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Abstract 

Draghicescu, M. and S. Purushothaman, A uniform treatment of order of evaluation and aggregate 

update, Theoretical Computer Science 118 (1993) 231-262. 

The article presents an algorithm for the destructive update optimization in first-order lazy 

functional languages. The main component of the method is a new static analysis of the order of 
evaluation cf e.xpressions which, compared to other published work, has a much lower complexity 

and is not restricted to pure lazy evaluation. The other component, which we call reduction to 
variables, is a method of detecting the variables which denote locations where the result of an 

expression might be stored. 

Starting with the operational semantics of the language, we introduce some markers for the values 

in the basic domain. By choosing appropriately the set of markers M and the method of propagating 

them during evaluation, we can extract some property of the evaluation in which an expression can 

participate by looking at the marker of its value. We then define an equivalent denotational 

semantics and derive the above analyses, in a uniform way, by abstract interpretation over 

a subdomain of P(M ). 

1. Introduction 

A characteristic feature of functional languages is their referential transparency, 
which makes them suitable for parallel execution. On sequential machines, however, 
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this quality becomes a serious obstacle to an efficient implementation. The impossibil- 

ity to compute through side-effects greatly reduces the efficiency of functional lan- 

guages which manipulate large data structures, such as arrays, records, or lists. In 

a functional language, an object, once created, is never changed; so, modifying such 

a structure implies making a new copy. This is inefficient not only because large 

structures must be copied but also because of the additional load on the garbage 

collector. Traditionally, designers of functional languages either do not provide these 

data structures or introduce “impure” operations which destroy the referential 

transparency. 

To use such structures efficiently in a pure functional language we must detect the 

structure modifications (updates) which can be done destructiuely or in place without 

affecting the semantics of the language. This can be done either by some run-time 

checks (e.g., by keeping track of reference counts) or through compile-time analysis. 

The latter approach is the topic of the present work. 

The destructive update optimization has been considered in the literature before, 

one of the early works being [13]. In [lo] the problem is discussed in an operational 

model based on graph reduction. An applicative-order language is treated in [9] using 

an abstraction of reference counting (reference counting offers a run-time solution to 

this optimization problem). A related analysis (detection of single-threaded definitions) 

is presented in [17,18], also in an applicative-order setting. The problem is also 

discussed in [l, 21 as an application of the path analysis (see below); the method thus 

obtained is very expensive computationally. A variation of path analysis is also used 

in [S] for a language with call-by-value semantics. 

We present here another solution to this problem. The general idea used in this 

article, and in most of the works cited above, is the following: an object can be updated 

destructively only if it is not accessed after the update. To detect this at compile time, 

we need some information about (a) the possible sharing of this object and (b) the 

run-time order of evaluation of expressions. 

The article presents new solutions to these two static-analysis problems for lazy 

functional languages. They are needed for the destructive-update procedure and they 

are also of independent interest. Our method is based on abstract interpretation, 

a semantically based general technique for compile-time analysis. 

Sharing information can be presented under different forms; we called our analysis 

reduction to variables. It detects the variables which may denote the location where the 

result of an expression evaluation will be stored at run-time and is related to targeting 

[8]. The analysis is also related to aliasing, a much-studied problem, especially for 

imperative languages (a solution based on abstract interpretation is presented 

in [14]). 

The evaluation-order analysis is simple in an applicative-order model. The first 

solution for normal-order languages that use pure lazy evaluation is presented in [3]. 

The most general solution to date is path analysis presented in [1,4]. Unlike these 

works, our analysis is not restricted to lazy evaluation, but applies to all evaluation 

strategies compatible with the semantics of the language (for example, strict 
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arguments can be evaluated in any order or even in parallel). The method can also be 

adapted, yielding a sharper analysis, to any predefined order of evaluation of ar- 

guments to primitive functions. Its complexity is exponential in the number of 

variables, which is a significant improvement over the 0(2N!C’Nm’)!+. +I) complexity 

of path analysis. The most important application of evaluation-order analysis is to the 

destructive-update problem; other optimizations based on this information are men- 

tioned in [l, 51. 

The article is organized as follows: Section 2 describes the syntax and semantics of 

the language used for illustration. We define two equivalent semantics: an operational 

and a denotational one. A general nonstandard semantic scheme (both operational 

and denotational), which constitutes the starting point of the analyses developed in 

the following sections, is also defined. The nonstandard semantic scheme is intended 

to capture information that can be gleaned from the standard operational semantics, 

but in a more accessible form. The idea is to murk the values in the basic domain and 

define the method of propagating the markers during evaluation so that we can 

extract some property of the evaluation in which an expression can participate by 

looking at the marker of its value. The section also contains some examples which give 

a motivation to the present work. 

Section 3 contains a short presentation of abstract interpretation and its classical 

application to strictness analysis. We also introduce some definitions and notations 

used in the rest of the article and compute, by abstract interpretation of the nonstan- 

dard semantics, a general relation between the variables of an expression. 

The reduction-to-variables and evaluation-order analyses are presented in Sections 

4 and 5, respectively. They are first defined as predicates over the reduction sequences 

engendered by the standard operational semantics. It is then shown how this informa- 

tion can be obtained as particularizations of the general relation mentioned above. 

The procedure for the destructive-update problem is discussed in Section 6. The use 

of the procedure is shown with several examples; for the functional version of the 

quicksort algorithm considered in [9], the procedure yields a linear-space complexity. 

The conclusions and plans for future work are presented in Section 7. To summar- 

ize, the contributions of the paper are: (a) evaluation-order analysis, (b) reduction to 

variables and destructive update, and, importantly, (c) a methodology for static 

analysis starting from the operational semantics. 

2. A first-order language 

We will consider a language L of first-order recursion equations with normal-order 

semantics. The data types include integers, booleans, and one-dimensional arrays of 

integers with fixed lower and upper bounds; the lower bound is always 1. 

This section contains formal definitions of the syntax and semantics of L. We also 

define a general nonstandard semantics on which the analyses developed in the 

following sections are based. 
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2.1. Abstract syntax 

c, cc1 , . . . , c,], peCon (constants, primitive functions), 

XE Var (variables), 

fEFn (function names), 

e, body E Exp (expressions), 

prE Prog (programs), 

where 

e ::= c I Ccl,...,c,I I x I de,, . . ..eJ I f(e,, . . ..e.), 

pr ::= fi(Xll, . . . ,xucl)=body1, 

.fZ(X21~ . ..t x2kr)=body2, 

fn(x nlr . . ..xnk. ) = body,. 

ccl, ...> c,] denotes the constant array of size n, with elements cl, . . , c,. For simplicity, 

we did not include an expression in the definition of a program but, instead, we will 

require thatf,, the first function, takes no arguments and a program is “run” by calling 

fi. We assume that the formal parameters of all user-defined functions are distinct 

variables. Let P be a given program. 

Notations. 

bodyr is the body of the function f in P. 

Exp is the set of expressions in P. 

M = cardinality(Exp). 

Exps is the set of subexpressions of bodyf. 

Var is the set of variables in P. 

N = cardinality( Var). 

Var, is the set of variables which occur in the expression e. 

Var, is the set of variables which are formals of the function f (Varbodyrs Varf). 

We will use lowercase letters from the end of the alphabet to denote variables and 

capital letters for sets of variables. We will denote arbitrary expressions by e (possibly 

with subscripts or superscripts), nonfunctional constants by c, general primitive 

functions by p, and user-defined functions byf, g, or h. 

2.2. Standard semantics 

For a set S denote by S1 the flat domain S u {I} ordered by I c s for all SES. 
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Semantic domains 

Z={..., - 1, 0, 1, . .} (integers), 

B = {true, false} (booleans), 

A=Z+Z2+... (arrays), 

D=(Z+B+A), (basic domain), 

Env= Var+D (variables environment), 

where + is the separated sum operation. 

Semantic functions 

9: Fn+D*+D (gives meaning to function names), 

B : + Exp + Env + D (gives meaning to expressions), 

V?k’: Con+D*-+D (gives meaning to constants). 

We will use the informal method of presenting the semantics from [12], which 

consists in defining & and ,F through a set of mutually recursive equations. 9 corres- 

ponds to the “function variable environment” which is expressed as the least fixed 

point of an operator in a more traditional presentation. 

Semantic equations 

9[J]=Adl . . . dk,‘g[bodyi] Cdjlxijl, 

a[cjP=V[cn> 

~~xnP=P~xIL 

b[p(er, . . ..e.)IIP=~~pPIiBe,IIp...&[le,Ilp, 

8[,f(eI ,..., e,)nP=~~~fl]BIle,np...d[[e,l]p. 

The following typical primitive functions will be used throughout the article: 

(1) if: the polymorphic conditional. 

(2) +, <, . : arithmetic and relational operators. 

(3) select(a, i): returns the ith element of the array a. 

(4) update(a, i, q): returns an array identical to a except for the ith element which 

is q. 

(5) @ : array addition. 

(6) length: the length (size) of an array. 

%‘[c] =c (cEZ+B is the semantic value of c), 

V~CC,, . . . . c,in=(cl, . . . . c,) (the constant array of size n; CiEZ) 

%?[+I =Adld2 .dl +d2, where the right-hand side + denotes the strict 

addition in Z,, 

~[[i-if~=3.d1d2d3~ifdl then d2 else d3, 

%T[select]=3.(k,, . . ..k.)i.ifi>n then I else ki, 
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%? [update] = 3” (k, , . . . , ki, . . . . k,)iq.ifi>n then I else (k,, . . . . q, . . . . k,), 

V[@~=/l(a,, . ..) a,)(b,, . . ..b.).if m#n then I else 

%‘[[rlengthlj=j.(k, ,..., k,).n. 

We will usually write ifx then y else z, x + y, and u[i] instead of if(x, y, z) , +(x, y) , and 

select(u, i), respectively. 

Note that we assumed all programs to be well-typed. The size of an array is not part 

of its type. Type checking can be done statically using a Hindley-Milner type 

algorithm. 

Throughout this paper, we will assume a lazy evaluation strategy, i.e., call-by-name 

plus the fact that function arguments are evaluated at most once, subsequent refer- 

ences using the already computed values. We will also assume that, operationally, the 

value of an expression is a reference (location, pointer). This reference might be to 

a newly created object (integer, boolean, or array) or it might be to an already existing 

one. The same object might be created many times as the result of evaluating different 

expressions, but an existing object is never duplicated explicitly. For example, evaluat- 

ing 1 + 4 and 2 + 3 will create two copies of the object 5; however, if 

max (x, y) = if x > y then x else y, 

then the evaluation of max(l, 2+3) will return a reference to the unique 5 created 

when its second argument is evaluated. These assumptions are valid, for example, in 

an execution model based on graph reduction [15]. 
The purpose of the destructive-update analysis is to determine at compile time 

whether a given expression updute(e, . ..) in a given program P can be evaluated, 

without affecting the meaning of P, in place (i.e., destructively, by rewriting the array 

e instead of creating a new array). 

Example 2.1. 

minus(u) = minus1 (a, l)), 

minus1 (a, i) = if i > length (a) then a else minus1 (updute(u, i, - u[i]), i + 1). 

If called on an array of length 100, minus will generate 100 new arrays. However, it is 

clear that, if the original value of a is not needed after any of the calls to minus in 

a given program, all the evaluations of update can be done in place. 

The following examples will illustrate some of the problems that we must solve 

when trying to detect (at compile time) the updates which can be done in place. 

Solutions to these problems will be discussed in the rest of the article. 
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Example 2.2. 

f(u, u) = u 0 II, 

g(x) =f(x, update(x, . .)). 

The update can or cannot always be done in place depending on the order of 

evaluation of the arguments off: In this example the update cannot be done in place 

if 0 might evaluate its arguments right to left. In general, the run-time order of 

evaluation cannot be computed at compile time; the challenge is to find a good 

approximation of this order which is statically computable. 

g(x)=f(x, update(x, . ..)) @ x, fas above. 

The update cannot be done in place no matter what the (fixed) order of evaluation 

of 0 is. 

Example 2.3. 

. ..update(x 0 y, . ..)... 

This update can always be done in place; x 0 y is a new, nameless, array which cannot 

be referenced anywhere else in the program, so it can be destroyed safely. 

. update(update(x, . . .), . .). . . 

The first (outside) update can always be done in place. Even if the inside update is done 

in place, we can consider its value to be a new object (after all we know that x will 

never be needed again, otherwise the inside update could have not been done in place). 

A key observation is that an object can be referenced in more than one place only if 

it is denoted by a variable. The following example will further illustrate this idea. 

We will assume from now on that 0 is always evaluated left to right. 

Example 2.4. 

f(x) = update(g(x), . . . ) @ x, 

cl(y)=y. 

We can immediately determine that the update cannot be done in place; see below. 

g(y) = y @ y, f as above. 

The update can be done in place now. The difference between these two examples is 

that, in the former case g(x) and x refer to the same object (operationally, x and the 

result returned by g(x) are the same reference), while in the latter case they denote 

different objects. In the former case, we will say that g(x) reduces to x. 

g(y)= zy . then y else y 0 y, f as above. 
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We cannot know, at compile time, whether g(x) will reduce to x or not; therefore, the 

safe decision must be that the update cannot be done in place. We will say, in this case, 

that g(x) might reduce to x. 

f(x, y) = update (x, . . . ) 0 y, 

g(u, u)=if... then u else u, 

h(p, q, r) =f(g(p, q), g(q, 4). 

The update cannot be done in place: both g(p, q) and g(q, Y) might reduce to q, so x and 

y might denote the same object; therefore, x cannot be destroyed. 

Example 2.5. 

f(x,y)=xOyOx, 

h(u) =f(u, update(u, . . .)). 

The update cannot be done in place. f will evaluate x before y, but it will also access 

x again, after y is evaluated. This example shows that we must also consider the 

relative order in which variables are accessed and not only the order in which they are 

evaluated (under lazy evaluation, they are evaluated when first accessed). 

h(u)=f(g(u), update(u, . ..)). f as above, g as in Example 2.4. 

If g(u) might reduce to u (e.g., g(y)=y) then the update cannot be done in place. On the 

other hand, if g(u) never reduces to u (e.g., g(y)=y @ y) then the update could be done 

in place: g(u) is evaluated when x is first accessed; its (new) value is stored and the 

second access to x refers to this stored value, so u is not needed after the update. 

The following examples will show the limits of the approach presented in this paper: 

Example 2.6. 

f(x) = minus(x) @ x, 

where minus is defined in Example 2.1. The update in minus1 cannot be done in place 

because x is needed later; this means that minus1 will generate length(x) arrays all of 

which, except the last one, are useless, intermediate results, which could be destroyed 

even if the value of x is needed later. The optimization which consists in evaluating the 

update normally once and then destructively length(x) - 1 times is beyond the scope of 

the present work: for a given (statical) update, we decide only whether it can always be 

evaluated in place or not. 

However, our analysis will determine that x is the variable which prevents the 

update from being done destructively and an optimizing compiler could easily trans- 

form f into: 

f(x) = minus(new_copy(x)) 0 x, 
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where new-copy is a special built-in function which returns a new copy of its 

argument.’ Now the update in minus1 can be done in place, so the optimized program 

will do only one array copy (by ne\v_copy) instead of length(x). 

Example 2.7. 

f(x) = hgtk(update(x, . . .) + length(x)). 

Assuming that + is evaluated left to right, we will decide that the update cannot be 

done in place because x is accessed after the update. We do not treat separately 

functions like length which are not affected by any updates of their argument. It is not 

too difficult to modify our procedure to take into account such situations; the 

following example, however, illustrates a much more interesting and difficult problem: 

f(a, i, x)=update(a, i, x)[i] +a[i+ 11. 

The first operand of + is equivalent to x, but the point here is that we will again 

conclude that the update cannot be done in place because a is accessed after the 

update. In reality the update could be safely made in place: only the (i+ 1)th element of 

a is needed after the ith one is lost. We make no attempt to analyze statically the 

possible values of array indices. 

2.3. Operational semantics 

The notions of order of evaluation and sharing can be defined only in an opera- 

tional manner. The operational semantics presented in this section is a simplified 

version (adapted to our first-order language) of the operational semantics of PCF 

presented in [16]. The only difference is the presence of an environment and the 

rule (1) which allows the reduction of expressions containing free variables. Note, 

however, that the variables are used only at the first level; function calls do not 

introduce new variables nor do they change the environment (rule (6)). 

For each boolean, integer, or array dcD, denote by 2 its syntactic representation. 

We have JE Con and V [d^j = d. Let, by definition, I= o, where w is some expression 

whose standard value is I, for example, 

o=f( ), wheref is a function with no arguments defined as f( )=f( ). 

For each pgEnu the reduction relation +,, between expressions is defined by the 

following rules: 

x jp &j (XG VU), (1) 

‘If we would need to define it ourselves, then new_copy(u)=update(u, l,u[l]) will do the trick; 

new-copy(u)=u is not good because it does not copy its argument. 
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ei +p e; 

p(el...ei...e,)+,p(eI...ej...e,) (PZif), 

el +p el 

if(eI, e2, e3) -+p if(e;, e2, e3) ’ 

e2 +p e; e3 +p ek 
if(true, e2, e3)ju if(true, e;, e3)’ if(fulse, e2, e3) -tp zif( false, e2, e;)’ 

if(true, c, e) +p c, if( false, e, c) jp c (cECon), 

f(el... e,) +p bodys Ceilxil. 

(2) 

(3) 

(4) 

(5) 

(6) 

To these rules we will also add the following rule scheme specifying the action of the 

primitive functions other than ifon all possible combinations of constant arguments: 

P(c~...c,)+,,& d=Q?[p]cl...c,, p#if ciECon. (7) 

Note that rule (6) specifies call-by-name as the evaluation strategy. Note also that 

the condition of ifmust be completely reduced before any reduction can take place in 

one of the branches (rules (3))(5)); therefore, the evaluation proceeds in a pure lazy 

manner (as opposed, for example, to an evaluation which uses strictness information 

to change the order of evaluation; a strategy which allows such changes will be 

discussed in Section 5.3). A reduction sequence might not be unique because we do not 

impose any order on the reduction of arguments of the primitive functions other than 

ifi An expression will either reduce to a constant or its reduction will not terminate. 

We can easily prove that if c is a constant and if e 3, c then any reduction of e will 

terminate in c ( 2, is the transitive-reflexive closure of +P). We can, therefore, define 

the evaluation function Eval: Exp+Env+D by 

i 

d 
Eval(e, p) = 

if e:,d, 

I otherwise. 

The following theorem states the equivalence between the denotational and opera- 

tional semantics (for a proof, see [19]). 

Theorem 2.8. For all eE Exp, pE Env, 

Eval(e, p)=&[e]p. 

2.4. Nonstandard semantics 

The standard semantics of L does not contain all the information needed for the 

analyses presented in this article. We now define a general nonstandard semantics by 

adding some extra information to the standard one. The idea is to “mark” the 

elements of D. The marker of an expression is computed from the markers of its 
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components following some rules. By choosing these rules appropriately, we will 

obtain different particularizations of this general semantics. 

Let M={m,, . . . . m,} be a finite set of markers. The nonstandard basic domain is 

D,=((Z+B+A)xM), 

and the nonstandard domain of environments is 

Env, = VW+ D, . 

By identifying -LED, with (I, J_)ED x Ml, we will consider D, to be a subdomain of 

D x M,. Define the two projections 

content: D,+D, marker : D,+ MI, 

content( (d, m)) = d, marker( (d, m)) = m. 

Note that marker(x)=1 iff content(x)=1 iff x=J-. For t=(&m)~D,, t#I, let 

t = (2, m)ECon x M (its “syntactic representation”) and let I= o. The markers asso- 

ciated with constants and primitive functions are given by the strict functions: 

b: M;+Ml (for all p#$of arity n30) 

In particular, the marker of a constant c is EEM. 
It is more convenient to define the new reduction relations qp,, for pnE Env, between 

expressions in a new language LM. The set of constants of LM is Con x M; the rest of 

the syntax is identical to that of L. For an expression e in L we will denote by eM the 

expression in LM obtained from e by replacing each c~Con by (c, Q. To define --+Pn, 

we will introduce the computations on markers into the rules (l)-(7). The new rules 

are: 

ei +Pn ej 

p(el... ei...e,)-+,mp(e,...e:...e,) 
(PZifL (9) 

el +Pn 4 
if(el, e2, e31+p, if@;, e2, e3)’ 

if((true, m>, e2, e3) +Pn if((trw m>, 4, e3) ’ 

e3 +p. 4 
if((fak m>, e2,e3)~p,if((false,m),e2,e;)’ 

if( (true, ml >, Cc, m2 >, 4 -+Pn Cc, &ml, m2 )>, 

if((false,ml>,e,(c,m2>)-t,n(c,~(ml,m2)) 1 (c e Con), 

(10) 

(11) 

(12) 
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f tel... 4+,,,body~Ced-d~ (13) 

P((cl, m,>...(c,,m,))~,n(d?~(m,...m,)), 

d=~~pnC,...C,,p#if,Ct~Con. (14) 

The nonstandard reductions mirror exactly the standard ones. The markers are 

computed in parallel with the standard values but they do not influence the reduction 

sequence. The nonstandard reduction is, therefore, confluent and we can define the 

evaluation function Eval, : Exp+ Env,+D, by 

(4 m> if eM 3:Pn Cd? m>, 
otherwise. 

It is easy to prove that the standard semantics can be obtained from the non- 

standard one by ignoring the markers. 

Theorem 2.9. For all eEExp, p,,eEnv,,, 

content(Eoal,(e, p,))= Evul(e, content 0 p,), 

where 0 denotes the left-to-right function composition. 

We will define now an equivalent nonstandard denotational semantics. The seman- 

tic functions &, and P,, are defined similarly to d and 9 from the standard semantics 

(Section 2.2), while %‘” will include now the action on markers given by @: 

~?lllPa=<~uPn o content”, 8 0 marker”) for any n-argument p # if, n 3 0 

(15) 

%T” [if] =lxyz . case content(x): 

true:: (content(y), $(marker(x), marker(y))), 

false:: (content(z), $(murker(x), marker(z))), 

(16) 

The following analogue of Theorem 2.8 also holds for the two nonstandard 

semantics. 

Theorem 2.10. For all eEExp, p,,E Env,, 

EvuL (e, PJ = 8, Eel pn. 

The nonstandard semantics defined above depends on the set of markers M and the 

marker propagation functions d. By specifying M and jj for each primitive function p, 

we can obtain different semantics. Two such particularizations will be used for the 

evaluation-order and reduction-to-variables analyses. 
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3. Abstract interpretation 

This section presents some classical results from the theory of abstract interpreta- 

tion of first-order functional languages first developed in [13]. 

The idea of the abstract interpretation method is to obtain some information about 

a function fby projecting the semantic domain D on some abstract domain D’ and 

then computing the abstract semantic value of f in D#. Under the conditions 

described below, there is a relation between the normal semantic value and the 

abstract one. D# is chosen such that (a) the abstract semantic value off gives us the 

required information, and (b) computing the abstract semantic values can be done at 

compile time. (b) is satisfied, for example, if D’ is finite, which is usually the case. 

The classic example is the rule of signs in arithmetic, which enables us to find the 

sign of a multiplication knowing the signs of the operands, without having to actually 

perform the multiplication. Here D =Z and D# = (0, +, -}. 

The following are some simple facts from domain theory: for a flat domain X, the 

Hoare powerdomain P(X) is defined as 

ordered by subset inclusion. For A cX, denote by A= Au {I)EP(X) (the closure 

of A). If X and Y are flat domains, a functionf: X “-+ Y can be extended to a function 

f: P(X)“-+P( Y) by defining 

f(A,, . . . . A,)={f(a~, ..., G)lai~Ai}. 

In Mycroft’s abstract interpretation method, the powerdomain P(D) is projected on 

the abstract domain D”. More exactly, we define the continuous abstraction and 

concretization functions, 

Abs: P(D)+D#, Cone: D#+P(D), 

which must satisfy 

Abs 0 Cone = idDS , Cone 3 Abs 2 idpcDJ. (17) 

The abstract valuation functions 8” and F # are defined in the same way as ~9 and 

P (see Section 2.2). For each n-argument primitive p, we define: 

%7# [pj = Abs c V[pj 0 Con?. (18) 

Under these conditions, the correctness theorem of Mycroft is stated as follows. 

Theorem 3.1 (Mycroft [13]). For each n-argument user-defined function f; 

~~f~~Conc~~#~f~~Abs”, 

where 9 [If 4 is lifted to P(D). 
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9 # [ f ] can be computed at compile time by finite fixpoint iteration, yielding some 

information about f: The following section illustrates the application of this method 

for computing strictness information. 

3.1. Strictness analysis 

We will say that a function f: D”-+D is strict in its ith argument if 

VG!~ED f(d,, ...,di-l, I,di+l, . . ..d.) ~1. 

Strictness analysis allows us to detect such information. The importance of the 

analysis is that the parameters in which a function is strict can be passed by value, 

avoiding the need for building a closure. Not all cases will be discovered because 

strictness is, in general, undecidable. 

The abstract domain is 2 = (0, l), with 0 c 1. Intuitively, 0 represents the undefined 

element (nontermination) and 1 represents possible termination. The abstraction and 

concretization functions are: 

Abs : P(D)-+2, Cone : 2+P(D), 

Abs(S)=O iff S=(l), 

Cone(0) = { I}, Conc(l)=D. 

Equation (18) translates to 

c# = 1 (cECon), 

x+#y=xr\y,etc., 

if”ky,4=x~(yvz), 

where we denoted %# [pa by p#. 

Example 3.2. 

fat(x) = if x =0 then 1 else x*fac(x - l), 

fat”(x) = (XA l)r\(l vxAfac#(xA l))=x. 

The equation defining fat” is not recursive, so there is no need for fixpoint 

iteration. We can conclude that fat is strict because fat” (O)=O which implies, 

by the correctness theorem of abstract interpretation, fat(l)= .L (more exactly, 

F [facj I = I). 

We can consider an arbitrary expression to be a function of its free variables. The 

relation 1 (read “is strict in”) between expressions and variables is defined as follows. 
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Definition 3.3. For eeExp, and XE Vur,, 

eJx iff 6#[el[O/x, I/y(y#x)]=O. 

The correctness of strictness analysis implies that 

3.2. Abstractions of the nonstandard semantics 

The analyses developed in the rest of the paper are expressed as particularizations 

of the following general problem. For each expression e, we want to approximate 

some property of the variables of e which cannot be computed at compile time. The 

properties that we are interested in can be formulated using the nonstandard seman- 

tics defined in Section 2: the variables of e have the desired property iff, whenever we 

mark them in a certain way, we obtain a certain marker of the (nonstandard) value of 

e. More exactly, we are interested in the k-ary relations r between variables of the 

following general form. 

Definition 3.4. Let k3 1 and M,, Ml, . . . . Mk, Mk+l EP(M,) be fixed. 

For eEExp,-, x1, . . . . x, E Vur,, and p E Env, 

(x I, . . . . xk)-(e,p) 3 marker(b,Ileljp,)EMk+l, 

for all p,,EEnu, satisfying: 

contentop,=p, marker(p,(xi)) EMi (i= l,...,k), 

marker(p,(x))EMo (x#x;, i= 1, . . . . k). 

In other words, (xi, . . . . x~)EY(~, p) iff the marker of the value of e in a non- 

standard environment obtained from p by marking Xi with something in Mi (and 

everything else with something in MO) is in M k+ 1. Note that the ML’S are not just sets 

of markers, but elements of P(M,), i.e., IGM~ (this is necessary because I can only be 

marked with I). We are interested only in the behavior of terminating computations; 

IEM,+,> therefore, if the evaluation of e in p does not terminate, r(e, p) is the total 

relation. 

By abstracting the nonstandard semantics, we will obtain a statically computable 

approximation (a subset) of r which does not depend on an environment. The idea is 

to ignore the standard values and consider only the markers. The abstract values are 

sets of possible markers; more exactly, the abstract domain A is an arbitrary subset of 

P(M,) which contains Ml and is closed under set intersection (A=P(M,) is such 

a domain). Different abstract domains generate, in general, different approximations; 

the relationship between them is discussed later in this section. For SC MI, let a(S) be 

the least element of A such that Sea(S) (it always exists because M,EA and A is 

closed under intersection). The abstractization and concretization functions are: 

Abs=aomarker: P(D,)+A, Conc=marker-’ : A-+P(D,). (19 
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We will use the superscript a to denote the abstractions of the valuation functions. The 

abstractions of the predefined functions are given by the following lemma. 

Lemma 3.5, 

Proof. Immediate from (18), (15), (16), and the definitions of Abs and Cont. q 

The definition of the relation Y’ is as follows. 

Definition 3.6. For eeExpf and x1, . . . , X,E Vurf, 

<X 1, . . . . X&EYa(e) iff 

&i[ej[a(Mi)/Xi(i=l, . . ..k).a(M,)/X(XfXi)l~Mk+l. 

The correctness of the approximation is given by the following theorem. 

Theorem 3.7. For all eEExpf and pEEnv, 

P(e) c r(e, p). 

Proof. Let esExpf and x1, . . . . x,,~Vur~ such that (x,, . . . . xk)Era(e). From Definition 

3.6 we have 

a”,[e] [a(Mi)/xi (i= 1, . . . . k), a(Mo)/x (x#xi)]~Mk+~. 

Cone is monotonic; therefore, 

Cortc(G”,[e] [a(Mi)/xi (i = 1, . . . , k), ~(Mo)/x (X #xi)]) c C’OUC(M~+ I), 

or, using the first equality in (17), 

COHC(& [e] [Abs(Conc(a(Mi)))/xi (i = 1, . . , k), 

A~s(CO~C(U(M,)))/X (X #xi)])& Conc(Mk+ 1). 

We can now apply Theorem 3.1 to obtain 

&,[e][COnC(U(hili))/Xi (i’ 1, . . . . k), Conc(~(Mo))/x (x #xi)] E Conc(Mk+ 1). 

Using the definition of Cone in (19), this is equivalent to 

mark-(d,[e] P~)EM~+ 1, 

for all p,,EEnv, such that marker(p,(xi))Ea(Mi), marker(p,(x))mz(Mo) (x#xi, 
i= 1, . . . . k). But a(Mi)ZMi, therefore, from Definition 3.4, (x1. . . . . &)Er(e, p) for all 

psEnv. q 
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The theoretical complexity of computing the abstractions of all user-defined func- 

tions by fixpoint iteration is 0( 1 A IN), with the constant depending on the structure of 

A (the maximum number of fixpoint iterations is the height of the domain of 

monotonic functions from AN to A, which is 0( 1 A IN)). In some instances, due to some 

special properties of A, the exact complexity can be much lower (such a case will be 

discussed in the next section). 

While decreasing the complexity of the computation, the use of a smaller abstract 

domain will generate, in general, a weaker approximation (more information is lost by 

abstraction). More precisely, the approximation over the smaller domain can be 

obtained by abstract interpretation from the approximation over the larger domain. 

We have, thus, a hierarchy of approximations corresponding to the hierarchy of 

subdomains of P(M,). This result is presented in the following lemma. 

Lemma 3.8. If A and A’ are two subsets of P(M,) closed under intersection such that 
M,cAcA’ then ra&ra’. 

Proof. The functions 

Abs : A’+ A, Abs(S’) = a(S), 

Cone: A-+A’, Conc(S)=S 

satisfy the conditions (17); therefore, from Theorem 3.1? 

for all expressions e and abstract environments p’ over A’. The lemma is proven by 

taking p’=[a’(Mi)/xi (i= 1, . . . . k), a’(Mo) /X (XZXi)]. 0 

Under the conditions specified in the following lemma, the approximation over 

a smaller domain is the same as the approximation over a larger one. This fact can be 

used to simplify the abstraction without losing any information. 

Lemma 3.9. If A and A’ are two subsets qf P(M,) closed under intersection such that 

{MI, Mk + 1 } E A G A’ and, for all prede$ned p of n arguments, a 0 %?i’ IpI= Vt [TpJ 0 a” 
(as functions from A”’ to A) then ra=ra’. 

Proof. &: and Si’ are the (finite) limits of their fixpoint approximations and the 

following equality can be proven easily by induction on these approximations: 

a(&:’ [Ten p’) = ~9: [en a 0 p’, 

for all expressions e and abstract environments p’ over A’. The lemma then follows 

from the fact that a is monotonic and a(M k+l)=Mk+l (because Mk+l~A). 0 
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4. Reduction to variables 

Under our assumption that expressions evaluate to references (locations, pointers), 

it is easy to see that the value of an expression e is either (a) a reference to a newly 

created object, or (b) the reference denoted by some variable x in e. In the second case, 

we say that e reduces to x. 

As mentioned before, we assume that no object is copied during evaluation; more 

precisely, we assume that 

(1) ifnever creates a new object but just returns the reference of the selected branch, 

(2) all primitive functions except if always create a new object as their result, i.e., 

a call to such a function can never reduce to a variable, and 

(3) user-defined functions return the references obtained by evaluating their bodies. 

The purpose of the analysis defined in this section is to define a statically comput- 

able approximation (superset) of the reduction-to-variables relation. To consider that 

every expression might reduce to any of its variables is an approximation which is 

safe, but too coarse to be useful. The analysis is an essential component of the 

destructive-update algorithm presented in Section 6 (see Examples 2.3 and 2.4). 

The standard semantics does not offer all the necessary information - in particular, 

we cannot determine when new locations are accessed. Consider, for example, the 

expressions iftrue then x else 0 and x + 0. The standard values of these two expressions 

are equal, but the first one reduces to x, while the second one generates a new 

reference.’ In order to differentiate between such expressions, we will use a particular- 

ization of the nonstandard semantics defined in Section 2.4. We will then derive the 

desired approximation by abstract interpretation. 

4.1. Exact reduction to variables 

We will denote by elJx(p) the fact that e reduces to x when evaluated in environ- 

ment p. Using the operational semantics defined in Section 2.3, we can define u as 

follows. 

Definition 4.1. For eEExpf, XE Var,, and p~Env, elJx(p) iff all reduction sequences 

of e in p terminate and the last step in any such sequence is a reduction of x based on 

rule (1). 

In order to obtain an equivalent definition without mentioning explicitly the 

reduction sequences, we will mark the value of x with a special marker which will be 

propagated to the final result iff rule (1) is used for the last reduction. We will take 

M = {old, new}, 

‘We will assume that any constant folding is carried out before the update analysis. 
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where old is used to mark the variable x and new is used for everything else and also 

for all “newly generated” markers3 All primitive functions generate new and all 

constants are marked with new; therefore, we define: 

@(ml, ...> m,)=if3i?Hi=l then I else new (p#ifn>O). 

The marker generated by if is the marker of the respective alternative, i.e., 

2(m,, m2)=if m, = lthen _L else m2. 

(20) 

(21) 

Theorem 4.2. For all eEExpS, XE Vars, pEEnv, 

e l,,Ix(p) ifs marker(Eval,(e, p,)) = old, 

where p,,EEnv, is dtzjined by 

content = p, marker( p,(x)) 5 old, marker(p,(y))Enew (y#x). 

Proof. The left-to-right implication follows immediately from the definition of IJ. We 

will prove the other implication by induction on the number of reduction steps of e: 

e = c (0 reduction steps): marker(Eval,, (e, p,)) = C= new (definition (20)). 

e is not a constant: the last step in any finite reduction of e is obtained by one of the 

rules (l), (12), or (14). In the first case, if the reduced variable is not x, and also in the 

last case, marker(Eval,(e, p,)) c new by the definition of P,, and, by definition (20). In 

the second case, use definition (21) and the induction hypothesis applied to the 

selected branch of the if: 0 

Corollary 4.3. For all eEExp,, XE Varf, peEnv, and p,, as above, 

eI.jx(p) ifSmarker(&, [le]p,)=old. 

Example 4.4. 

el ::= if true then x else 0, 

e2 ::= x+0. 

For any pEEno such that p(x) # I, el l.,Lx(p), e2 l/x(p) . 

4.2. Approximative reduction to variables 

We will obtain now a statically computable approximation of the reduction- 

to-variables relation defined in the previous section. 

Let r be the complement of U, i.e., the relation “does not reduce to a variable”. We 

are interested in r because we will need an approximation to lj from above (i.e., with 

3 These names are justified by the fact that we can interpret these markers as special “references”. new 
corresponds to the “newly generated” references, while old corresponds to all other references. An 

equivalent analysis can, indeed, be obtained by abstracting a store semantics along this idea. 
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a weaker relation), which is the same thing as the complement of an approximation of 

r from below (r’ defined in Section 3.2 is such an approximation). We can put the 

relation r in the form presented in Section 3.2 by choosing k = 1, M,, = M2 = {I, new}, 
Ml = {I, o/d }. We obtain the following definition: 

xEr(e, p) (or el&x(p)) ifSmarker(B,[leaP,))E~I, new} 

for all p,,E Env, such that content( p,,) = p, marker (p,,(x)) E old, marker( p,(y)) c new, 
y #x. For the approximation r’, we will choose the abstract domain 

A = {{I, new}, {I, old, new>}. 

We can check easily that the conditions in Lemma 3.9 (for A’=P(M,)) are satisfied, so 

we do not lose any information by abstracting over A instead of P(M,) . Denoting 

(I, new} by 0 and {I, old, new} by 1, we have A = (0, l}, with Oc 1. The abstractions 

of the primitive functions are obtained from the definitions (20) and (21) using 

Lemma 3.1: 

%?:[p]=%xl...x,.O (p#ix nZ0) 

%T; [if] = Axyz . y v z. 

The desired approximation to u is the complement of ra. It will be denoted also 

by J,l; no confusion is possible because the approximation does not depend on an 

environment. 

Definition 4.5. For eE Expf and XE Var,, 

eux ifs x$r’(e) iff &i[ej [l/x,O/y(y#x)]=l. 

Example 4.6. 

f(x, y, z) = if x = 0 then y else f(x - 1, z, y). 

Let e::=f(7, v, w). If p(w)#l_ then eUw(p). &“,[ej=vv w; therefore, eJjv and euw. 

The following correctness theorem for IJ is a direct consequence of the correctness 

of r’ with respect to r. 

Theorem 4.7. For any eE Exp, XE Var, and pE Env, 

eUx(p)-eUx. 

Both the strictness relation 1 and the reduction to variables relation U are defined 

by abstract interpretation over a two-element domain. The height of the domain of 

n-argument monotonic functions over this domain is 2”+ 1; therefore, 2N + 1 is an 

upper limit on the number of fixpoint iterations needed to compute the abstraction of 

an arbitrary function. While the complexity of strictness analysis was indeed proven in 

[l l] to be O(2N), the complexity of the reduction-to-variables analysis is much lower 

because its defining abstraction has the following special property: 
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Lemma 4.8. For any eEEExp/ and pl, p,EEnvi, 

Proof. It is easy to prove by induction on k that the equality holds for all fixpoint 

approximations &‘ of &i, etc. 0 

Corollary 4.9. 6’:: can be computed in O(N) time. 

Proof. Follows from the fact that the height of the domain of n-argument monotonic 

functions on (0, 1) satisfying 

.f(x 1, . . . . Xn)vf(Yl, ..., y,)=f(x, “Yl, ...? XnVY,) 

is n. 0 

5. Evaluation order 

Information about the order in which different expressions will be evaluated when 

the program is run can be used for several compile-time optimizations. Unfortunately, 

this order cannot be determined completely at compile time. This is true for all 

run-time evaluation strategies (assuming, of course, that the strategy preserves the 

normal-order semantics of the language). This section will explore different ways of 

defining the evaluation order and methods of obtaining statically computable approx- 

imations. 

5.1. Exact evaluation order of variables 

In this section we will define formally an exact order of evaluation relation between 

variables and in Section 5.2 we will obtain a statically computable approximation of 

this relation. 

We will assume a pure lazy evaluation strategy, as defined by the operational 

semantics in Section 2.3; other strategies will be considered in Section 5.3. 

We will say that a terminating reduction sequence e,+,... +,, e,-+, c evaluates 

a variable x at step i if the reduction ei+p ei+ i is specified either by rule (1) or by one 

of the rules (2) or (3) with (1) as precondition. For a given p, either all reductions of 

e evaluate x or none does. 

The operational evaluation-order relation < between variables is defined as 

follows. 

Definition 5.1. For eEExpf, x, ye Vur,-, x#y, pEEnv: 

x<y(e, p) iff all reductions of e in p terminate evaluating both x and y and at least 

one such reduction evaluates first x and then y. 
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Example 5.2. 

e ::= ifx then y else y+z. 

For all environments p in which e terminates, x<y(e, p). If also ~(x)=false then 

x-Me, P), y<z(e, P), and Z-Me, P). 

This definition of < is not very useful since it depends on all steps of all reduction 

sequences of e. We will develop another definition which depends only on the final 

results of the reductions by using the nonstandard semantics defined in Section 2.4. 

Let 

M={ m,, my, mXY, m,}. 

The nonstandard semantics is based on the following idea: reduce e in an environment 

in which x and y are marked with m, and my, respectively, and all other variables are 

marked with m,. Define j! such that a possible evaluation of x before y will generate the 

marker mxY which is propagated to the final result. Then x<y(e, p) iff e reduces to 

a constant marked with mXy. The definitions of d are: 

: 

I if 3imi=I, 

m, if Vim+{m,, m,} A 3imi=mX, 

P(ml...m,)= my if Vi miE {m,, m,} A 3 mi = my 

m, if Vimi=m,, 

mXY 
if 3imi=m,,v 3i, jmi=mX, mj=m,, 

for p#$ and 

1, if ml=Ivm2=I, 

m, if ml, m2E{m,, m,} A (ml, m2> #Cm,, m,), 

&ml, md= 
my if ml=myv(ml=m,r\m~=my), 

m, if m, =m2=m,, 

(22) 

(23) 

mXY if m,=m,,,v(m1#I,m,r\m2=m,,) 

v(ml=m,r\m,=my). 

Note that 2 = m, for all constants c. We can now define < in terms of Eval, without 

explicitly mentioning the reduction sequences. 

Theorem 5.3. For any eE Exps, x, ye Varf, pgEnv, 

x<y(e, p) ifs marker(EuaL(e, pn))=mxyr 

where 

content 0 pn=p, marker(p,(x)) c m,, marker(p,(y))E my, 

marker(p,(z)) E m, (z Z x, Y). 
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Proof. Immediate from the following lemma. 0 

Lemma 5.4. For any e, x, y, p, and p,, as in Theorem 5.8, all reduction sequences of e 

(1) terminate without evaluating either x or y ifSmarker(Eval,(e, p,,))=m=; 

(2) terminate, evaluate x, and do not evaluate y [ff marker(Eval,(e, p,))=mX; 

(3) terminate, evaluate y, and either do not evaluate x or evaluate x after y ifs 

marker(Eval,(e, p,))=m,. 

Proof. By induction on the number of reduction steps of e. 0 

Corollary 5.5. For any egExpr, x, ye Vat-r, psEnv, and p,, as in Theorem 5.3, 

x<y(e, P) $f” marker(B,[elipn))=mxy. 

5.2. Approximative order of evaluation 

To obtain a statically computable approximation of < from above, we will, again, 

(a) define the complement of < as a particularization of the general relation r from 

Section 3.2, (b) define an approximation ra, and (c) take the complement of ra as the 

desired approximation of i. 

The complement of < is a relation r as in Section 3.2 if we take k = 2, MO = {I, mZ}, 

M1={-Lm,), Mz={L m,}, M3 = {I, m,, my, m,>. To obtain the approximation r’, 

we will choose the abstract domain 

A = (2, xz, YZ, XYZ, Tj, 

where 

z={I,mZ}, xz={I,m,,mZ}, yz=jLmy,mZ}, xyZ=(Lm,,m,,mZ), 

T = { 1, m,, my, m,, mXy). 

We can again check that the conditions in Lemma 3.9 are satisfied, so we do not lose 

any information by choosing this abstract domain instead of P(M,) . The abstractions 

of the primitive functions are obtained from the definitions (22) and (23) using 

Lemma 3.5: 

if Vix,=z, 

if Vi Xi E XZ, 

if ViXtGyZ 

if 3iXi=XyZAV~#iXj=Z, 

otherwise, 

(24) 

for p#iJ and 
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Z if a=b=c=z, 

xz if a, b, CGXZ, 

%Z [[if] (a, b, 4 = YZ if (a, b, c G yz) v (a = yz, b, c # T), (25) 

xyz if (a=xyz, b=c=z)v(a=z, b, c/T), 

T otherwise, 

where, on each line, we assume that the conditions on the previous lines are not 

satisfied. The maximum number of iterations needed for computing all abstractions is 

3. 5N+ 1 (the height of the domain of monotonic functions from AN to A). 

The approximation to < is the complement of P and will be denoted also by <; no 

confusion is possible because the approximation does not depend on any environ- 

ment. From Definition 3.6, we obtain the following definition. 

Definition 5.6. For e~Exp~ and x, YE Var,, 

x<y(e) ifs &[e] Cxzlx, YZ/Y, z/z(zfx, Y)I=T. 

Intuitively, x<y (e) if x might be evaluated before y. For x, YE Var,, we will usually 

write x<y instead of x<y(body,). 
Other order relations between variables can be defined in a similar manner. In 

particular, the following relation will be needed for the destructive-update algorithm. 

Definition 5.7. For eeExpf, x, ye Varf, x # y, pEEnv: 
x+y(e, p) iff all reductions of e in p terminate, evaluate x, and either (a) no 

reduction evaluates y, or (b) there is a reduction which evaluates x before y. 

Using Lemma 5.4 and the definition of 4, we can characterize 4 as follows: 

x+ y (e, P) iff markeW,[elj p,)k {m,, mxY > 3 X<Y (f(e, y), p), 

where f is any function which evaluates its arguments from left to right, e.g., 

f (u, v) = if u = u then v else v. 

This relation can be used to find an approximation for Q in terms of the approxima- 

tion of <. We can also approximate + directly by abstract interpretation. Using the 

same markers and the same abstract domain as for 4, we obtain the following 

approximation. 

Definition 5.8. For eE Exps and x, ye Var,, 

xd y(e) iff Fi [e] [xz/x, yzly, z/z (z # x, Y)l 3 XZ. 

Intuitively, x4 y(e) if there might be a reduction sequence which either evaluates 

x before y or evaluates x but not y. 
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5.3. Other evaluation strategies 

Assume now that we have some additional information about the evaluation 

strategies to which the evaluation-order analysis must be applied. A relation <’ G <, 

which would be valid only for the strategies under consideration, would contain more 

order information and would yield a sharper analysis. 

In particular, we can adapt < to evaluation strategies which impose some restric- 

tions on the order in which primitive functions evaluate their arguments. Suppose, for 

example, that + evaluates its arguments from left to right. This information can be 

included in the operational semantics defined in Section 2.2 by replacing, for +, 

rule (2) by the rules 

e-+p e’ 

c+e-+,c+e’ 
(ceCon). (27) 

In the nonstandard semantics defined in Section 5.1, we must change definition (22) 

for 7 and set 7 =@ (both specify that the first argument is always evaluated first). 

If, on the contrary, we want our evaluation-order analysis to be applicable to 

a larger set of evaluation strategies than the one considered in the previous sections, 

we must define a weaker relation <’ 2 -=C. For example, we must weaken < to make 

it applicable to the evaluation strategies which might use information from strictness 

analysis to change the pure lazy order of evaluation. These strategies are used widely 

in the implementation of functional languages, so the problem of finding a suitable 

order relation is important. 

Example 5.9. 

e ::= if x>O then y+x else y-x. 

According to our previous definition, y+x(e) (no reduction evaluates y before x). 

This is not correct under an evaluation strategy that uses the fact that e 1 y to evaluate 

y before x. 

To adapt our operational semantics to an evaluation strategy which uses strictness 

information to change the order of evaluation, we will replace rule (1) by 

elx 

e-t,eC~&Gix-1’ 
(28) 

Note that (1) is a particular instance of (28); therefore, any reduction in the original 

semantics is also a reduction in the new semantics. 

Unfortunately, we cannot obtain an exact semantics defining the new evaluation- 

order relation in the way we obtained one for pure lazy evaluation (Section 5.1). The 

problem can be traced back to rule (12) in the general operational semantics defined 

in Section 2.4. We would need some information about the unevaluated branch 
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(expression e) which cannot be obtained no matter how we define 3 This information, 

however, can easily be included directly in the abstract semantics if we replace 

equation (25) by 

I 

Z if a=b=c=z, 

xz if a, b, ccxz, 

+C [if] (a, b, c) = YZ if (a, b,ccyz)v(a=yz, b, c#T, (bGyzVcEyz)), 

xyz if (a=xyz,b=c=z)v(a=z,b,c#T), 

T otherwise. 

(29) 

5.4. Access order of variables 

The relation -=c allows us to approximate the order in which variables are evalu- 

ated, but not the order in which they are accessed. In a graph-reduction-based 

implementation, the evaluation of a variable takes place when it is first accessed; 

subsequent references to the variable use its already computed value. A variable is 

evaluated only once but can be accessed many times. Moreover, for the destructive- 

update problem, we need to have some information about the order in which 

references denoted by variables are accessed. 

Here, and in the rest of the paper, by “expression” we will mean a particular instance 

of an expression; we will assume implicitly that all expressions in a given program are 

uniquely labeled. We will use integer superscripts to differentiate between occurrences 

of the same variable; thus, if x is a variable, xk is an expression. 

We will define an evaluation-order relation (also denoted by <) between variables 

and expressions as follows: if e’, eE Expf such that e’ is a subexpression of e and 

xE Vur,, 

xie’(e) iff x<w(e[w/e’]), 

where w$ Var, is a new variable and e[w/e’] is the expression obtained from e by 

replacing e’ by w. Intuitively, x<e’(e) if x might be evaluated before e’. If the original 

< is known (i.e., we know the abstractions of all user-defined functions), the 

new < can be computed in one step (no recursion is involved). Evaluation-order 

relations between expressions and variables and between expressions can be defined 

similarly. From now on, we will denote by 4 the union of all these relations; 

arguments of < can be, independently, either variables or expressions. The relation 

4 will be also extended to expressions in a similar way. 

We will define now the relation <, between variables such that for x, y~Varf, 

x<, y if, during the evaluation of bodys, the reference denoted by y might be accessed 

after x is evaluated. <, is the least fixed point of the following recursive definition. 

Definition 5.10. For x, ye Var,, X-C, y iff 

(1) there exists an occurrence yk of y such that x<yk (bodyf), or 
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(2) there exists a function call h(...e,...e,...) in body, such that XE Vur,“, eUIJy, and 

u<, u (u, u are the formals of k corresponding to e,, e,, respectively). 

If < is known, <, can be computed in at most N2 fixpoint iterations. Similarly to 

<, we can extend <, to a relation between expressions and variables, also denoted 

by <a. Intuitively, e<,y if the reference denoted by y can be accessed after the 

evaluation of e. 

Example 5.11. 

f(x, y) = ifx’a0 then y’ +x2 else y2-x3, 

g(u, u) = f(ifu’=O then 0 else u2, v’), 

Assuming pure lazy evaluation, xi y, u<u: 

x<y’ +x2, x2<y’, x1< y, etc.; 

x<,y (because x<y’), y<, x (because y<x’), x-&x (because x+x2), U-C, u 

(becauseu<u’),u<,u(becausey<,xandiJ.. lJu),u<, u(becauseu<u2); 

u1 <, u (because u1 < u2), u2<, u (because xi, x and $. . lju), etc. 

If we replace u2 by u2 + 1 then u+, u, n2 -$, u. 

6. Destructive update 

The destructive-update problem can be defined informally as follows: given the 

expression update(e,, e2, e3), determine at compile time, if possible, that the object 

denoted by e, will not be referenced after the update is performed; in such a case, 

a compiler can generate code to update in place. The relative order in which references 

to different objects are accessed depends on the evaluation strategy adopted. 

The destructive-update procedure uses the analyses presented in the previous 

sections. The algorithm is based on the following observation: update(el, e2, e3) can 

always be done in place if the value of e, is not referenced by a variable, for then we are 

sure that it is not used elsewhere in the program. The other case is when el reduces to 

a variable x; we must decide now, using evaluation-order information, whether the 

reference denoted by x is used in the rest of the program. We must also consider all 

actual arguments corresponding to x and see if they might reduce to a variable, etc. 

6.1. The destructive-update algorithm 

The following algorithm accepts as input a program P and an expression e’ of the 

form update(e, . . .) in P and decides whether the update can be done in place or not. It 

uses a set R of variables and two sets of pairs of variables, A and E, with AzE. 
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Intuitively, XCR if x might denote the value of e and (x, y) is in A (E) if x and y are 

formals of the same function and x might denote the value of e while y might be 

accessed (evaluated) after the update. The update can be done in place only if there is 

no variable z such that (z, Z)E A. 

Algorithm 

(1) Set R={x I eux}, A={(x,y) I eljx, e’<,y} and E={(x,y> I eUx,e’<y}. 
(2) Repeat this step until all variables in R have been considered: choose XER not 

considered so far; suppose XE VU,. For each expression e” =f(. , e,, . . . ) (e, is 

the actual corresponding to x) and for each variable u such that e,Uu. set 

R=Ru{u), 

A=Au{(u,u) 1 e”<,u}, 

E=Eu{(u, v) 1 e”<u}. 

(3) If all pairs in A have been considered then stop; the update can be done in place; 

if 32~ Vur such that (z, Z)EA then stop; the update cannot be done in place. 

(4) Choose (x, ~)EA not considered so far. Suppose x, YE Vurf. 

For each expression e” =f(. . , e,, . . . , eY, . . . ) (e,, eY are the actuals correspond- 

ing to x, y) and for each variable u such that e,Uu, set 

A=Au{(u,u) I e,Uu}. 

If (x, ~)EE then set 

A=Au{(u,u) I uEVur,J; 

E=Eu{(u, u) ( UEVU~,~, e,+u}. 

Go to step (3). 

The execution time of the algorithm is dominated by the time needed to compute 

<. Its time complexity is, thus, O(sN). 

Theorem 6.1 (Safety). Suppose e’ = updute(e, . . . ) appears in a program P. If the value of 

e is accessed after e’ is evaluated during the execution of P, then the above algorithm will 

conclude that the update cannot be done in place. 

Proof. In a graph-reduction evaluation model, only the primitive functions other than 

if “destroy” the reference to an actual argument, i.e., neither transmit it to other 

functions nor propagate it as their result. 

A particular use of a particular reference r is characterized by a dynamic sequence of 

function invocations 

fn( . . . . e,, . ..). . . ,fi( . . . . e,, . ..). 



Order of rraluation and aygreyute update 259 

where the call to J takes place in the body of fi+ 1 (i-c n), f2, . . . , fn are user-defined 

functions (not necessarily distinct), and fi is a primitive function other than $ r is 

created as the (store) value of e,, is destroyed byf,, and is transmitted along this chain 

as the value of the e,‘s. The e,‘s collect together all function calls that propagate Y. For 

i> 2, let xi be the formal parameter of .fi corresponding to ei. Then, during this 

sequence of function calls, all xi’s denote r and each ei_ 1 reduces to xi. 

Now let r be the reference to the value of e which is accessed after the update and let 

a sequence as above, with,f, =update and e, =e, represent the use of r in update. 

If r is used after the update then there must exist a kO such that xk, is accessed after 

the update. We will prove that, for all k32, xk is added to R, for all variables y, of 

fk which can be accessed after the update (xk, yk) is added to A and, if yk can be 

evaluated (i.e., first accessed) after the update, it is also added to E. It follows that 

<xal,> xk,,) will be in A which will cause the algorithm to stop and conclude that the 

update cannot be done in place. 

The proof is by induction on k. 

(1) k = 2. f2 is the function where update(e,, . . ) appears and e, lJxz. In step 1, x2 is 

put into R and, for all variables y, which can be accessed (evaluated) after the 

update (x2, yz), is added to A (E). 

(2) k > 2. xk _ 1 E R, so xk is also added to R in step 2. If y, is accessed after the update 

then either (a) it is accessed after the call tofk_ 1 in which case (xk, yk) is added 

to A in step 2 or (b) there exists a variable y_1 offk_ r, accessed or evaluated 

after the update, such that y, 1 and y, play the roles of y and v in step 4 of the 

algorithm (J; Y, and e, in the algorithm areX_ I, xk_ r, and ek_ 1, respectively). By 

induction hypothesis, (xk_ r, y,_ 1 ) is in A (E), so (xk, yk) is added to A in step 

4. The proof for E is similar. 

4.2. Examples 

The following example is from [9]: 

result( ) = quicksort( [c,, , . . , c,]), 

quicksort(cectl)= qsort(cect,, 1, length(vectI)), 

qsort(vectz,jirst,last) 

= !ffPrst 3 last then vect2 else scanright(vect2,,first, last, 

vect2 [first], first, lust), 

scanright(v,, II, r,,picot,, leftI, right,) 

= ifll =rl then,finish(update(vI,l,,pivotI), lI,leftI,rightI) else 

zfvI[rI]>pivotI then scanright(vl,l,,rI-l,pivotI,leftl,rightI) 

else scanleft(update(v,, II, v1 [r,]), II + 1, rl,pivotI, leftI, right,), 
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scanlef(v2, 12, rz, pivotI, left2, right,) 

= if l2 =rz then jnish(update(v2, 12, pivot*), 12, leftz, right,) else 

if v2 [12] <pivot2 then scanleft(v2, l2 + 1, r2, pivot2, left2, right,) 

else scanriyht(update(v,, r2, v2[12]), 12, r2- 1, pivot2, leftz, right,), 

$nish(vect3, mid, leftt,, riyht3)=qsort(qsort(vect3, left3, mid- l), 

mid + 1, right,). 

This program sorts the array Cc,, . .., c,] using the quicksort algorithm. The only 

information that we assume about the order of evaluation of arguments of predefined 

functions other than if is that the first argument of update is evaluated last. The 

relation < on variables is 

jirst<vect,; last, last<vect2,Jirst; 

mid<vect,, left3, rightg; left3<vect3; riyht,<vect3, mid, left3; 

vi<pivoti, leftt,,riyhti; li~vi, ri, pivoti, left;, right,; ri<vi, li, pivot,, lefti, righti; 

pivoti<vi, left;, righti; l~ftifti4Vi, pivoti; right, ~vi, pivot, lefti, i= 1, 2. 

The relation <, on variables contains all pairs except the following: 

vect3 da mid, vect3 dn vect3, midda mid, leftida lefti, rightid, right,, 

i= 1,2, 3. 

For the first update in scanright, the algorithm will end with E = 8, 

R = {vl, vect,, vect,, vectI> 

and 

A = {<VI, II>, <VI, leftI>, (~1, rightI>, <ve%&st>, <vectz, last), 

(vect3, lefi3), (vect,, rightj)}. 

The algorithm will terminate without detecting any conflict, so the update can be done 

in place. For the second update in scanright, we get the same R, 

A = {<u,, r,>, <VI, pivotlh <VI, leftI>, (VI, right,), 

(vect2,jirst), (vect2, last), (vect3, left3), (vect3, right,)} 

and 

E={<Q, leftI>, Cur, rightI)}. 

The algorithm will conclude again that the update can be done in place. We can prove 

similarly that the other updates can also be done in place, so the optimized program 

matches the linear space complexity of Hoare’s original algorithm. 
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7. Conclusions and future work 

Using a unified framework, we have presented two static analyses for a lazy 

first-order functional language: reduction to variables and evaluation order. Using 

these analyses, we developed a practical procedure for the important destructive- 

update optimization. Both problems are formulated in a general operational seman- 

tics and the analyses are obtained by abstract interpretation from a nonstandard 

denotational semantics equivalent to the operational one. The primary contributions 

of the paper are the evaluation-order analysis and the methodology of basing the 

analysis on operational semantics. 

The analyses can be extended to higher-order languages using the methods 

developed in [6, 111. These methods, originally, were developed for strictness analysis, 

which is obtained by abstracting the standard semantics, but they can easily be 

adapted to our nonstandard semantics. 

The destructive-update algorithm uses, in an essential way, the fact that the 

language is first-order; its formulation for higher-order languages is the main topic of 

our future work. We are also studying the possibility of extending our work to 

languages with a nonflat basic domain, e.g., to languages which take into account the 

internal structure of an array. 
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