
Theoretical Computer Science 118 (1993) 231-262

Elsevier

231

A uniform treatment of order of
evaluation and aggregate update*

M. Draghicescu
EECS Department. Unirersity of Michignn. Ann Arbor, MI 48109.2122, USA

S. Purushothaman
Department rf Computrr SGncr, North Carolinu State Unicersity, Raleigh, NC 27695.8206, USA

Communicated by A.R. Meyer

Received January 199 1

Revised February 1992

Abstract

Draghicescu, M. and S. Purushothaman, A uniform treatment of order of evaluation and aggregate

update, Theoretical Computer Science 118 (1993) 231-262.

The article presents an algorithm for the destructive update optimization in first-order lazy

functional languages. The main component of the method is a new static analysis of the order of
evaluation cf e.xpressions which, compared to other published work, has a much lower complexity

and is not restricted to pure lazy evaluation. The other component, which we call reduction to
variables, is a method of detecting the variables which denote locations where the result of an

expression might be stored.

Starting with the operational semantics of the language, we introduce some markers for the values

in the basic domain. By choosing appropriately the set of markers M and the method of propagating

them during evaluation, we can extract some property of the evaluation in which an expression can

participate by looking at the marker of its value. We then define an equivalent denotational

semantics and derive the above analyses, in a uniform way, by abstract interpretation over

a subdomain of P(M).

1. Introduction

A characteristic feature of functional languages is their referential transparency,
which makes them suitable for parallel execution. On sequential machines, however,

Correspondence to: M. Draghicescu, EECS Department, University of Michigan, Ann Arbor, MI 48109-
2122, USA.

* Funded in part by NSF CDA-89-14587. A preliminary version of this paper appeared in [7].

0304-3975/93/$06.00 c 1993-Elsevier Science Publishers B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81978105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

232 M. Draghicescu, S. Purushothaman

this quality becomes a serious obstacle to an efficient implementation. The impossibil-

ity to compute through side-effects greatly reduces the efficiency of functional lan-

guages which manipulate large data structures, such as arrays, records, or lists. In

a functional language, an object, once created, is never changed; so, modifying such

a structure implies making a new copy. This is inefficient not only because large

structures must be copied but also because of the additional load on the garbage

collector. Traditionally, designers of functional languages either do not provide these

data structures or introduce “impure” operations which destroy the referential

transparency.

To use such structures efficiently in a pure functional language we must detect the

structure modifications (updates) which can be done destructiuely or in place without

affecting the semantics of the language. This can be done either by some run-time

checks (e.g., by keeping track of reference counts) or through compile-time analysis.

The latter approach is the topic of the present work.

The destructive update optimization has been considered in the literature before,

one of the early works being [13]. In [lo] the problem is discussed in an operational

model based on graph reduction. An applicative-order language is treated in [9] using

an abstraction of reference counting (reference counting offers a run-time solution to

this optimization problem). A related analysis (detection of single-threaded definitions)

is presented in [17,18], also in an applicative-order setting. The problem is also

discussed in [l, 21 as an application of the path analysis (see below); the method thus

obtained is very expensive computationally. A variation of path analysis is also used

in [S] for a language with call-by-value semantics.

We present here another solution to this problem. The general idea used in this

article, and in most of the works cited above, is the following: an object can be updated

destructively only if it is not accessed after the update. To detect this at compile time,

we need some information about (a) the possible sharing of this object and (b) the

run-time order of evaluation of expressions.

The article presents new solutions to these two static-analysis problems for lazy

functional languages. They are needed for the destructive-update procedure and they

are also of independent interest. Our method is based on abstract interpretation,

a semantically based general technique for compile-time analysis.

Sharing information can be presented under different forms; we called our analysis

reduction to variables. It detects the variables which may denote the location where the

result of an expression evaluation will be stored at run-time and is related to targeting

[8]. The analysis is also related to aliasing, a much-studied problem, especially for

imperative languages (a solution based on abstract interpretation is presented

in [14]).

The evaluation-order analysis is simple in an applicative-order model. The first

solution for normal-order languages that use pure lazy evaluation is presented in [3].

The most general solution to date is path analysis presented in [1,4]. Unlike these

works, our analysis is not restricted to lazy evaluation, but applies to all evaluation

strategies compatible with the semantics of the language (for example, strict

Order of evaluation and aggregate update 233

arguments can be evaluated in any order or even in parallel). The method can also be

adapted, yielding a sharper analysis, to any predefined order of evaluation of ar-

guments to primitive functions. Its complexity is exponential in the number of

variables, which is a significant improvement over the 0(2N!C’Nm’)!+. +I) complexity

of path analysis. The most important application of evaluation-order analysis is to the

destructive-update problem; other optimizations based on this information are men-

tioned in [l, 51.

The article is organized as follows: Section 2 describes the syntax and semantics of

the language used for illustration. We define two equivalent semantics: an operational

and a denotational one. A general nonstandard semantic scheme (both operational

and denotational), which constitutes the starting point of the analyses developed in

the following sections, is also defined. The nonstandard semantic scheme is intended

to capture information that can be gleaned from the standard operational semantics,

but in a more accessible form. The idea is to murk the values in the basic domain and

define the method of propagating the markers during evaluation so that we can

extract some property of the evaluation in which an expression can participate by

looking at the marker of its value. The section also contains some examples which give

a motivation to the present work.

Section 3 contains a short presentation of abstract interpretation and its classical

application to strictness analysis. We also introduce some definitions and notations

used in the rest of the article and compute, by abstract interpretation of the nonstan-

dard semantics, a general relation between the variables of an expression.

The reduction-to-variables and evaluation-order analyses are presented in Sections

4 and 5, respectively. They are first defined as predicates over the reduction sequences

engendered by the standard operational semantics. It is then shown how this informa-

tion can be obtained as particularizations of the general relation mentioned above.

The procedure for the destructive-update problem is discussed in Section 6. The use

of the procedure is shown with several examples; for the functional version of the

quicksort algorithm considered in [9], the procedure yields a linear-space complexity.

The conclusions and plans for future work are presented in Section 7. To summar-

ize, the contributions of the paper are: (a) evaluation-order analysis, (b) reduction to

variables and destructive update, and, importantly, (c) a methodology for static

analysis starting from the operational semantics.

2. A first-order language

We will consider a language L of first-order recursion equations with normal-order

semantics. The data types include integers, booleans, and one-dimensional arrays of

integers with fixed lower and upper bounds; the lower bound is always 1.

This section contains formal definitions of the syntax and semantics of L. We also

define a general nonstandard semantics on which the analyses developed in the

following sections are based.

234 M. Draghicescu, S. Purushothaman

2.1. Abstract syntax

c, cc1 , . . . , c,], peCon (constants, primitive functions),

XE Var (variables),

fEFn (function names),

e, body E Exp (expressions),

prE Prog (programs),

where

e ::= c I Ccl,...,c,I I x I de,,eJ I f(e,,e.),

pr ::= fi(Xll, . . . ,xucl)=body1,

.fZ(X21~ . ..t x2kr)=body2,

fn(x nlrxnk.) = body,.

ccl, ...> c,] denotes the constant array of size n, with elements cl, . . , c,. For simplicity,

we did not include an expression in the definition of a program but, instead, we will

require thatf,, the first function, takes no arguments and a program is “run” by calling

fi. We assume that the formal parameters of all user-defined functions are distinct

variables. Let P be a given program.

Notations.

bodyr is the body of the function f in P.

Exp is the set of expressions in P.

M = cardinality(Exp).

Exps is the set of subexpressions of bodyf.

Var is the set of variables in P.

N = cardinality(Var).

Var, is the set of variables which occur in the expression e.

Var, is the set of variables which are formals of the function f (Varbodyrs Varf).

We will use lowercase letters from the end of the alphabet to denote variables and

capital letters for sets of variables. We will denote arbitrary expressions by e (possibly

with subscripts or superscripts), nonfunctional constants by c, general primitive

functions by p, and user-defined functions byf, g, or h.

2.2. Standard semantics

For a set S denote by S1 the flat domain S u {I} ordered by I c s for all SES.

Order of evaluation and aggregate update 235

Semantic domains

Z={..., - 1, 0, 1, . .} (integers),

B = {true, false} (booleans),

A=Z+Z2+... (arrays),

D=(Z+B+A), (basic domain),

Env= Var+D (variables environment),

where + is the separated sum operation.

Semantic functions

9: Fn+D*+D (gives meaning to function names),

B : + Exp + Env + D (gives meaning to expressions),

V?k’: Con+D*-+D (gives meaning to constants).

We will use the informal method of presenting the semantics from [12], which

consists in defining & and ,F through a set of mutually recursive equations. 9 corres-

ponds to the “function variable environment” which is expressed as the least fixed

point of an operator in a more traditional presentation.

Semantic equations

9[J]=Adl . . . dk,‘g[bodyi] Cdjlxijl,

a[cjP=V[cn>

~~xnP=P~xIL

b[p(er,e.)IIP=~~pPIiBe,IIp...&[le,Ilp,

8[,f(eI ,..., e,)nP=~~~fl]BIle,np...d[[e,l]p.

The following typical primitive functions will be used throughout the article:

(1) if: the polymorphic conditional.

(2) +, <, . : arithmetic and relational operators.

(3) select(a, i): returns the ith element of the array a.

(4) update(a, i, q): returns an array identical to a except for the ith element which

is q.

(5) @ : array addition.

(6) length: the length (size) of an array.

%‘[c] =c (cEZ+B is the semantic value of c),

V~CC,, c,in=(cl, c,) (the constant array of size n; CiEZ)

%?[+I =Adld2 .dl +d2, where the right-hand side + denotes the strict

addition in Z,,

~[[i-if~=3.d1d2d3~ifdl then d2 else d3,

%T[select]=3.(k,,k.)i.ifi>n then I else ki,

236 M. Drayhicescu, S. Purushothaman

%? [update] = 3” (k, , . . . , ki, k,)iq.ifi>n then I else (k,, q, k,),

V[@~=/l(a,, . ..) a,)(b,,b.).if m#n then I else

%‘[[rlengthlj=j.(k, ,..., k,).n.

We will usually write ifx then y else z, x + y, and u[i] instead of if(x, y, z) , +(x, y) , and

select(u, i), respectively.

Note that we assumed all programs to be well-typed. The size of an array is not part

of its type. Type checking can be done statically using a Hindley-Milner type

algorithm.

Throughout this paper, we will assume a lazy evaluation strategy, i.e., call-by-name

plus the fact that function arguments are evaluated at most once, subsequent refer-

ences using the already computed values. We will also assume that, operationally, the

value of an expression is a reference (location, pointer). This reference might be to

a newly created object (integer, boolean, or array) or it might be to an already existing

one. The same object might be created many times as the result of evaluating different

expressions, but an existing object is never duplicated explicitly. For example, evaluat-

ing 1 + 4 and 2 + 3 will create two copies of the object 5; however, if

max (x, y) = if x > y then x else y,

then the evaluation of max(l, 2+3) will return a reference to the unique 5 created

when its second argument is evaluated. These assumptions are valid, for example, in

an execution model based on graph reduction [15].
The purpose of the destructive-update analysis is to determine at compile time

whether a given expression updute(e, . ..) in a given program P can be evaluated,

without affecting the meaning of P, in place (i.e., destructively, by rewriting the array

e instead of creating a new array).

Example 2.1.

minus(u) = minus1 (a, l)),

minus1 (a, i) = if i > length (a) then a else minus1 (updute(u, i, - u[i]), i + 1).

If called on an array of length 100, minus will generate 100 new arrays. However, it is

clear that, if the original value of a is not needed after any of the calls to minus in

a given program, all the evaluations of update can be done in place.

The following examples will illustrate some of the problems that we must solve

when trying to detect (at compile time) the updates which can be done in place.

Solutions to these problems will be discussed in the rest of the article.

Order of evaluation and aggregate update 237

Example 2.2.

f(u, u) = u 0 II,

g(x) =f(x, update(x, . .)).

The update can or cannot always be done in place depending on the order of

evaluation of the arguments off: In this example the update cannot be done in place

if 0 might evaluate its arguments right to left. In general, the run-time order of

evaluation cannot be computed at compile time; the challenge is to find a good

approximation of this order which is statically computable.

g(x)=f(x, update(x, . ..)) @ x, fas above.

The update cannot be done in place no matter what the (fixed) order of evaluation

of 0 is.

Example 2.3.

. ..update(x 0 y, . ..)...

This update can always be done in place; x 0 y is a new, nameless, array which cannot

be referenced anywhere else in the program, so it can be destroyed safely.

. update(update(x, . . .), . .). . .

The first (outside) update can always be done in place. Even if the inside update is done

in place, we can consider its value to be a new object (after all we know that x will

never be needed again, otherwise the inside update could have not been done in place).

A key observation is that an object can be referenced in more than one place only if

it is denoted by a variable. The following example will further illustrate this idea.

We will assume from now on that 0 is always evaluated left to right.

Example 2.4.

f(x) = update(g(x), . . .) @ x,

cl(y)=y.

We can immediately determine that the update cannot be done in place; see below.

g(y) = y @ y, f as above.

The update can be done in place now. The difference between these two examples is

that, in the former case g(x) and x refer to the same object (operationally, x and the

result returned by g(x) are the same reference), while in the latter case they denote

different objects. In the former case, we will say that g(x) reduces to x.

g(y)= zy . then y else y 0 y, f as above.

238 M. Draghicescu, S. Purushothaman

We cannot know, at compile time, whether g(x) will reduce to x or not; therefore, the

safe decision must be that the update cannot be done in place. We will say, in this case,

that g(x) might reduce to x.

f(x, y) = update (x, . . .) 0 y,

g(u, u)=if... then u else u,

h(p, q, r) =f(g(p, q), g(q, 4).

The update cannot be done in place: both g(p, q) and g(q, Y) might reduce to q, so x and

y might denote the same object; therefore, x cannot be destroyed.

Example 2.5.

f(x,y)=xOyOx,

h(u) =f(u, update(u, . . .)).

The update cannot be done in place. f will evaluate x before y, but it will also access

x again, after y is evaluated. This example shows that we must also consider the

relative order in which variables are accessed and not only the order in which they are

evaluated (under lazy evaluation, they are evaluated when first accessed).

h(u)=f(g(u), update(u, . ..)). f as above, g as in Example 2.4.

If g(u) might reduce to u (e.g., g(y)=y) then the update cannot be done in place. On the

other hand, if g(u) never reduces to u (e.g., g(y)=y @ y) then the update could be done

in place: g(u) is evaluated when x is first accessed; its (new) value is stored and the

second access to x refers to this stored value, so u is not needed after the update.

The following examples will show the limits of the approach presented in this paper:

Example 2.6.

f(x) = minus(x) @ x,

where minus is defined in Example 2.1. The update in minus1 cannot be done in place

because x is needed later; this means that minus1 will generate length(x) arrays all of

which, except the last one, are useless, intermediate results, which could be destroyed

even if the value of x is needed later. The optimization which consists in evaluating the

update normally once and then destructively length(x) - 1 times is beyond the scope of

the present work: for a given (statical) update, we decide only whether it can always be

evaluated in place or not.

However, our analysis will determine that x is the variable which prevents the

update from being done destructively and an optimizing compiler could easily trans-

form f into:

f(x) = minus(new_copy(x)) 0 x,

Order ci_1’e1nluatioi1 and aggregate update 239

where new-copy is a special built-in function which returns a new copy of its

argument.’ Now the update in minus1 can be done in place, so the optimized program

will do only one array copy (by ne\v_copy) instead of length(x).

Example 2.7.

f(x) = hgtk(update(x, . . .) + length(x)).

Assuming that + is evaluated left to right, we will decide that the update cannot be

done in place because x is accessed after the update. We do not treat separately

functions like length which are not affected by any updates of their argument. It is not

too difficult to modify our procedure to take into account such situations; the

following example, however, illustrates a much more interesting and difficult problem:

f(a, i, x)=update(a, i, x)[i] +a[i+ 11.

The first operand of + is equivalent to x, but the point here is that we will again

conclude that the update cannot be done in place because a is accessed after the

update. In reality the update could be safely made in place: only the (i+ 1)th element of

a is needed after the ith one is lost. We make no attempt to analyze statically the

possible values of array indices.

2.3. Operational semantics

The notions of order of evaluation and sharing can be defined only in an opera-

tional manner. The operational semantics presented in this section is a simplified

version (adapted to our first-order language) of the operational semantics of PCF

presented in [16]. The only difference is the presence of an environment and the

rule (1) which allows the reduction of expressions containing free variables. Note,

however, that the variables are used only at the first level; function calls do not

introduce new variables nor do they change the environment (rule (6)).

For each boolean, integer, or array dcD, denote by 2 its syntactic representation.

We have JE Con and V [d^j = d. Let, by definition, I= o, where w is some expression

whose standard value is I, for example,

o=f(), wheref is a function with no arguments defined as f()=f().

For each pgEnu the reduction relation +,, between expressions is defined by the

following rules:

x jp &j (XG VU), (1)

‘If we would need to define it ourselves, then new_copy(u)=update(u, l,u[l]) will do the trick;

new-copy(u)=u is not good because it does not copy its argument.

240 M. Drayhicescu, S. Purushothaman

ei +p e;

p(el...ei...e,)+,p(eI...ej...e,) (PZif),

el +p el

if(eI, e2, e3) -+p if(e;, e2, e3) ’

e2 +p e; e3 +p ek
if(true, e2, e3)ju if(true, e;, e3)’ if(fulse, e2, e3) -tp zif(false, e2, e;)’

if(true, c, e) +p c, if(false, e, c) jp c (cECon),

f(el... e,) +p bodys Ceilxil.

(2)

(3)

(4)

(5)

(6)

To these rules we will also add the following rule scheme specifying the action of the

primitive functions other than ifon all possible combinations of constant arguments:

P(c~...c,)+,,& d=Q?[p]cl...c,, p#if ciECon. (7)

Note that rule (6) specifies call-by-name as the evaluation strategy. Note also that

the condition of ifmust be completely reduced before any reduction can take place in

one of the branches (rules (3))(5)); therefore, the evaluation proceeds in a pure lazy

manner (as opposed, for example, to an evaluation which uses strictness information

to change the order of evaluation; a strategy which allows such changes will be

discussed in Section 5.3). A reduction sequence might not be unique because we do not

impose any order on the reduction of arguments of the primitive functions other than

ifi An expression will either reduce to a constant or its reduction will not terminate.

We can easily prove that if c is a constant and if e 3, c then any reduction of e will

terminate in c (2, is the transitive-reflexive closure of +P). We can, therefore, define

the evaluation function Eval: Exp+Env+D by

i

d
Eval(e, p) =

if e:,d,

I otherwise.

The following theorem states the equivalence between the denotational and opera-

tional semantics (for a proof, see [19]).

Theorem 2.8. For all eE Exp, pE Env,

Eval(e, p)=&[e]p.

2.4. Nonstandard semantics

The standard semantics of L does not contain all the information needed for the

analyses presented in this article. We now define a general nonstandard semantics by

adding some extra information to the standard one. The idea is to “mark” the

elements of D. The marker of an expression is computed from the markers of its

Order oJ’eualuation and ayyregate update 241

components following some rules. By choosing these rules appropriately, we will

obtain different particularizations of this general semantics.

Let M={m,, m,} be a finite set of markers. The nonstandard basic domain is

D,=((Z+B+A)xM),

and the nonstandard domain of environments is

Env, = VW+ D, .

By identifying -LED, with (I, J_)ED x Ml, we will consider D, to be a subdomain of

D x M,. Define the two projections

content: D,+D, marker : D,+ MI,

content((d, m)) = d, marker((d, m)) = m.

Note that marker(x)=1 iff content(x)=1 iff x=J-. For t=(&m)~D,, t#I, let

t = (2, m)ECon x M (its “syntactic representation”) and let I= o. The markers asso-

ciated with constants and primitive functions are given by the strict functions:

b: M;+Ml (for all p#$of arity n30)

In particular, the marker of a constant c is EEM.
It is more convenient to define the new reduction relations qp,, for pnE Env, between

expressions in a new language LM. The set of constants of LM is Con x M; the rest of

the syntax is identical to that of L. For an expression e in L we will denote by eM the

expression in LM obtained from e by replacing each c~Con by (c, Q. To define --+Pn,

we will introduce the computations on markers into the rules (l)-(7). The new rules

are:

ei +Pn ej

p(el... ei...e,)-+,mp(e,...e:...e,)
(PZifL (9)

el +Pn 4
if(el, e2, e31+p, if@;, e2, e3)’

if((true, m>, e2, e3) +Pn if((trw m>, 4, e3) ’

e3 +p. 4
if((fak m>, e2,e3)~p,if((false,m),e2,e;)’

if((true, ml >, Cc, m2 >, 4 -+Pn Cc, &ml, m2)>,

if((false,ml>,e,(c,m2>)-t,n(c,~(ml,m2)) 1 (c e Con),

(10)

(11)

(12)

242 M. Draghicescu, S. Purushothaman

f tel... 4+,,,body~Ced-d~ (13)

P((cl, m,>...(c,,m,))~,n(d?~(m,...m,)),

d=~~pnC,...C,,p#if,Ct~Con. (14)

The nonstandard reductions mirror exactly the standard ones. The markers are

computed in parallel with the standard values but they do not influence the reduction

sequence. The nonstandard reduction is, therefore, confluent and we can define the

evaluation function Eval, : Exp+ Env,+D, by

(4 m> if eM 3:Pn Cd? m>,
otherwise.

It is easy to prove that the standard semantics can be obtained from the non-

standard one by ignoring the markers.

Theorem 2.9. For all eEExp, p,,eEnv,,,

content(Eoal,(e, p,))= Evul(e, content 0 p,),

where 0 denotes the left-to-right function composition.

We will define now an equivalent nonstandard denotational semantics. The seman-

tic functions &, and P,, are defined similarly to d and 9 from the standard semantics

(Section 2.2), while %‘” will include now the action on markers given by @:

~?lllPa=<~uPn o content”, 8 0 marker”) for any n-argument p # if, n 3 0

(15)

%T” [if] =lxyz . case content(x):

true:: (content(y), $(marker(x), marker(y))),

false:: (content(z), $(murker(x), marker(z))),

(16)

The following analogue of Theorem 2.8 also holds for the two nonstandard

semantics.

Theorem 2.10. For all eEExp, p,,E Env,,

EvuL (e, PJ = 8, Eel pn.

The nonstandard semantics defined above depends on the set of markers M and the

marker propagation functions d. By specifying M and jj for each primitive function p,

we can obtain different semantics. Two such particularizations will be used for the

evaluation-order and reduction-to-variables analyses.

Order qf evaluation and aggregate update 243

3. Abstract interpretation

This section presents some classical results from the theory of abstract interpreta-

tion of first-order functional languages first developed in [13].

The idea of the abstract interpretation method is to obtain some information about

a function fby projecting the semantic domain D on some abstract domain D’ and

then computing the abstract semantic value of f in D#. Under the conditions

described below, there is a relation between the normal semantic value and the

abstract one. D# is chosen such that (a) the abstract semantic value off gives us the

required information, and (b) computing the abstract semantic values can be done at

compile time. (b) is satisfied, for example, if D’ is finite, which is usually the case.

The classic example is the rule of signs in arithmetic, which enables us to find the

sign of a multiplication knowing the signs of the operands, without having to actually

perform the multiplication. Here D =Z and D# = (0, +, -}.

The following are some simple facts from domain theory: for a flat domain X, the

Hoare powerdomain P(X) is defined as

ordered by subset inclusion. For A cX, denote by A= Au {I)EP(X) (the closure

of A). If X and Y are flat domains, a functionf: X “-+ Y can be extended to a function

f: P(X)“-+P(Y) by defining

f(A,, A,)={f(a~, ..., G)lai~Ai}.

In Mycroft’s abstract interpretation method, the powerdomain P(D) is projected on

the abstract domain D”. More exactly, we define the continuous abstraction and

concretization functions,

Abs: P(D)+D#, Cone: D#+P(D),

which must satisfy

Abs 0 Cone = idDS , Cone 3 Abs 2 idpcDJ. (17)

The abstract valuation functions 8” and F # are defined in the same way as ~9 and

P (see Section 2.2). For each n-argument primitive p, we define:

%7# [pj = Abs c V[pj 0 Con?. (18)

Under these conditions, the correctness theorem of Mycroft is stated as follows.

Theorem 3.1 (Mycroft [13]). For each n-argument user-defined function f;

~~f~~Conc~~#~f~~Abs”,

where 9 [If 4 is lifted to P(D).

244 M. Draghicescu, S. Purushothaman

9 # [f] can be computed at compile time by finite fixpoint iteration, yielding some

information about f: The following section illustrates the application of this method

for computing strictness information.

3.1. Strictness analysis

We will say that a function f: D”-+D is strict in its ith argument if

VG!~ED f(d,, ...,di-l, I,di+l,d.) ~1.

Strictness analysis allows us to detect such information. The importance of the

analysis is that the parameters in which a function is strict can be passed by value,

avoiding the need for building a closure. Not all cases will be discovered because

strictness is, in general, undecidable.

The abstract domain is 2 = (0, l), with 0 c 1. Intuitively, 0 represents the undefined

element (nontermination) and 1 represents possible termination. The abstraction and

concretization functions are:

Abs : P(D)-+2, Cone : 2+P(D),

Abs(S)=O iff S=(l),

Cone(0) = { I}, Conc(l)=D.

Equation (18) translates to

c# = 1 (cECon),

x+#y=xr\y,etc.,

if”ky,4=x~(yvz),

where we denoted %# [pa by p#.

Example 3.2.

fat(x) = if x =0 then 1 else x*fac(x - l),

fat”(x) = (XA l)r\(l vxAfac#(xA l))=x.

The equation defining fat” is not recursive, so there is no need for fixpoint

iteration. We can conclude that fat is strict because fat” (O)=O which implies,

by the correctness theorem of abstract interpretation, fat(l)= .L (more exactly,

F [facj I = I).

We can consider an arbitrary expression to be a function of its free variables. The

relation 1 (read “is strict in”) between expressions and variables is defined as follows.

Order of evaluation and aggregate update 245

Definition 3.3. For eeExp, and XE Vur,,

eJx iff 6#[el[O/x, I/y(y#x)]=O.

The correctness of strictness analysis implies that

3.2. Abstractions of the nonstandard semantics

The analyses developed in the rest of the paper are expressed as particularizations

of the following general problem. For each expression e, we want to approximate

some property of the variables of e which cannot be computed at compile time. The

properties that we are interested in can be formulated using the nonstandard seman-

tics defined in Section 2: the variables of e have the desired property iff, whenever we

mark them in a certain way, we obtain a certain marker of the (nonstandard) value of

e. More exactly, we are interested in the k-ary relations r between variables of the

following general form.

Definition 3.4. Let k3 1 and M,, Ml, Mk, Mk+l EP(M,) be fixed.

For eEExp,-, x1, x, E Vur,, and p E Env,

(x I, xk)-(e,p) 3 marker(b,Ileljp,)EMk+l,

for all p,,EEnu, satisfying:

contentop,=p, marker(p,(xi)) EMi (i= l,...,k),

marker(p,(x))EMo (x#x;, i= 1, k).

In other words, (xi, x~)EY(~, p) iff the marker of the value of e in a non-

standard environment obtained from p by marking Xi with something in Mi (and

everything else with something in MO) is in M k+ 1. Note that the ML’S are not just sets

of markers, but elements of P(M,), i.e., IGM~ (this is necessary because I can only be

marked with I). We are interested only in the behavior of terminating computations;

IEM,+,> therefore, if the evaluation of e in p does not terminate, r(e, p) is the total

relation.

By abstracting the nonstandard semantics, we will obtain a statically computable

approximation (a subset) of r which does not depend on an environment. The idea is

to ignore the standard values and consider only the markers. The abstract values are

sets of possible markers; more exactly, the abstract domain A is an arbitrary subset of

P(M,) which contains Ml and is closed under set intersection (A=P(M,) is such

a domain). Different abstract domains generate, in general, different approximations;

the relationship between them is discussed later in this section. For SC MI, let a(S) be

the least element of A such that Sea(S) (it always exists because M,EA and A is

closed under intersection). The abstractization and concretization functions are:

Abs=aomarker: P(D,)+A, Conc=marker-’ : A-+P(D,). (19

246 M. Dmghicescu, S. Purushothaman

We will use the superscript a to denote the abstractions of the valuation functions. The

abstractions of the predefined functions are given by the following lemma.

Lemma 3.5,

Proof. Immediate from (18), (15), (16), and the definitions of Abs and Cont. q

The definition of the relation Y’ is as follows.

Definition 3.6. For eeExpf and x1, . . . , X,E Vurf,

<X 1, X&EYa(e) iff

&i[ej[a(Mi)/Xi(i=l,k).a(M,)/X(XfXi)l~Mk+l.

The correctness of the approximation is given by the following theorem.

Theorem 3.7. For all eEExpf and pEEnv,

P(e) c r(e, p).

Proof. Let esExpf and x1, x,,~Vur~ such that (x,, xk)Era(e). From Definition

3.6 we have

a”,[e] [a(Mi)/xi (i= 1, k), a(Mo)/x (x#xi)]~Mk+~.

Cone is monotonic; therefore,

Cortc(G”,[e] [a(Mi)/xi (i = 1, . . . , k), ~(Mo)/x (X #xi)]) c C’OUC(M~+ I),

or, using the first equality in (17),

COHC(& [e] [Abs(Conc(a(Mi)))/xi (i = 1, . . , k),

A~s(CO~C(U(M,)))/X (X #xi)])& Conc(Mk+ 1).

We can now apply Theorem 3.1 to obtain

&,[e][COnC(U(hili))/Xi (i’ 1, k), Conc(~(Mo))/x (x #xi)] E Conc(Mk+ 1).

Using the definition of Cone in (19), this is equivalent to

mark-(d,[e] P~)EM~+ 1,

for all p,,EEnv, such that marker(p,(xi))Ea(Mi), marker(p,(x))mz(Mo) (x#xi,
i= 1, k). But a(Mi)ZMi, therefore, from Definition 3.4, (x1. &)Er(e, p) for all

psEnv. q

Order of’erraluation and aggregate update 241

The theoretical complexity of computing the abstractions of all user-defined func-

tions by fixpoint iteration is 0(1 A IN), with the constant depending on the structure of

A (the maximum number of fixpoint iterations is the height of the domain of

monotonic functions from AN to A, which is 0(1 A IN)). In some instances, due to some

special properties of A, the exact complexity can be much lower (such a case will be

discussed in the next section).

While decreasing the complexity of the computation, the use of a smaller abstract

domain will generate, in general, a weaker approximation (more information is lost by

abstraction). More precisely, the approximation over the smaller domain can be

obtained by abstract interpretation from the approximation over the larger domain.

We have, thus, a hierarchy of approximations corresponding to the hierarchy of

subdomains of P(M,). This result is presented in the following lemma.

Lemma 3.8. If A and A’ are two subsets of P(M,) closed under intersection such that
M,cAcA’ then ra&ra’.

Proof. The functions

Abs : A’+ A, Abs(S’) = a(S),

Cone: A-+A’, Conc(S)=S

satisfy the conditions (17); therefore, from Theorem 3.1?

for all expressions e and abstract environments p’ over A’. The lemma is proven by

taking p’=[a’(Mi)/xi (i= 1, k), a’(Mo) /X (XZXi)]. 0

Under the conditions specified in the following lemma, the approximation over

a smaller domain is the same as the approximation over a larger one. This fact can be

used to simplify the abstraction without losing any information.

Lemma 3.9. If A and A’ are two subsets qf P(M,) closed under intersection such that

{MI, Mk + 1 } E A G A’ and, for all prede$ned p of n arguments, a 0 %?i’ IpI= Vt [TpJ 0 a”
(as functions from A”’ to A) then ra=ra’.

Proof. &: and Si’ are the (finite) limits of their fixpoint approximations and the

following equality can be proven easily by induction on these approximations:

a(&:’ [Ten p’) = ~9: [en a 0 p’,

for all expressions e and abstract environments p’ over A’. The lemma then follows

from the fact that a is monotonic and a(M k+l)=Mk+l (because Mk+l~A). 0

248 M. Draghicescu, S. Purushothaman

4. Reduction to variables

Under our assumption that expressions evaluate to references (locations, pointers),

it is easy to see that the value of an expression e is either (a) a reference to a newly

created object, or (b) the reference denoted by some variable x in e. In the second case,

we say that e reduces to x.

As mentioned before, we assume that no object is copied during evaluation; more

precisely, we assume that

(1) ifnever creates a new object but just returns the reference of the selected branch,

(2) all primitive functions except if always create a new object as their result, i.e.,

a call to such a function can never reduce to a variable, and

(3) user-defined functions return the references obtained by evaluating their bodies.

The purpose of the analysis defined in this section is to define a statically comput-

able approximation (superset) of the reduction-to-variables relation. To consider that

every expression might reduce to any of its variables is an approximation which is

safe, but too coarse to be useful. The analysis is an essential component of the

destructive-update algorithm presented in Section 6 (see Examples 2.3 and 2.4).

The standard semantics does not offer all the necessary information - in particular,

we cannot determine when new locations are accessed. Consider, for example, the

expressions iftrue then x else 0 and x + 0. The standard values of these two expressions

are equal, but the first one reduces to x, while the second one generates a new

reference.’ In order to differentiate between such expressions, we will use a particular-

ization of the nonstandard semantics defined in Section 2.4. We will then derive the

desired approximation by abstract interpretation.

4.1. Exact reduction to variables

We will denote by elJx(p) the fact that e reduces to x when evaluated in environ-

ment p. Using the operational semantics defined in Section 2.3, we can define u as

follows.

Definition 4.1. For eEExpf, XE Var,, and p~Env, elJx(p) iff all reduction sequences

of e in p terminate and the last step in any such sequence is a reduction of x based on

rule (1).

In order to obtain an equivalent definition without mentioning explicitly the

reduction sequences, we will mark the value of x with a special marker which will be

propagated to the final result iff rule (1) is used for the last reduction. We will take

M = {old, new},

‘We will assume that any constant folding is carried out before the update analysis.

Order of evaluation and aggregate update 249

where old is used to mark the variable x and new is used for everything else and also

for all “newly generated” markers3 All primitive functions generate new and all

constants are marked with new; therefore, we define:

@(ml, ...> m,)=if3i?Hi=l then I else new (p#ifn>O).

The marker generated by if is the marker of the respective alternative, i.e.,

2(m,, m2)=if m, = lthen _L else m2.

(20)

(21)

Theorem 4.2. For all eEExpS, XE Vars, pEEnv,

e l,,Ix(p) ifs marker(Eval,(e, p,)) = old,

where p,,EEnv, is dtzjined by

content = p, marker(p,(x)) 5 old, marker(p,(y))Enew (y#x).

Proof. The left-to-right implication follows immediately from the definition of IJ. We

will prove the other implication by induction on the number of reduction steps of e:

e = c (0 reduction steps): marker(Eval,, (e, p,)) = C= new (definition (20)).

e is not a constant: the last step in any finite reduction of e is obtained by one of the

rules (l), (12), or (14). In the first case, if the reduced variable is not x, and also in the

last case, marker(Eval,(e, p,)) c new by the definition of P,, and, by definition (20). In

the second case, use definition (21) and the induction hypothesis applied to the

selected branch of the if: 0

Corollary 4.3. For all eEExp,, XE Varf, peEnv, and p,, as above,

eI.jx(p) ifSmarker(&, [le]p,)=old.

Example 4.4.

el ::= if true then x else 0,

e2 ::= x+0.

For any pEEno such that p(x) # I, el l.,Lx(p), e2 l/x(p) .

4.2. Approximative reduction to variables

We will obtain now a statically computable approximation of the reduction-

to-variables relation defined in the previous section.

Let r be the complement of U, i.e., the relation “does not reduce to a variable”. We

are interested in r because we will need an approximation to lj from above (i.e., with

3 These names are justified by the fact that we can interpret these markers as special “references”. new
corresponds to the “newly generated” references, while old corresponds to all other references. An

equivalent analysis can, indeed, be obtained by abstracting a store semantics along this idea.

250 M. Draghicescu, S. Purushothaman

a weaker relation), which is the same thing as the complement of an approximation of

r from below (r’ defined in Section 3.2 is such an approximation). We can put the

relation r in the form presented in Section 3.2 by choosing k = 1, M,, = M2 = {I, new},
Ml = {I, o/d }. We obtain the following definition:

xEr(e, p) (or el&x(p)) ifSmarker(B,[leaP,))E~I, new}

for all p,,E Env, such that content(p,,) = p, marker (p,,(x)) E old, marker(p,(y)) c new,
y #x. For the approximation r’, we will choose the abstract domain

A = {{I, new}, {I, old, new>}.

We can check easily that the conditions in Lemma 3.9 (for A’=P(M,)) are satisfied, so

we do not lose any information by abstracting over A instead of P(M,) . Denoting

(I, new} by 0 and {I, old, new} by 1, we have A = (0, l}, with Oc 1. The abstractions

of the primitive functions are obtained from the definitions (20) and (21) using

Lemma 3.1:

%?:[p]=%xl...x,.O (p#ix nZ0)

%T; [if] = Axyz . y v z.

The desired approximation to u is the complement of ra. It will be denoted also

by J,l; no confusion is possible because the approximation does not depend on an

environment.

Definition 4.5. For eE Expf and XE Var,,

eux ifs x$r’(e) iff &i[ej [l/x,O/y(y#x)]=l.

Example 4.6.

f(x, y, z) = if x = 0 then y else f(x - 1, z, y).

Let e::=f(7, v, w). If p(w)#l_ then eUw(p). &“,[ej=vv w; therefore, eJjv and euw.

The following correctness theorem for IJ is a direct consequence of the correctness

of r’ with respect to r.

Theorem 4.7. For any eE Exp, XE Var, and pE Env,

eUx(p)-eUx.

Both the strictness relation 1 and the reduction to variables relation U are defined

by abstract interpretation over a two-element domain. The height of the domain of

n-argument monotonic functions over this domain is 2”+ 1; therefore, 2N + 1 is an

upper limit on the number of fixpoint iterations needed to compute the abstraction of

an arbitrary function. While the complexity of strictness analysis was indeed proven in

[l l] to be O(2N), the complexity of the reduction-to-variables analysis is much lower

because its defining abstraction has the following special property:

Order of evaluation and aggregate update 251

Lemma 4.8. For any eEEExp/ and pl, p,EEnvi,

Proof. It is easy to prove by induction on k that the equality holds for all fixpoint

approximations &‘ of &i, etc. 0

Corollary 4.9. 6’:: can be computed in O(N) time.

Proof. Follows from the fact that the height of the domain of n-argument monotonic

functions on (0, 1) satisfying

.f(x 1, Xn)vf(Yl, ..., y,)=f(x, “Yl, ...? XnVY,)

is n. 0

5. Evaluation order

Information about the order in which different expressions will be evaluated when

the program is run can be used for several compile-time optimizations. Unfortunately,

this order cannot be determined completely at compile time. This is true for all

run-time evaluation strategies (assuming, of course, that the strategy preserves the

normal-order semantics of the language). This section will explore different ways of

defining the evaluation order and methods of obtaining statically computable approx-

imations.

5.1. Exact evaluation order of variables

In this section we will define formally an exact order of evaluation relation between

variables and in Section 5.2 we will obtain a statically computable approximation of

this relation.

We will assume a pure lazy evaluation strategy, as defined by the operational

semantics in Section 2.3; other strategies will be considered in Section 5.3.

We will say that a terminating reduction sequence e,+,... +,, e,-+, c evaluates

a variable x at step i if the reduction ei+p ei+ i is specified either by rule (1) or by one

of the rules (2) or (3) with (1) as precondition. For a given p, either all reductions of

e evaluate x or none does.

The operational evaluation-order relation < between variables is defined as

follows.

Definition 5.1. For eEExpf, x, ye Vur,-, x#y, pEEnv:

x<y(e, p) iff all reductions of e in p terminate evaluating both x and y and at least

one such reduction evaluates first x and then y.

252 M. Draghicescu, S. Purushothaman

Example 5.2.

e ::= ifx then y else y+z.

For all environments p in which e terminates, x<y(e, p). If also ~(x)=false then

x-Me, P), y<z(e, P), and Z-Me, P).

This definition of < is not very useful since it depends on all steps of all reduction

sequences of e. We will develop another definition which depends only on the final

results of the reductions by using the nonstandard semantics defined in Section 2.4.

Let

M={ m,, my, mXY, m,}.

The nonstandard semantics is based on the following idea: reduce e in an environment

in which x and y are marked with m, and my, respectively, and all other variables are

marked with m,. Define j! such that a possible evaluation of x before y will generate the

marker mxY which is propagated to the final result. Then x<y(e, p) iff e reduces to

a constant marked with mXy. The definitions of d are:

:

I if 3imi=I,

m, if Vim+{m,, m,} A 3imi=mX,

P(ml...m,)= my if Vi miE {m,, m,} A 3 mi = my

m, if Vimi=m,,

mXY
if 3imi=m,,v 3i, jmi=mX, mj=m,,

for p#$ and

1, if ml=Ivm2=I,

m, if ml, m2E{m,, m,} A (ml, m2> #Cm,, m,),

&ml, md=
my if ml=myv(ml=m,r\m~=my),

m, if m, =m2=m,,

(22)

(23)

mXY if m,=m,,,v(m1#I,m,r\m2=m,,)

v(ml=m,r\m,=my).

Note that 2 = m, for all constants c. We can now define < in terms of Eval, without

explicitly mentioning the reduction sequences.

Theorem 5.3. For any eE Exps, x, ye Varf, pgEnv,

x<y(e, p) ifs marker(EuaL(e, pn))=mxyr

where

content 0 pn=p, marker(p,(x)) c m,, marker(p,(y))E my,

marker(p,(z)) E m, (z Z x, Y).

Order qfetaluation and aggregate update 253

Proof. Immediate from the following lemma. 0

Lemma 5.4. For any e, x, y, p, and p,, as in Theorem 5.8, all reduction sequences of e

(1) terminate without evaluating either x or y ifSmarker(Eval,(e, p,,))=m=;

(2) terminate, evaluate x, and do not evaluate y [ff marker(Eval,(e, p,))=mX;

(3) terminate, evaluate y, and either do not evaluate x or evaluate x after y ifs

marker(Eval,(e, p,))=m,.

Proof. By induction on the number of reduction steps of e. 0

Corollary 5.5. For any egExpr, x, ye Vat-r, psEnv, and p,, as in Theorem 5.3,

x<y(e, P) $f” marker(B,[elipn))=mxy.

5.2. Approximative order of evaluation

To obtain a statically computable approximation of < from above, we will, again,

(a) define the complement of < as a particularization of the general relation r from

Section 3.2, (b) define an approximation ra, and (c) take the complement of ra as the

desired approximation of i.

The complement of < is a relation r as in Section 3.2 if we take k = 2, MO = {I, mZ},

M1={-Lm,), Mz={L m,}, M3 = {I, m,, my, m,>. To obtain the approximation r’,

we will choose the abstract domain

A = (2, xz, YZ, XYZ, Tj,

where

z={I,mZ}, xz={I,m,,mZ}, yz=jLmy,mZ}, xyZ=(Lm,,m,,mZ),

T = { 1, m,, my, m,, mXy).

We can again check that the conditions in Lemma 3.9 are satisfied, so we do not lose

any information by choosing this abstract domain instead of P(M,) . The abstractions

of the primitive functions are obtained from the definitions (22) and (23) using

Lemma 3.5:

if Vix,=z,

if Vi Xi E XZ,

if ViXtGyZ

if 3iXi=XyZAV~#iXj=Z,

otherwise,

(24)

for p#iJ and

254 M. Draghicescu, S. Purushothaman

Z if a=b=c=z,

xz if a, b, CGXZ,

%Z [[if] (a, b, 4 = YZ if (a, b, c G yz) v (a = yz, b, c # T), (25)

xyz if (a=xyz, b=c=z)v(a=z, b, c/T),

T otherwise,

where, on each line, we assume that the conditions on the previous lines are not

satisfied. The maximum number of iterations needed for computing all abstractions is

3. 5N+ 1 (the height of the domain of monotonic functions from AN to A).

The approximation to < is the complement of P and will be denoted also by <; no

confusion is possible because the approximation does not depend on any environ-

ment. From Definition 3.6, we obtain the following definition.

Definition 5.6. For e~Exp~ and x, YE Var,,

x<y(e) ifs &[e] Cxzlx, YZ/Y, z/z(zfx, Y)I=T.

Intuitively, x<y (e) if x might be evaluated before y. For x, YE Var,, we will usually

write x<y instead of x<y(body,).
Other order relations between variables can be defined in a similar manner. In

particular, the following relation will be needed for the destructive-update algorithm.

Definition 5.7. For eeExpf, x, ye Varf, x # y, pEEnv:
x+y(e, p) iff all reductions of e in p terminate, evaluate x, and either (a) no

reduction evaluates y, or (b) there is a reduction which evaluates x before y.

Using Lemma 5.4 and the definition of 4, we can characterize 4 as follows:

x+ y (e, P) iff markeW,[elj p,)k {m,, mxY > 3 X<Y (f(e, y), p),

where f is any function which evaluates its arguments from left to right, e.g.,

f (u, v) = if u = u then v else v.

This relation can be used to find an approximation for Q in terms of the approxima-

tion of <. We can also approximate + directly by abstract interpretation. Using the

same markers and the same abstract domain as for 4, we obtain the following

approximation.

Definition 5.8. For eE Exps and x, ye Var,,

xd y(e) iff Fi [e] [xz/x, yzly, z/z (z # x, Y)l 3 XZ.

Intuitively, x4 y(e) if there might be a reduction sequence which either evaluates

x before y or evaluates x but not y.

Order of‘ecaluation and aggregate update 255

5.3. Other evaluation strategies

Assume now that we have some additional information about the evaluation

strategies to which the evaluation-order analysis must be applied. A relation <’ G <,

which would be valid only for the strategies under consideration, would contain more

order information and would yield a sharper analysis.

In particular, we can adapt < to evaluation strategies which impose some restric-

tions on the order in which primitive functions evaluate their arguments. Suppose, for

example, that + evaluates its arguments from left to right. This information can be

included in the operational semantics defined in Section 2.2 by replacing, for +,

rule (2) by the rules

e-+p e’

c+e-+,c+e’
(ceCon). (27)

In the nonstandard semantics defined in Section 5.1, we must change definition (22)

for 7 and set 7 =@ (both specify that the first argument is always evaluated first).

If, on the contrary, we want our evaluation-order analysis to be applicable to

a larger set of evaluation strategies than the one considered in the previous sections,

we must define a weaker relation <’ 2 -=C. For example, we must weaken < to make

it applicable to the evaluation strategies which might use information from strictness

analysis to change the pure lazy order of evaluation. These strategies are used widely

in the implementation of functional languages, so the problem of finding a suitable

order relation is important.

Example 5.9.

e ::= if x>O then y+x else y-x.

According to our previous definition, y+x(e) (no reduction evaluates y before x).

This is not correct under an evaluation strategy that uses the fact that e 1 y to evaluate

y before x.

To adapt our operational semantics to an evaluation strategy which uses strictness

information to change the order of evaluation, we will replace rule (1) by

elx

e-t,eC~&Gix-1’
(28)

Note that (1) is a particular instance of (28); therefore, any reduction in the original

semantics is also a reduction in the new semantics.

Unfortunately, we cannot obtain an exact semantics defining the new evaluation-

order relation in the way we obtained one for pure lazy evaluation (Section 5.1). The

problem can be traced back to rule (12) in the general operational semantics defined

in Section 2.4. We would need some information about the unevaluated branch

256 M. Drayhicescu, S. Purushothaman

(expression e) which cannot be obtained no matter how we define 3 This information,

however, can easily be included directly in the abstract semantics if we replace

equation (25) by

I

Z if a=b=c=z,

xz if a, b, ccxz,

+C [if] (a, b, c) = YZ if (a, b,ccyz)v(a=yz, b, c#T, (bGyzVcEyz)),

xyz if (a=xyz,b=c=z)v(a=z,b,c#T),

T otherwise.

(29)

5.4. Access order of variables

The relation -=c allows us to approximate the order in which variables are evalu-

ated, but not the order in which they are accessed. In a graph-reduction-based

implementation, the evaluation of a variable takes place when it is first accessed;

subsequent references to the variable use its already computed value. A variable is

evaluated only once but can be accessed many times. Moreover, for the destructive-

update problem, we need to have some information about the order in which

references denoted by variables are accessed.

Here, and in the rest of the paper, by “expression” we will mean a particular instance

of an expression; we will assume implicitly that all expressions in a given program are

uniquely labeled. We will use integer superscripts to differentiate between occurrences

of the same variable; thus, if x is a variable, xk is an expression.

We will define an evaluation-order relation (also denoted by <) between variables

and expressions as follows: if e’, eE Expf such that e’ is a subexpression of e and

xE Vur,,

xie’(e) iff x<w(e[w/e’]),

where w$ Var, is a new variable and e[w/e’] is the expression obtained from e by

replacing e’ by w. Intuitively, x<e’(e) if x might be evaluated before e’. If the original

< is known (i.e., we know the abstractions of all user-defined functions), the

new < can be computed in one step (no recursion is involved). Evaluation-order

relations between expressions and variables and between expressions can be defined

similarly. From now on, we will denote by 4 the union of all these relations;

arguments of < can be, independently, either variables or expressions. The relation

4 will be also extended to expressions in a similar way.

We will define now the relation <, between variables such that for x, y~Varf,

x<, y if, during the evaluation of bodys, the reference denoted by y might be accessed

after x is evaluated. <, is the least fixed point of the following recursive definition.

Definition 5.10. For x, ye Var,, X-C, y iff

(1) there exists an occurrence yk of y such that x<yk (bodyf), or

Order ofeaaluation and aggregate update 257

(2) there exists a function call h(...e,...e,...) in body, such that XE Vur,“, eUIJy, and

u<, u (u, u are the formals of k corresponding to e,, e,, respectively).

If < is known, <, can be computed in at most N2 fixpoint iterations. Similarly to

<, we can extend <, to a relation between expressions and variables, also denoted

by <a. Intuitively, e<,y if the reference denoted by y can be accessed after the

evaluation of e.

Example 5.11.

f(x, y) = ifx’a0 then y’ +x2 else y2-x3,

g(u, u) = f(ifu’=O then 0 else u2, v’),

Assuming pure lazy evaluation, xi y, u<u:

x<y’ +x2, x2<y’, x1< y, etc.;

x<,y (because x<y’), y<, x (because y<x’), x-&x (because x+x2), U-C, u

(becauseu<u’),u<,u(becausey<,xandiJ.. lJu),u<, u(becauseu<u2);

u1 <, u (because u1 < u2), u2<, u (because xi, x and $. . lju), etc.

If we replace u2 by u2 + 1 then u+, u, n2 -$, u.

6. Destructive update

The destructive-update problem can be defined informally as follows: given the

expression update(e,, e2, e3), determine at compile time, if possible, that the object

denoted by e, will not be referenced after the update is performed; in such a case,

a compiler can generate code to update in place. The relative order in which references

to different objects are accessed depends on the evaluation strategy adopted.

The destructive-update procedure uses the analyses presented in the previous

sections. The algorithm is based on the following observation: update(el, e2, e3) can

always be done in place if the value of e, is not referenced by a variable, for then we are

sure that it is not used elsewhere in the program. The other case is when el reduces to

a variable x; we must decide now, using evaluation-order information, whether the

reference denoted by x is used in the rest of the program. We must also consider all

actual arguments corresponding to x and see if they might reduce to a variable, etc.

6.1. The destructive-update algorithm

The following algorithm accepts as input a program P and an expression e’ of the

form update(e, . . .) in P and decides whether the update can be done in place or not. It

uses a set R of variables and two sets of pairs of variables, A and E, with AzE.

258 M. Draghicescu, S. Purushothaman

Intuitively, XCR if x might denote the value of e and (x, y) is in A (E) if x and y are

formals of the same function and x might denote the value of e while y might be

accessed (evaluated) after the update. The update can be done in place only if there is

no variable z such that (z, Z)E A.

Algorithm

(1) Set R={x I eux}, A={(x,y) I eljx, e’<,y} and E={(x,y> I eUx,e’<y}.
(2) Repeat this step until all variables in R have been considered: choose XER not

considered so far; suppose XE VU,. For each expression e” =f(. , e,, . . .) (e, is

the actual corresponding to x) and for each variable u such that e,Uu. set

R=Ru{u),

A=Au{(u,u) 1 e”<,u},

E=Eu{(u, v) 1 e”<u}.

(3) If all pairs in A have been considered then stop; the update can be done in place;

if 32~ Vur such that (z, Z)EA then stop; the update cannot be done in place.

(4) Choose (x, ~)EA not considered so far. Suppose x, YE Vurf.

For each expression e” =f(. . , e,, . . . , eY, . . .) (e,, eY are the actuals correspond-

ing to x, y) and for each variable u such that e,Uu, set

A=Au{(u,u) I e,Uu}.

If (x, ~)EE then set

A=Au{(u,u) I uEVur,J;

E=Eu{(u, u) (UEVU~,~, e,+u}.

Go to step (3).

The execution time of the algorithm is dominated by the time needed to compute

<. Its time complexity is, thus, O(sN).

Theorem 6.1 (Safety). Suppose e’ = updute(e, . . .) appears in a program P. If the value of

e is accessed after e’ is evaluated during the execution of P, then the above algorithm will

conclude that the update cannot be done in place.

Proof. In a graph-reduction evaluation model, only the primitive functions other than

if “destroy” the reference to an actual argument, i.e., neither transmit it to other

functions nor propagate it as their result.

A particular use of a particular reference r is characterized by a dynamic sequence of

function invocations

fn(. . . . e,, . ..). . . ,fi(. . . . e,, . ..).

Order of rraluation and aygreyute update 259

where the call to J takes place in the body of fi+ 1 (i-c n), f2, . . . , fn are user-defined

functions (not necessarily distinct), and fi is a primitive function other than $ r is

created as the (store) value of e,, is destroyed byf,, and is transmitted along this chain

as the value of the e,‘s. The e,‘s collect together all function calls that propagate Y. For

i> 2, let xi be the formal parameter of .fi corresponding to ei. Then, during this

sequence of function calls, all xi’s denote r and each ei_ 1 reduces to xi.

Now let r be the reference to the value of e which is accessed after the update and let

a sequence as above, with,f, =update and e, =e, represent the use of r in update.

If r is used after the update then there must exist a kO such that xk, is accessed after

the update. We will prove that, for all k32, xk is added to R, for all variables y, of

fk which can be accessed after the update (xk, yk) is added to A and, if yk can be

evaluated (i.e., first accessed) after the update, it is also added to E. It follows that

<xal,> xk,,) will be in A which will cause the algorithm to stop and conclude that the

update cannot be done in place.

The proof is by induction on k.

(1) k = 2. f2 is the function where update(e,, . .) appears and e, lJxz. In step 1, x2 is

put into R and, for all variables y, which can be accessed (evaluated) after the

update (x2, yz), is added to A (E).

(2) k > 2. xk _ 1 E R, so xk is also added to R in step 2. If y, is accessed after the update

then either (a) it is accessed after the call tofk_ 1 in which case (xk, yk) is added

to A in step 2 or (b) there exists a variable y_1 offk_ r, accessed or evaluated

after the update, such that y, 1 and y, play the roles of y and v in step 4 of the

algorithm (J; Y, and e, in the algorithm areX_ I, xk_ r, and ek_ 1, respectively). By

induction hypothesis, (xk_ r, y,_ 1) is in A (E), so (xk, yk) is added to A in step

4. The proof for E is similar.

4.2. Examples

The following example is from [9]:

result() = quicksort([c,, , . . , c,]),

quicksort(cectl)= qsort(cect,, 1, length(vectI)),

qsort(vectz,jirst,last)

= !ffPrst 3 last then vect2 else scanright(vect2,,first, last,

vect2 [first], first, lust),

scanright(v,, II, r,,picot,, leftI, right,)

= ifll =rl then,finish(update(vI,l,,pivotI), lI,leftI,rightI) else

zfvI[rI]>pivotI then scanright(vl,l,,rI-l,pivotI,leftl,rightI)

else scanleft(update(v,, II, v1 [r,]), II + 1, rl,pivotI, leftI, right,),

M. Draghicescu, S. Purushothaman

scanlef(v2, 12, rz, pivotI, left2, right,)

= if l2 =rz then jnish(update(v2, 12, pivot*), 12, leftz, right,) else

if v2 [12] <pivot2 then scanleft(v2, l2 + 1, r2, pivot2, left2, right,)

else scanriyht(update(v,, r2, v2[12]), 12, r2- 1, pivot2, leftz, right,),

$nish(vect3, mid, leftt,, riyht3)=qsort(qsort(vect3, left3, mid- l),

mid + 1, right,).

This program sorts the array Cc,, . .., c,] using the quicksort algorithm. The only

information that we assume about the order of evaluation of arguments of predefined

functions other than if is that the first argument of update is evaluated last. The

relation < on variables is

jirst<vect,; last, last<vect2,Jirst;

mid<vect,, left3, rightg; left3<vect3; riyht,<vect3, mid, left3;

vi<pivoti, leftt,,riyhti; li~vi, ri, pivoti, left;, right,; ri<vi, li, pivot,, lefti, righti;

pivoti<vi, left;, righti; l~ftifti4Vi, pivoti; right, ~vi, pivot, lefti, i= 1, 2.

The relation <, on variables contains all pairs except the following:

vect3 da mid, vect3 dn vect3, midda mid, leftida lefti, rightid, right,,

i= 1,2, 3.

For the first update in scanright, the algorithm will end with E = 8,

R = {vl, vect,, vect,, vectI>

and

A = {<VI, II>, <VI, leftI>, (~1, rightI>, <ve%&st>, <vectz, last),

(vect3, lefi3), (vect,, rightj)}.

The algorithm will terminate without detecting any conflict, so the update can be done

in place. For the second update in scanright, we get the same R,

A = {<u,, r,>, <VI, pivotlh <VI, leftI>, (VI, right,),

(vect2,jirst), (vect2, last), (vect3, left3), (vect3, right,)}

and

E={<Q, leftI>, Cur, rightI)}.

The algorithm will conclude again that the update can be done in place. We can prove

similarly that the other updates can also be done in place, so the optimized program

matches the linear space complexity of Hoare’s original algorithm.

Order ofecaiuation and aggregate update 261

7. Conclusions and future work

Using a unified framework, we have presented two static analyses for a lazy

first-order functional language: reduction to variables and evaluation order. Using

these analyses, we developed a practical procedure for the important destructive-

update optimization. Both problems are formulated in a general operational seman-

tics and the analyses are obtained by abstract interpretation from a nonstandard

denotational semantics equivalent to the operational one. The primary contributions

of the paper are the evaluation-order analysis and the methodology of basing the

analysis on operational semantics.

The analyses can be extended to higher-order languages using the methods

developed in [6, 111. These methods, originally, were developed for strictness analysis,

which is obtained by abstracting the standard semantics, but they can easily be

adapted to our nonstandard semantics.

The destructive-update algorithm uses, in an essential way, the fact that the

language is first-order; its formulation for higher-order languages is the main topic of

our future work. We are also studying the possibility of extending our work to

languages with a nonflat basic domain, e.g., to languages which take into account the

internal structure of an array.

References

[l] A. Bloss, Path analysis and the optimization of non-strict functional languages, Ph.D. Thesis, Yale

University, 1989.

[2] A. Bless, Update analysis and the efficient implementation of functional aggregates, in: Proc. 4th

Internat. ConfI on Functional Programming and Computer Architecture (ACM, New York, 1989) 26-38.

[3] A. Bless and P. Hudak, Variations on strictness analysis, in: Proc. 1986 ACM Co@ on LISP and

Functional Programming (ACM, New York, 1986) 1322142.

[4] A. Bless and P. Hudak, Path semantics, Mathematical Foundations of‘ Programming Language

Semantics, Lecture Notes in Computer Science, Vol. 298 (Springer, Berlin, 1987) 4766489.

[S] A. Bless, P. Hudak and J. Young, Code optimizations for lazy evaluation, Lisp and Symho/ic

Computation 1 (1968) 147-164.

[6] G.L. Burn, C. Hankin and S. Abramsky, Strictness analysis for higher-order functions, Sci. Comput.

Programming 7 (1986) 250-278.

[7] M. Draghicescu, and S. Purushothaman, A compositional analysis of evaluation-order and its

application, in: Proc. 1990 ACM Corrf: on LISP and Functional Proyramming (ACM, New York, 1990)
242-250.

[S] K. Gopinath and J.L. Hennessy, Copy elimination in functional languages, in: 16th ACM Symp. on

Principles of Programming Languages (ACM, New York, 1989) 303-314.

[9] P. Hudak, A semantic model of reference counting and its abstraction, in: S. Abramsky and C.

Hankin, eds., Abstract Interpretation of‘Des/aratiw Languages (Ellis Horwood. Chichester, 1987).

[lo] P. Hudak and A. Bless, The aggregate update problem in functional programming systems, in: 12th

ACM Symp. on Principles of Programming Languages (ACM, New York, 1985) 300-314.

[1 l] P. Hudak and J. Young, Higher-order strictness analysis in untyped lambda calculus, in: 13th ACM

Symp. on Principles c$Programming Language.? (ACM, New York, 1986) 97-109.

[12] J. Hughes. Analysing strictness by abstract interpretation of continuations, in: S. Abramsky and

C. Hankin, eds., Abstract Interpretation ofDec[aratire Languages (Ellis Horwood, Chichester, 1987).

262 M. Draghicescu, S. Purushothaman

1131 A. Mycroft, Abstract interpretation and optimising transformations for applicative programs, Ph.D.

Thesis, University of Edinburgh, 198 1.
[14] A. Neirynck, P. Panangaden and A. Demers, Computation of aliases and support sets, in: Proc. 14th

ACM Symp. on Principles of Programming Languages (ACM, New York, 1987) 274-283.

[lS] S.L. Peyton Jones, The Implementation of Functional Programming Languages (Prentice-Hall,

Englewood Cliffs, NJ, 1987).

1161 G.D. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci. 5 (1977) 223-255.
1171 D.A. Schmidt, Detecting global variables in denotational specifications, ACM Trans. on Programming

Languages and Systems, 7 (1985) 299-310.
[lS] D.A. Schmidt, Detecting stack-based environments in denotational definitions, Sci. Comput. Program-

ming 11 (1988) 107-131.

1191 J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory
(MIT Press, Cambridge, MA, 1977).

