gauged algebra struc
may be more complicated than an ordinary Lie al
bra and in fact, as noted in[10] for generic Scherk–
Schwarz and form flux couplings it turns out to be
free differential algebra (FDA)[13–17].

In the case of M-theory, we will show that i
Maurer–Cartan equations are equivalent to the i
grability conditions for the 4-formGIJKL and for the
vielbein 1-form inD = 11. This also will explain how
the Lie algebra part of the free differential algebra
deformed in the presence of generic Scherk–Schw
and form flux couplings.

2. The free differential algebra and its
Maurer–Cartan equations

The generalization of(1.1) to a free differential al-
gebra including 2-form gauge fieldsBi consists of the
following (zero-curvature) system

(2.1)FΛ = dAΛ + 1

2
f Λ

ΣΓ AΣ ∧ AΓ + mΛiBi = 0,

Hi = dBi + (TΛ)i
jAΛ ∧ Bj

(2.2)+ kiΛΣΓ AΛ ∧ AΣ ∧ AΓ = 0,

wheref Λ
ΣΓ , (TΛ)i

j , mΛi andkiΛΣΓ are the struc-
ture constants of the FDA.

The integrability condition of this system com
from the Bianchi identities

(2.3)dFΛ = 0,

(2.4)dHi = 0.

From(2.3), by setting to zero the terms proportional
A3 andA ∧ B polynomials we get

(2.5)f Λ
Σ[Γ f Σ

Π∆] + 2mΛikiΓ Π∆ = 0,

(2.6)f Λ
ΣΓ mΣj + mΛi(TΓ )i

j = 0,

respectively. From(2.4) we get three conditions from
the vanishing of the terms proportional toB ∧ B, B ∧
A ∧ A and fromA4 terms:

(2.7)(TΛ)i
(jmΛk) = 0,

(TΛ)i
j f Λ

ΣΓ − 2(T[Σ)i
k(TΓ ])kj

(2.8)+ 6mΛjkiΛΣΓ = 0,

(2.9)3f Λ[ΣΓ kiΠ∆]Λ − 2(TΠ)i
j kjΣΓ ∆] = 0.

WhenmΛi = 0, the condition(2.5) implies for the
AΛ the ordinary Lie algebra Jacobi identities. Eq.(2.8)
tells us that(TΛ)i

j is a representation of the Lie alg
bra and(2.9)states thatkiΛΣΓ is a cocycle of the Lie
algebra. WhenmΛikiΓ Π∆ �= 0 (2.5) gives the depar
ture from an ordinary Lie algebra for thef structure
constants.

3. FDA from M-theory on twisted tori with fluxes

As an example of a concrete realization of the f
differential algebra(2.1) and (2.2), we will now de-
scribe the one obtained by compactification of
theory on twisted tori in the presence of fluxes co
sidered in[10]. The compactification of M-theory t
4 dimensions provides 28 vector fieldsGI

µ, AµIJ and
7 2-form tensor fieldsAµνI . This means that we ca
identify the generic indicesΛ, i of our FDA as follows
Λ = {I, IJ }, i = I . Furthermore, one has to write th
single indicesI, J in the same position asΛ, i, but the
antisymmetric couplesIJ , KL, . . . are written as up
per indices ifΛ,Σ, . . . are lower ones and as low
indices ifΛ,Σ, . . . are upper ones.

If one considers first the case when only form flux
are turned on, the Lie algebra is

[ZI ,ZJ ] = gIJKLWKL,

(3.1)
[
ZI ,W

JK
] = [

WIJ ,WKL
] = 0,

which is the central extension of an Abelian gauge
gebra. In this case the only non-vanishing struct
constants are[10]

(3.2)f Λ
ΣΓ = f[IJ ]KL = gIJKL,

(3.3)kiΛΣΓ = kIJKL = 1

6
gIJKL,

while mΛi = (TΛ)i
j = 0. It then follows that(2.5) and

(2.6)are trivially satisfied andgIJKL is arbitrary. This
result is a consequence of the very degenerate stru
of the Lie algebra(3.1).
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An intermediate richer example comes in the c
of Scherk–Schwarz fluxesτK

IJ and vanishing 4-form
flux. This is the case considered in the pioneering
pers of Scherk–Schwarz[1,2]. In this casekiΛΣΓ = 0,
but mΛi and (TΛ)i

j do not vanish. In fact, the non
vanishing parts of these structure constants are

mΛi �= 0 for Λ = [IJ ], i = K,

(3.4)mIJ
K = τK

IJ ,

(TΛ)i
j �= 0 for Λ = I, i = J, j = K,

(3.5)(TI )J
K = −τK

IJ .

The other non-vanishing structure constants occur
f Λ

ΣΓ when

Λ = I, Σ = J, Γ = K, f I
JK = τ I

JK,

Λ = [IJ ], Σ = K, Γ = [LM],
(3.6)f[IJ ]K [LM] = −2τ

[L
K[I δ

M]
J ] .

In this case(2.7)is identically satisfied and(2.6), (2.8)
are identical to(2.5), which reads asτL[IJ τM

K]L = 0.

Note thatmΛi corresponds to a “magnetic” mass te
for theBi field.

The f Λ
ΣΓ structure constants in(3.6) define the

Scherk–Schwarz algebra for M-theory:
[
WIJ ,WKL

] = 0, [ZI ,ZJ ] = τK
IJ ZK,

(3.7)
[
ZI ,W

JK
] = 2τ

[J
ILWK]L.

Let us now consider the general case when bothτK
IJ

andgIJKL are non-vanishing. In this case the last te
in (2.5) is non-vanishing forΛ = [IJ ], Σ = K , Γ =
L andΠ = M . It reads

(3.8)τN
IJ gKLMN.

If this term does not vanish thef structure constant
do not define a Lie algebra. In this case(2.5) (as also
(2.9)) becomes

(3.9)τN
[IJ gKLM]N = 0.

This condition has the 11-dimensional interpre
tion of the integrability condition of the 4-form fiel
strength[10].

All other equations are satisfied as a conseque
of the τ Jacobi identitiesτL[IJ τM

K]L = 0. These follow
from (2.5)by takingΛ,Σ,Γ,Π = IJKL. It is obvi-
ous that if the stronger condition(3.8) holds then the
f Λ
ΣΓ define an ordinary Lie algebra. This happe

if the Scherk–Schwarz fluxesτK
IJ have theK index

complementary to the flux couplinggIJKL. This can
actually be realized in certain type II orientifold mo
els.

To summarize, we have shown that for gene
Scherk–Schwarz couplingsτK

IJ and 4-form flux
gIJKL, the M-theory gauge algebra is a free diffe
ential algebra rather than an ordinary Lie algebra.
equations

(3.10)τM[IJ τL
K]M = 0,

(3.11)τN
[IJ gKLM]N = 0,

are the integrability conditions for the FDA. Whe
the stronger conditionτN

IJ gKLMN = 0 holds then the
f Λ

ΣΓ define an ordinary Lie algebra whose comm
tators read[10]

[ZI ,ZJ ] = gIJKLWKL + τK
IJ ZK,

[
ZI ,W

JK
] = 2τ

[J
ILWK]L,

(3.12)
[
WIJ ,WKL

] = 0.

It is interesting to note that in M-theory compactifi
on a twisted torus with 4-form flux turned onmΛi and
gPQRS have the physical interpretation of magne
and electric masses for the antisymmetric tensorsBI .
This is clear looking at the covariant field strength

(3.13)FΛ = dAΛ + 1

2
f Λ

ΣΓ AΣ ∧ AΓ + mΛIBI .

This expression appears quadratically in the (kin
part of the) Lagrangian together with the coupling

(3.14)gIJKLBM ∧ dANP εIJKLMNP ,

which comes from the 11-dimensional Chern–Sim
term F ∧ F ∧ A. It is amusing to note that the con
sistency condition[18,19] for electric and magneti
contributions to the mass is in this case a consequ
of (3.9).

The M-theory FDA also includes a 3-form gau
field C which is a singlet. The zero-curvature con
tion for this 3-form is

dC + mijBi ∧ Bj + mi
ΛΣAΛ ∧ AΣ ∧ Bi

(3.15)
+ tΛAΛ ∧ C + kΛΣΓ ∆AΛ ∧ AΣ ∧ AΓ ∧ A∆ = 0.

In the M-theory FDA, the only non-vanishing term
are k ∼ g and mI ∼ τ I , with all the
IJKL IJKL JK JK
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other components andtΛ and mij vanishing. In this
case the Bianchi identity is trivially satisfied becau
a 5-form inD = 4 identically vanishes. However, th
curvature ofC can be determined by demanding
full invariance under all gauge transformations.

4. Non-zero curvature case

The previous Maurer–Cartan equations(2.1) and
(2.2), which entail the “structure constants” relatio
(2.5)–(2.9)can be lifted to non-zero curvature, so o
taining covariant Bianchi identities for the curvature
In the case of M-theory with Scherk–Schwarz flux
turned on this procedure essentially reproduces the
variant curvaturesG of Section 3.4 of[2]. When also
the constant 4-form fluxesFIJKL = gIJKL are turned
on, then one gets generalized curvatures which are
variant under the combined 1-form and 2-form gau
transformations considered in Section 2 of[10].

An interesting new feature of the curvatures is
presence inHI of a “contractible generator”[13], i.e.,
in physical language, of a curvature itself (which a
exists in the ungauged theory)

(4.1)HI = dBI +FJ ∧ AIJ ,

whereFJ = dAJ . This is a kind of Green–Schwar
(mixed) Chern–Simons term which modifies the gau
transformations ofBI so thatHI is invariant under the
gauge transformations

δBI = dΛI − εIJFJ ,

δAI = dωI ,

(4.2)δAIJ = dεIJ .

The (ungauged) Bianchi identity is now

(4.3)dHI = FJ ∧FIJ ,

which satisfiesd2HI = 0 and is also invariant unde
the gauge transformations(4.2).

Let us now consider the case whengIJKL �= 0 (but
τK
IJ = 0), so that

FIJ = dAIJ + 1

2
gIJKLAK ∧ AL,

(4.4)F I = dAI .
Then theHI curvature reads

HI = dBI +FJ ∧ AIJ

(4.5)+ 1

6
gIJKLAJ ∧ AK ∧ AL,

and the coefficient of theF ∧ A term is fixed, relative
to theA3 term in such a way thatdHI = FJ ∧ FIJ .
Now HI and its Bianchi identity are invariant und
the gauge transformations

(4.6)δBI = dΛI − εIJFJ + 1

2
ωMgMIJKAJ ∧ AK,

(4.7)δAI = dωI ,

(4.8)δAIJ = dεIJ − gIJKLωKAL.

Analogously, the threefold antisymmetric tensorC

curvature is

(4.9)
dC −F I ∧ BI + 1

4!gIJKLAI ∧ AJ ∧ AK ∧ AL,

which is invariant under the gauge transformations

δC = dΣ +F I ∧ ΛI

(4.10)− 1

6
gIJKLωI ∧ AJ ∧ AK ∧ AL,

(4.11)

δBI = dΛI − εIJFJ + 1

2
ωMgMIJKAJ ∧ AK,

(4.12)δAI = dωI .

Note that thedC field strength is a Lagrange mult
plier and can be algebraically eliminated from the L
grangian giving a contribution to the scalar potentia

5. Concluding remarks

In the present Letter we have considered the
differential algebra which comes from M-theory com
pactified on a twisted torus with constant 4-fo
fluxes. This is just a special case of the Maurer–Ca
equations described by(2.1) and(2.2). A similar sit-
uation arises in type IIA theories since in this ca
charged antisymmetric tensor fields are also pres
However, in this case one can find a particular se
geometrical fluxes which can be consistently se
vanish and then the Lie algebra structure is recove
because the condition

(5.1)mΛikiΣΓ Π = 0,

is satisfied. Such examples were described in[10].
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The FDA given by the system of curvaturesFΛ,Hi

can be recast in the form of an ordinary Lie algebr
(some of the)Bi are redefined so that the quadra
term inAΣ ∧ AΓ is absorbed in the new̃Bi [13]. This
can be done at most for rank(m) tensors fields, which
can be the same as the range of thei indices provided
that this is smaller than that of the vector fieldsΛ, as in
the M-theory case. Explicitly, for thoseBα for which
the subblockmαβ is invertible, one can introduce th
definition (Λ = {α,A})

(5.2)B̃α ≡ Bα + 1

2
m−1

αβ f β
ΛΣAΛ ∧ AΣ,

so that the new zero curvature conditions read

(5.3)dB̃α = 0,

(5.4)Fα = dAα + mαβB̃β = 0,

(5.5)FA = dAA + 1

2
f A

BCAB ∧ AC = 0.

The new Lie algebra is defined by the structure c
stantsf A

BC and this is obtained by deleting theAα

generators from the original algebra. This is the q
tient of the original algebra with the subalgebra rela
to theAα vectors. It is an obvious consequence of
Jacobi identities forFA that f A

ΛΣ = 0 wheneverΛ
or Σ take values in theα range.

In the M-theory case, the rank ofmΛi is encoded in
the Scherk–Schwarz fluxesτK

IJ regarded as a 7× 21
triangular matrix. A quadratic submatrix can have
most rank 7 so the Lie algebra spanned by theAA is at
least 21-dimensional. When describing the algebr
terms of its generators, one must delete the genera
WL̃K̃ whose gauge fields are absorbed by the antis
metric tensors. The resulting Lie algebra is obtain
by all ZK , WLK generators but theWL̃K̃ , which is
an Abelian subalgebra. A simple example is the c
when τK

IJ correspond to a “flat group”. In this cas
BI = {B0,Bα} andAΛ = {Aα,AA}, with Aα = A0α

andAA = {A0,Aα,Aαβ}. The original structure con
stants follow fromτK

IJ = τα
0β = tαβ , where α,β =

1, . . . ,6, andt is an invertible antisymmetric matrix
(this means that the 3 skew eigenvalues are non-z
The redefined tensor fields are

(5.6)B̃α = tδγ t−1β
α Aβδ ∧ Aγ + A0α ∧ A0 + Bα,

(5.7)B̃0 = B0 − Aα ∧ A0α,
.

and the zero curvatures conditions read

(5.8)dA0 = 0,

(5.9)dAα + tαβA0 ∧ Aβ = 0,

(5.10)dA0α + tβαB̃β = 0,

(5.11)dAαβ + 2tγ [αA0 ∧ Aβ]γ = 0,

(5.12)dB̃α = 0,

(5.13)dB̃0 − tβαAα ∧ Aγ ∧ Aβγ = 0.

Note that the Jacobi identities of theτ do not set any
constraint on thet matrices. If we split the generato
into Z0, Zα , W0α , Wαβ , it is immediate to see tha
the indexα goes over six values and the gauge fie
Aµ0α disappear from the gauge algebra. The gener
algebra becomes then
[
Z0,W

αβ
] = 2τ

[α
0γ Wβ]γ , [Z0,Zα] = τ

γ

0αZγ ,

(5.14)
[
Zα,Wβγ

] = [Zα,Zβ ] = [
Wαβ,Wγδ

] = 0,

which is the usual (22-dimensional) flat Scher
Schwarz algebra. This algebra becomes 24- or
dimensional if one or two eigenvalues of thet matrix
vanish. The same reasoning applies when form flu
are present. In this case the commutators of theZα are
not vanishing and the gauge algebra get modified.

Note that the physical interpretation of this redu
tion of the FDA to a minimal part and a contractib
one [13] corresponds to the anti-Higgs mechani
where antisymmetric tensors absorb vector fields
become (dual to) massive vectors. The quotient Lie
gebra is the unbroken gauge algebra. It is interestin
see that, due to the cubic terms of the 1-formsAΛ in
theHi curvature (this only happens when the 4-fo
flux is present), the quadratic part of theFΛ curvature
does not correspond to an ordinary Lie algebra be
the quotient has been taken.

Another interesting generalization is to extend su
FDA to the fermionic sector of the theory, sin
the D = 4 theory hasN = 8 local supersymmetry
Such program was originally carried out inD = 11
in [14] and its extension to the present compactifi
tion should be possible.

We finally remark that the different structures
the 4-dimensional effective theories obtained when
gauge algebra is a FDA or an ordinary Lie algebra
reflected in different scalar potentials. This fact m
have important consequences when looking for co
plete moduli stabilization in such compactifications
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