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Abstract

We describe free differential algebras for non-Abelian one and two form gauge potentials in four dimensions deriving the
integrability conditions for the corresponding curvatures. We show that a realization of these algebras occurs in M-theory
compactifications on twisted tori with constant four-form flux, due to the presence of antisymmetric tensor fields in the reduced

theory.

0 2005 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Flux compactifications on twisted tori provide in-
teresting examples of string and M-theory compact-
ifications where most of the moduli fields are stabi-
lized [2-8]. Particular cases of such compactifications
include heterotic string, type Il orientifold models and
M-theory in the presence of constaptform fluxes
(where p depends on the particular string model and
p = 4 in M-theory). When fluxes and (or) Scherk—
Schwarz geometrical fluxes are turned on, interest-

E-mail address: gian@mail.cern.cfG. Dall'Agata).

ing gauge algebraic structures emerge which in most
cases have the interpretation of a gauged Lie alge-
bra[5,9-12]

In this case the Maurer—Cartan equations (zero cur-
vature conditions) read

1
a’AA+§fA2pAE AAT =0, (1.1)
where integrability implies the Jacobi identities

fAerfTaa=0. (1.2)
This comes from the vanishing of the cubic term

1
d2AT = —EfAzranAAE ANAT AAY =0, (1.3)
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When fundamental tensor fields are present in the A A A and fromA# terms:
f[heory, in absence of gauge coupImgs inthe supergrav- (T Um0 —0 27)
ity theory, one can transform them into scalars and this ** 4/ ’ _ :
is the way the full duality symmetry (sometimes called (Tx);/ f4sr — 2(T[);),~k(Tp])kf

U-dqality) is recovere_d. However, in presence of non- +6mAkiasp =0, 2.8)
abelian gauge couplings, an obstruction can arise in i
the dualization of such antisymmetric tensors, so that 3f%izrkinaja —2(Tn)i’kjzra=0. (2.9)

the theory only preserves some subalgebra of the full ~ whenm4i = 0, the condition(2.5) implies for the
duality group. Moreover, the gauged algebra structure 44 the ordinary Lie algebra Jacobi identities. £248)
may be more complicated than an ordinary Lie alge- tells us that(T,);/ is a representation of the Lie alge-

bra and in fact, as noted {10] for generic Scherk—  pra and(2.9) states that; 4 5 is a cocycle of the Lie
Schwarz and form flux couplings it turns out to be a algebra. Whem4ik; ;74 # 0 (2.5) gives the depar-
free differential algebra (FDA)L3-17] ture from an ordinary Lie algebra for thg structure

In the case of M-theory, we will show that itS cgnstants.

Maurer—Cartan equations are equivalent to the inte-

grability conditions for the 4-forn@ ;; x; and for the

vielbein 1-form inD = 11. This also will eXplain how 3. FDA from M-theory on twisted tori with fluxes

the Lie algebra part of the free differential algebra is

deformed in the presence of generic Scherk-Schwarz  As an example of a concrete realization of the free

and form flux couplings. differential algebra(2.1) and (2.2), we will now de-
scribe the one obtained by compactification of M-
theory on twisted tori in the presence of fluxes con-

2. The free differential algebra and its sidered in[10]. The compactification of M-theory to
Maurer—Cartan equations 4 dimensions provides 28 vector fieldg,, A,,;; and
o ] ) 7 2-form tensor fieldsA,,,;. This means that we can
The generalization ofl.1)to a free differential al-  jgentify the generic indiced , i of our FDA as follows
gebra including 2-form gauge fields consists of the A={I,1J},i=I.Furthermore, one has to write the
following (zero-curvature) system single indiced, J in the same position a4, i, but the

antisymmetric couple$J, KL, ... are written as up-

1 )
A_ 344 A ) r Aip _ >y )
Fo=dA" + Qf srAY AAT +m™B; =0, (2.1) per indices ifA, ¥, ... are lower ones and as lower

H; =dB; + (T)/ A% A B; |nd|fces ifA, Ed z?_re u;;]per ones.h P
W os o - If one considers first the case when only form fluxes
thkiasrATAATAAT =0, (2.2) are turned on, the Lie algebra is

where f4 s, (Tx);/, m" andk; ox are the struc- 27,1 — WKL
ture constants of the FDA. 1. £J1=8IJKL )
The integrability condition of this system comes [Z;, W/X]=[w!/, wXl] =0, (3.1)

from the Bianchi identities which is the central extension of an Abelian gauge al-

dFt =0, (2.3) gebra. In this case the only non-vanishing structure
dH; =0, 2.4) constants arfl0]

: ; A sr=fi = (3.2)
From(2.3), by setting to zero the terms proportionalto J =7 = JUJIKL = 81JKL: :

3 X
A®andA A B ponnor@aIs we get Y — ég”“’ (3.3)
Shsir S na+ 20 kirna =0, (.5) hile m4 = (T,);/ = 0. It then follows tha(2.5) and
, . . whni = ;7 = 0U. W .

fAzrm® +m (1)) =0, (2.6) " ()

(2.6)are trivially satisfied ang; ;¢ is arbitrary. This
respectively. Frong2.4) we get three conditions from  resultis a consequence of the very degenerate structure
the vanishing of the terms proportional BoA B, B A of the Lie algebrd3.1).
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An intermediate richer example comes in the case
of Scherk—-Schwarz fluxesf, and vanishing 4-form
flux. This is the case considered in the pioneering pa-
pers of Scherk—Schwaft,2]. In this case; s =0,
but m4i and (T,);/ do not vanish. In fact, the non-
vanishing parts of these structure constants are

mA£0 fora=[I1J], i=K,

miy* =1f}, (3.4)
(TA)il #0 forA=1, i=J, j=K,

(T, 5 =—1f. (3.5)

The other non-vanishing structure constants occur for
fAsr when

A=1, X=J, TI'=K, flix=rtlg,
A=[1J], ¥=K, ['=[LM],

L M
fung™M = =2t 57 (3.6)

In this cas€?2.7)is identically satisfied an¢R.6), (2.8)
are identical to(2.5), which reads as/;, 7, = 0.

Note thatm4? corresponds to a “magnetic’ mass term
for the B; field.

The f4 5 structure constants if8.6) define the
Scherk—Schwarz algebra for M-theory:

[WIJ’ WKL] =0, [Z1,Z)] =T1KJZK’

[z;, W] =2¢)] wKIL, 3.7)

Let us now consider the general case when b;’f}h
andg; sk are non-vanishing. In this case the last term
in (2.5)is non-vanishing forA =[1J], ¥ =K, "' =
L andIT = M. It reads

(3.8)

If this term does not vanish th¢ structure constants
do not define a Lie algebra. In this ca&e5) (as also
(2.9) becomes

N
T;J8KLMN-

(3.9)

This condition has the 11-dimensional interpreta-
tion of the integrability condition of the 4-form field
strength[10].

T[I}]ngLM]N =0.

All other equations are satisfied as a consequence

of the z Jacobi identities; , 74, = 0. These follow
from (2.5)by takingA, X, I', IT=1JK L. It is obvi-
ous that if the stronger conditig3.8) holds then the
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fAsr define an ordinary Lie algebra. This happens
if the Scherk—Schwarz fluxes®, have thek index
complementary to the flux couplingyyx . This can
actually be realized in certain type Il orientifold mod-
els.

To summarize, we have shown that for generic
Scherk—-Schwarz couplings,’j and 4-form flux
g1k L, the M-theory gauge algebra is a free differ-
ential algebra rather than an ordinary Lie algebra. The
equations

¥tk =0, (3.10)
‘L'[ZngKLM]N =0, (311)

are the integrability conditions for the FDA. When
the stronger conditiom}‘}gKLMN = 0 holds then the
f4 s define an ordinary Lie algebra whose commu-
tators read10]

(Z1,Z) =gkt WEE 42K 2,
[z, Ww/K]=2¢)] wKIE,
[(w!7, wEkE] =o0. (3.12)

It is interesting to note that in M-theory compactified
on a twisted torus with 4-form flux turned em’ and
gprors have the physical interpretation of magnetic
and electric masses for the antisymmetric tengirs
This is clear looking at the covariant field strength

1
FA=dA” + EngpAE AAT +mA B, (3.13)

This expression appears quadratically in the (kinetic
part of the) Lagrangian together with the coupling
IJKLMNP

gIJKLBM ANdAype s (314)

which comes from the 11-dimensional Chern—Simons
term F A F A A. It is amusing to note that the con-
sistency conditior{18,19] for electric and magnetic
contributions to the mass is in this case a consequence
of (3.9).

The M-theory FDA also includes a 3-form gauge
field C which is a singlet. The zero-curvature condi-
tion for this 3-form is

dC +m" B; ABj +m'y s A* NA¥ A B;
+1AAMAC +kasraAY ANAT AAT A A =0
(3.15)

In the M-theory FDA, the only non-vanishing terms
arekyjxr ~ gIJKL and m&K ~ T}K’ with all the
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other components angd, andm’/ vanishing. In this Then theH; curvature reads
case the Bianchi identity is trivially satisfied because . 7

a 5-form in D = 4 identically vanishes. However, the Hi= dBT_ FEnAL
curvature ofC can be determined by demanding its + Zgrrxr AT A AK A AR, (4.5)

full invariance under all gauge transformations. 6 o o '
and the coefficient of th& A A term is fixed, relative

to the A3 term in such a way thatH; = F/ A Fy;.
4. Non-zero curvature case Now H; and its Blanc_hl identity are invariant under
the gauge transformations

The previous Maurer—Cartan equatiofisl) and
(2.2), which entail the “structure constants” relations
(2.5)—(2.9)can be lifted to non-zero curvature, so ob- sA! = do!, 4.7
taining covariant Bianchi identities for the curvatures. K AL

. 8Ay = — A~ 4.

In the case of M-theory with Scherk—Schwarz fluxes 1y =déry = 81yKLO . _ (4.8)
turned on this procedure essentially reproduces the co- ~ Analogously, the threefold antisymmetric tengor
variant curvature€; of Section 3.4 of2]. When also Curvature Is

the constant 4-form fluxeB; jx 1 = g7 7k are turned 7 1 I J K L
on, then one gets generalized curvatures which are co-9C = F ABi+ 381kt AT N AT AAT AAT,
variant under the combined 1-form and 2-form gauge
transformations considered in Section Z10].

An interesting new feature of the curvatures is the §C =dX + F' A A;
presence ift{; of a “contractible generatof13], i.e., 1 I 7 K L
in physical language, of a curvature itself (which also ~ g8IIKLO NAT A AT A AT, (4.10)
exists in the ungauged theory)

1
SBr=dA; —e  F! + EwMgMIJKAI A AKX, (4.6)

(4.9)
which is invariant under the gauge transformations

1
8By =dA; —er; F + ECUMgMIJKAJ A AR
Hi=dB;+F' A Apy, (4.1) (4.12)

where £/ = dA’. This is a kind of Green—Schwarz A’ =do. (4.12)

(mixed) Chern-Simons term which modifies the gauge Note that thedC field strength is a Lagrange multi-
transformations oB; so thatH; is invariantunder the  plier and can be algebraically eliminated from the La-
gauge transformations grangian giving a contribution to the scalar potential.

SBy=dA; —6]].7:1,

sAl = do! . 5. Concluding remarks
SA;y =de; . (4.2) In the present Letter we have considered the free
differential algebra which comes from M-theory com-
The (ungauged) Bianchi identity is now pactified on a twisted torus with constant 4-form
; fluxes. This is just a special case of the Maurer—Cartan
dHr=F"NF1y, (4.3) equations described K2.1) and (2.2). A similar sit-
which satisfiesi?H; = 0 and is also invariant under  uation arises in type IIA theories since in this case
the gauge transformatioié.2). charged antisymmetric tensor fields are also present.
Let us now consider the case wheryx ;. # 0 (but However, in this case one can find a particular set of
X =0), so that geometrical fluxes which can be consistently set to

vanish and then the Lie algebra structure is recovered
because the condition

m*kisrm =0, (5.1)
is satisfied. Such examples were described ®}.

_ 1 Y
fIJ—dAIJ-i-ngJKLA NA",

Fl=aa’. (4.4)
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The FDA given by the system of curvatutgs', H;
can be recast in the form of an ordinary Lie algebra if
(some of the)B; are redefined so that the quadratic
terminA¥ A AT is absorbed in the new; [13]. This
can be done at most for rak) tensors fields, which
can be the same as the range oftledices provided
that this is smaller than that of the vector fieldsas in
the M-theory case. Explicitly, for thosB, for which
the subblockn®? is invertible, one can introduce the
definition (A = {«, A})

1
BaEBa+§ma§fﬂAEAA/\AE’

so that the new zero curvature conditions read

(5.2)

dB, =0, (5.3)

F=dA® + m*P By =0, (5.4)
1

FA=dA? + EfABCAB AAC =0, (5.5)

The new Lie algebra is defined by the structure con-
stantsf4 g and this is obtained by deleting th&
generators from the original algebra. This is the quo-
tient of the original algebra with the subalgebra related
to the A“ vectors. It is an obvious consequence of the
Jacobi identities forF4 that f4 45 = 0 whenevera

or X take values in the range.

In the M-theory case, the rank ef4’ is encoded in
the Scherk—Schwarz quxeﬁff regarded as a ¥ 21
triangular matrix. A quadratic submatrix can have at
most rank 7 so the Lie algebra spanned byAHds at

153
and the zero curvatures conditions read
dA® =0, (5.8)
dA* +1%5A° A AP =0, (5.9)
dAoy +1P4Bs =0, (5.10)
dAgp + 2171, A% A Agy, =0, (5.11)
dB, =0, (5.12)
dBo— 1P, A% A AY A Ag, =0. (5.13)

Note that the Jacobi identities of thedo not set any
constraint on the matrices. If we split the generators
into Zo, Zy, WO, WP it is immediate to see that
the indexa goes over six values and the gauge fields
Ao« disappear from the gauge algebra. The generator
algebra becomes then

[Zo, W] = 21(% whlr [Zo, Zol =L, Z,,
[Zo, WEY ] = (Z4, g1 =W, W?¥] =0,  (5.14)

which is the usual (22-dimensional) flat Scherk—
Schwarz algebra. This algebra becomes 24- or 26-
dimensional if one or two eigenvalues of thenatrix
vanish. The same reasoning applies when form fluxes
are present. In this case the commutators ofzhare
not vanishing and the gauge algebra get modified.
Note that the physical interpretation of this reduc-
tion of the FDA to a minimal part and a contractible
one [13] corresponds to the anti-Higgs mechanism
where antisymmetric tensors absorb vector fields to
become (dual to) massive vectors. The quotient Lie al-
gebrais the unbroken gauge algebra. It is interesting to

least 21-dimensional. When describing the algebra in see that, due to the cubic terms of the 1-form in
terms of its generators, one must delete the generatorgthe 7¢; curvature (this only happens when the 4-form
WLK whose gauge fields are absorbed by the antisym- flux is present), the quadratic part of t&! curvature

metric tensors. The resulting Lie algebra is obtained
by all Zx, WLK generators but thé/.X, which is

an Abelian subalgebra. A simple example is the case

when rIKJ correspond to a “flat group”. In this case
B; = {Bo, By} and A4 = {A%, A4}, with AY = Aq,
and A4 = {A0, A2, Aqp}. The original structure con-
stants follow fromt/, = Top = 1%, Wherea, f =
1,...,6, andz is an invertible antisymmetric matrix,

(this means that the 3 skew eigenvalues are non-zero)

The redefined tensor fields are

By=1°,1; Ags A AY + Agy A A®+ B,
Eo:Bo—AO‘/\Aoa,

(5.6)
(5.7)

does not correspond to an ordinary Lie algebra before
the quotient has been taken.

Another interesting generalization is to extend such
FDA to the fermionic sector of the theory, since
the D = 4 theory hasN = 8 local supersymmetry.
Such program was originally carried out in = 11
in [14] and its extension to the present compactifica-
tion should be possible.

We finally remark that the different structures of

‘the 4-dimensional effective theories obtained when the

gauge algebra is a FDA or an ordinary Lie algebra are
reflected in different scalar potentials. This fact may
have important consequences when looking for com-
plete moduli stabilization in such compactifications.
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