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Predicting Gene Expression from Sequence

require the simultaneous participation of many geneMichael A. Beer and Saeed Tavazoie*
Lewis-Sigler Institute for Integrative Genomics products. Comparative analysis has shown that the

coexpression of many of these genes are conservedand Department of Molecular Biology
Princeton University across diverse species (Stuart et al., 2003), but little is

known about the underlying mechanisms by which thesePrinceton, New Jersey 08544
genes are regulated. Pattern recognition algorithms can
be used to identify overrepresented DNA sequence ele-
ments, or motifs, in the presumptive regulatory regionsSummary
of these groups of coexpressed genes (Tavazoie et al.,
1999). In the yeast S. cerevisiae, many of these motifsWe describe a systematic genome-wide approach for

learning the complex combinatorial code underlying correspond to previously known transcription factor
binding sites (Tavazoie et al., 1999). However, the pres-gene expression. Our probabilistic approach identifies

local DNA-sequence elements and the positional and ence of a single motif is only marginally predictive of a
gene’s expression pattern. This reflects the extent ofcombinatorial constraints that determine their con-

text-dependent role in transcriptional regulation. The combinatorial regulation even in this simple eukaryote,
where the expression level of a gene can depend on theinferred regulatory rules correctly predict expression

patterns for 73% of genes in Saccharomyces cerevis- occupancy states of multiple TF binding sites. Consis-
tent with this, many S. cerevisiae genes have been ex-iae, utilizing microarray expression data and se-

quences in the 800 bp upstream of genes. Application perimentally shown to bind multiple TFs within their reg-
ulatory regions (Lee et al., 2002).to Caenorhabditis elegans identifies predictive regula-

tory elements and combinatorial rules that control the In this article we describe a computational approach
for inferring the cis-regulatory logic of transcriptionalphased temporal expression of transcription factors,

histones, and germline specific genes. Successful pre- networks from genome-wide mRNA expression data
and DNA sequence. We use a probabilistic frameworkdiction requires diverse and complex rules utilizing

AND, OR, and NOT logic, with significant constraints that is complementary to classical genetic techniques:
after finding sets of coexpressed genes, our approachon motif strength, orientation, and relative position.

This system generates a large number of mechanistic identifies the common, but potentially complex, DNA
sequence features which are responsible for their regu-hypotheses for focused experimental validation, and

establishes a predictive dynamical framework for un- lation. We begin with a set of microarray expression
data, and use a clustering algorithm (Hartigan, 1975) toderstanding cellular behavior from genomic sequence.
find diverse sets of genes that are coexpressed across
a set of conditions. Each of these sets of genes definesIntroduction
a distinct expression pattern across the experimental
conditions (others have used the term module, or regu-At the heart of the complexity of multicellular life is the

proper context-dependent expression of genes. To lon). We then find a large set of putative regulatory DNA
elements, or motifs, which are overrepresented in eachachieve this, cells have evolved a highly interconnected

transcriptional network composed of signaling mole- expression pattern (Lawrence et al., 1993; Neuwald et
al., 1995; Roth et al., 1998). A Bayesian network (Fried-cules, transcription factors (TFs), and their DNA targets

(Levine and Tjian, 2003). The mRNA expression level of man et al., 2000; Pearl, 1988) is then used to infer the
mapping between these sequence elements and thea gene is typically determined by several input signals,

through the cis-regulatory logic encoded in its noncod- expression patterns. The network uses each gene’s 5�
upstream sequence elements and their related proper-ing regulatory DNA sequences (Davidson et al., 2003).

This cis-regulatory logic is fundamental to many pro- ties as input variables, and outputs the probability of
having a particular expression pattern. Thus, the inferredcesses, including physiological adaptation, generation

of cell diversity, and morphological development. network describes the set of sequence elements and
the positional and combinatorial constraints requiredWith the arrival of whole-genome approaches for mea-

suring the expression of genes, and computational for a gene to be expressed in a particular expression
pattern. The network encodes that part of the cis-regula-methods for extracting biological insights from such

data, there is an emerging movement to learn the struc- tory code which is active under the experimental condi-
tions explored in the expression data.tural and dynamical properties of transcriptional net-

works on a genomic scale (Eisen et al., 1998; Gardner
et al., 2003; Hughes et al., 2000; Lee et al., 2002; Tavazoie Results and Discussion
et al., 1999). An important and fortuitous aspect of tran-
scriptional network organization is that large sets of Predicting Gene Expression
genes tend to be coexpressed at the mRNA level (Eisen Systematic experimentation has acquired a detailed un-
et al., 1998; Tamayo et al., 1999; Tavazoie et al., 1999), derstanding of the mechanisms of transcriptional regu-
consistent with the notion that many cellular processes lation for a handful of well-studied genes, but we lack

the tools to achieve this level of understanding on a
whole-genome scale. Here, as a formal step in this direc-*Correspondence: tavazoie@molbio.princeton.edu
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tion, we quantify the degree to which we can predict a us to learn their distinct modes of regulation. Figure 1B
gene’s expression pattern by looking only at its regula- shows the expression of each gene in four of these
tory sequences. We separate the genes into two sets, expression patterns, as well as the mean of the expres-
a training set where we will learn the regulatory DNA sion pattern. For example, 138 genes participate in ex-
elements and combinatorial rules, and a test set which pression pattern (1), 122 of which are ribosomal proteins
we will reserve only for prediction, or evaluation of (P � 8.5 � 10�175). Expression pattern (4) has 114 genes,
our model. 21 of which are known to be involved in rRNA transcrip-

The results of this approach have several fundamental tion (P � 3.5 � 10�14). While these sets of genes are
biological implications. First, we are able to measure very similar in expression, the subtle differences are
the degree to which gene expression is determined by potentially biologically significant: the rRNA transcrip-
local sequence, and we find that it is, perhaps surpris- tion genes are more repressed under heat shock and
ingly, high. Second, we can globally evaluate the degree turn off more rapidly under diamide treatment than the
to which different types of combinatorial regulation are ribosomal proteins (see bottom of Figure 1B). We cor-
utilized across the experimental conditions explored in rectly predict 94% and 92% of the genes in these ex-
the dataset. Third, we generate a set of high confidence pression patterns, recapitulating the subtle difference
predictions for regulatory DNA sequence elements, and in expression. Our predictions for these two sets of
the positional and combinatorial constraints that deter- genes involve completely different programs of regula-
mine their function. Thus for thousands of genes, simul- tion: the ribosomal proteins are predicted to be regu-
taneously and systematically, our approach finds the lated by the DNA element known to be bound by RAP1
set of DNA sequence elements most likely to be respon- (with significant constraints on its orientation and the
sible for each gene’s proper context dependent ex- presence of an appropriate regulatory partner), while
pression. the rRNA transcription genes are predicted to be regu-

While our automated approach is generally applicable lated by the PAC and RRPE DNA elements (with con-
to any microarray expression dataset, here we combine straints on their position relative to ATG), as discussed
environmental stresses (Gasch et al., 2000) and cell cy- below. These results indicate that having two separate
cle (Spellman et al., 1998), for 255 total conditions. This regulatory mechanisms for the production of the RNA
dataset explores a diverse set of experimental condi- and protein components of the ribosome may be impor-
tions, and the significant redundancy improves signal tant in the biology of yeast. Similar distinctions separate
to noise. Noise in the expression data may present the the stress-induced expression pattern (3) and the pro-
greatest limitation on our ability to correctly predict gene teolytic degradation (proteasome) expression pattern (28).
expression, and imposes certain constraints on our ap-
proach. We must deal with the fact that under each Probabilistic Model
condition, the measured gene expression level may be A Bayesian network (Pearl, 1988) describes relation-
significantly different than the gene’s actual expression. ships of probabilistic dependency between variables. In
The degree to which coregulated genes are actually our case, we are interested in learning how a given gene
coexpressed in the expression data is demonstrated in

will be expressed, under certain experimental condi-
Figure 1. For purposes of visualization, in Figure 1A, we

tions, given its 5� upstream DNA sequences. While many
have used a force-directed placement algorithm (David-

methods could be applied to this task, we chose the
son et al., 2001; Kim et al., 2001) which places highly

Bayesian framework because of its natural way of deal-correlated genes near each other. This visualization em-
ing with incomplete information, and its ability to encodephasizes the fact that gene expression is continuous,
arbitrary dependencies between variables. The Bayes-not discrete, and that groups of coregulated genes are
ian approach to gene regulatory networks has been pi-not generally distinct, but overlap. Figure 1A shows two
oneered by Friedman and coworkers (Friedman et al.,large responses, a stress induced response in the mid-
2000; Segal et al., 2003), and our work is motivated bylower left, and a stress-repressed response in the top
their progress. Their work (Friedman et al., 2000; Segalof the figure. But within these large sets are smaller
et al., 2003) builds regulatory networks by finding corre-groups of genes, with tighter coexpression, which par-
lations between the mRNA levels of a regulatory geneticipate in common biological processes. We find these
(e.g., a known TF) and a regulated gene. However, manyexpression profiles using a modification of the standard
TFs are regulated by posttranscriptional mechanismsk-means algorithm (see Experimental Procedures). The
(e.g., nuclear import/export, phosphorylation, proteo-number of expression patterns is determined automati-
lytic degradation, interaction with small ligands, or atcally, and for what follows, we focus on a clustering
the level of translation). Ideally, we need to correlate thewhich assigned 2587 genes to 49 expression patterns.
nuclear concentration of a transcription factor protein inThese expression patterns are significantly enriched for
its active state with a regulated gene’s mRNA transcriptgenes of similar function, as shown in Table 1, using
abundance. However, we do not in general have this in-Bonferoni corrected P-values from the hypergeometric
formation.distribution. The mean of each of these expression pat-

Our approach circumvents this difficulty by buildingterns is shown in Supplemental Data, Supplemental Fig-
a network, which is not gene-to-gene, but is sequence-ure S1 available at http://www.cell.com/cgi/content/full/
to-gene. The determinants of gene expression levels117/2/185/DC1. The genes in nine of these expression
in our model are short DNA sequence elements, notpatterns are emphasized in color in Figure 1A.
transcription factor mRNA levels. These sequence ele-While many of these expression patterns are similar
ments serve as a proxy for the active nuclear concentra-over subsets of the data, using all conditions to distin-

guish between subtly different expression patterns allows tion of a TF: if an active TF recognizes a particular DNA
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Figure 1. Examples of Expression Profiles and Their Functional Enrichment for Common Biological Processes

(A) Two-dimensional visualization of the expression data, where coexpressed genes are placed close to each other. Genes in nine of our 49
expression patterns are highlighted, showing that large sets of genes that are coexpressed share common functions.
(B) Four of our 49 expression patterns over the first 77 conditions in the dataset, and their average expression (red). Expression patterns (1)
and (4) (compared at bottom) are similar, but the subtle differences select for different functions and distinct regulatory mechanisms.

sequence element, those genes with the sequence ele- as a linear superposition of effects of individual tran-
scription factors. A nonlinear model allows flexibility forment will respond in a particular way—those genes with-

out the element will not. Figure 2A shows a graphical cooperativity between various transcription factors.
representation of our framework. This approach can also
describe regulation by chromatin-modifying complexes RRPE and PAC, a Case Study

in Combinatorial Regulationto the extent that they are targeted by a sequence spe-
cific factor (Kurdistani et al., 2002). Our approach may Two computationally discovered sequence elements,

PAC and RRPE (Hughes et al., 2000; Tavazoie et al.,also describe the possibility that DNA structural ele-
ments (e.g., a particularly rigid or flexible region) may be 1999), exemplify the type of combinatorial regulation our

network must describe in order to achieve predictiveinvolved in regulation, if such elements allow or impede
access by other factors. accuracy. These motifs were found in an expression

pattern enriched for ribosomal RNA transcription andSeveral features of our approach turn out to be essen-
tial for predictive accuracy. (1) We learn DNA sequence processing genes. If we take the top 404 genes with an

upstream PAC element, and the top 403 genes withmotifs from expression patterns found in the expression
dataset, so our set of motifs are those which are func- RRPE, 167 of these genes have both elements (by ran-

dom chance we expect only 27 to have both). The degreetional over the set of conditions we wish to predict. (2)
We represent the motifs with position weight matrices of coregulation of any set of genes selected by a regula-

tory sequence constraint can be quantified by finding(PWMs; Stormo and Fields, 1998), rather than consensus
words or k-mers. (3) We learn the functional depth of the distribution of pair-wise Pearson correlation coeffi-

cients, Cij, for all genes in the set, as shown in the inserteach motif from the expression data, instead of using
a fixed number of sites for each motif, as has been in Figure 2C. This probability distribution is a histogram

of the observed correlation coefficients. Figure 2C showsstandard. (4) Our description of the sequence con-
straints is as general as possible, and potentially in- this distribution for genes in three sets: those genes

with only PAC, only RRPE, or both PAC and RRPE,cludes: the position of the motif relative to translation
start (ATG), the orientation of the motif, the order and compared to the distribution for all genes. Those genes

with both elements are significantly more correlatedspacing between particular motifs, combinations of mo-
tifs, or the absence of motifs. (5) The mapping from than genes with just one element, reflecting their involve-

ment in coregulation.sequence to expression is probabilistic and nonlinear,
i.e., the expression level of each gene is not modeled While genes with both PAC and RRPE are highly corre-
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Figure 2. Sequence Elements that Determine the Regulation of a Set of Genes Involved in Ribosomal RNA Transcription and Processing

(A) Schematic of the logical structure of our approach. We use observable sequence elements to find complex promoter features, which are
predictive of coexpression.
(B) The mathematical framework is a Bayesian network which maps general sequence features (x1…xn) to expression patterns (ei) by encoding
P(ei|x1,x2,…,xn), the probability that genes with these sequence features will participate in expression pattern i.
(C) Distribution of pair-wise correlation coefficients (insert) of all genes in the following sets: PAC only, RRPE only, both PAC and RRPE, and
all genes. Genes with both PAC and RRPE are significantly more correlated.
(D) The effect of the order of the two elements relative to the promoter. Genes are much more tightly correlated if PAC is on the promoter
side of RRPE.

lated, there are still many genes in that set which are Systematic and Genome-Wide Learning
of Combinatorial Regulatory Rulesnot. By testing a large number of pair-wise sequence

constraints, we find that the order of the two elements To incorporate specific combinatorial effects like PAC
and RRPE, our description of motif interactions is asstrongly affects the degree of correlation. If PAC is closer

to the promoter than RRPE, the genes are much more general as possible. We allow our probabilistic model
to encode all the constraints on a motif discussed above:correlated than if RRPE is closer to the promoter (Figure

2D). It has been previously noted that there are also its presence in the 5� upstream region of a gene, its
orientation, its distance to ATG, its functional depthstatistically significant biases in the spacing between

the two motifs, distance to ATG, and orientation, in addi- (PWM score cut-off for closeness to “consensus”), and
the presence or absence of other motifs. If two or moretion to order (Hughes et al., 2000; Pilpel et al., 2001;

Sudarsanam et al., 2002; Tavazoie et al., 1999). While motifs are present, we allow the interaction of any pair
to be constrained by the distance between them, orwe find that order is a significant determinant of coregu-

lation, each of these alternative constraints also selects by their order relative to the promoter. Because the
Bayesian network encodes a joint probability distribu-a more correlated subset of the genes that have both

PAC and RRPE. We can find many rules that select sets tion, any of these constraints may be satisfied individu-
ally or in particular combinations. These sequence con-of coregulated genes, but the Bayesian approach finds

the most probable constraint, that which makes the ob- straints are represented by variables xi, which are either
satisfied for a particular gene (xi � 1), or not (xi � 0).served data most likely.
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These sequence constraints are input variables, or pos- addition, the set of genes which have PAC and RRPE
with the learned functional depth, but which do not sat-sible parent nodes, in our Bayesian network. The final

network encodes the distribution P(ei|x1,x2,…,xn), the isfy the distance to ATG constraint, have very low corre-
lation, indistinguishable from random genes (Figure 4A).probability of being expressed (ei � 1) or not being ex-

pressed (ei � 0) in expression pattern i, given the states Since PAC is constrained to be closer to ATG (140 bp)
than RRPE (240 bp), most of these genes have PAC onof the sequence constraints xi. This mathematical struc-

ture is represented in Figure 2B. the promoter side of RRPE, but there exist coregulated
genes with RRPE closer to the promoter than PAC, andWe learn the structure and probability distributions of

our Bayesian network using modifications of standard by selecting the position constraint over order, the net-
work has chosen the maximally predictive constraint.techniques (Heckerman, 1998). We search through se-

quence space to find the network (N ) which maximizes This clear delimitation of the set of coregulated genes
would not have been obtained without simultaneouslythe probability that our network is correct, given the

data (D ), using Bayes’ rule: P(N|D) � P(N)P(D|N)/P(D) varying the thresholds for both the functional depth
(closeness to consensus) and the distance to ATG. In(see Experimental Procedures). We would like to find

the most probable network, but because it is computa- other expression patterns, RRPE and PAC operate with
other sequence elements (see Supplemental Data avail-tionally infeasible to score all networks, we use a greedy

search through network space. To avoid local optima, able on Cell website). Examples of genes which have
PAC and RRPE and satisfy the positional constraint arewe learn several (�10) networks from independent boot-

strap samples (a random selection of N samples, with shown in Figure 4B. DRS1 is a putative ATP dependent
RNA helicase, RRB1 is involved in ribosome assembly,replacement, from the N samples in the training dataset).

Because of this sampling, each of these networks can RPA49 is the 49 kDa subunit of RNA polymerase A, and
DIM1 is a dimethyladenosine transferase involved in 35Spotentially find different sequence constraints, and each

gives a prediction for the probability of each gene being primary transcript processing. These functions are con-
sistent with their tight regulation, as shown on the rightexpressed in a particular expression pattern. We aver-

age these probabilities to give a final prediction (Brei- of Figure 4B. The genes in Figure 4C have strong PAC
and RRPE elements, but do not satisfy the positionalman, 1996).

Gibbs sampling (AlignACE; Roth et al., 1998) is per- constraint. ATP5 is an ATP synthase, NMT1 is an
N-myristoyl transferase, ESBP6 is a putative monocar-formed on the 5� upstream sequences of the genes in

each of the 49 expression patterns (described above boxylate permease, and PTP2 is a protein tyrosine phos-
phatase. These genes are completely uncorrelated, asand in Experimental Procedures) to find overrepresented

sequences, which we represent by position weight matri- shown on the right of Figure 4C.
Other common logical constraints inferred by the net-ces (Stormo and Fields, 1998). The predictive power of

these motifs can be measured by a Bayesian score, work are redundancy (OR logic), or the requirement for
the absence of a particular motif (NOT logic). A networkwhich is further optimized using Monte-Carlo simulated

annealing (see Experimental Procedures). We then learned on a stress-induced expression pattern (Figure
3B) demonstrates both. Here, the STRE-like elementsscore all sites in the genome for closeness to each of

these motifs (ScanACE; Hughes et al., 2000), and nor- (x1 and x2) are similar, but select different sets of genes.
These two motifs were chosen over the canonical STREmalize the score of each motif to the maximum possi-

ble score. (AGGGG; Martinez-Pastor et al., 1996), and x2 has a
strict requirement for upstream Ts. Genes with x1 are inTo assess the predictive performance of our network,

before inference, we randomly partition the genes into 5 expression pattern (2) 59% of the time, in the absence
of the other two motifs, and genes with only x2 are intest sets for crossvalidation. We then infer five networks,

using 80% of the genes as a training set, and 20% expression pattern (2) 75% of the time, but the sets are
largely distinct (only five genes have both x1 and x2). Thisas a test set. Examples of the sequence constraints

selected are shown in Figure 3. Figure 3A shows a net- is an example of OR logic, but it could also be due
to an imperfect representation of the same underlyingwork for the “ribosomal RNA transcription” expression

pattern (4). For this bootstrap training sample, the net- binding site. RRPE (x3), on the other hand, is selected
as a constraint because its presence guarantees thatwork growth stopped after two parent nodes were

added: PAC and RRPE, constrained by distance to ATG. the gene will not be in this expression pattern (NOT
logic), even if x1 or x2 is present. Any genes with x3By looking at all genes in the training set, the network

finds that if the PAC element is not within 140 bp of ATG, have a zero probability of participating in this expression
pattern (green boxes in Figure 3B).and RRPE is not within 240 bp of ATG, the probability of

being in expression pattern (4) is only 1%. If PAC is not The ribosomal protein expression pattern demon-
strates another example of redundancy (Figure 3C).within 140 bp of ATG, but RRPE is within 240 bp, the

probability of being in expression pattern (4) is 22%. If RAP1 is the main regulator of ribosomal proteins in
S. cerevisiae, and 90% of the 137 ribosomal proteinPAC is within 140 bp of ATG, but RRPE is not within

240 bp, the probability of being in expression pattern genes are reported to have a RAP1 binding site up-
stream (Lascaris et al., 1999). However, many of these(4) rises to 67%. Finally, having both constraints satisfied

increases a gene’s probability of being in the expression RAP1 sites deviate from the consensus binding site. At
a normalized depth (motif score) of 0.6, 81% of thepattern to 100%. We refer to this as AND logic. To con-

firm this result from the network, the correlation distribu- ribosomal proteins have a RAP1 binding site, but so do
273 other genes, most of which are not coexpressedtion for all genes with PAC within 140 bp and RRPE

within 240 bp, shown in Figure 4A, is as tight as the with the ribosomal protein genes. What determines
which of these RAP1 binding sites are functional? In theorder constraint in Figure 2D, but applies to a larger set

of genes and is thus better supported by the data. In first bootstrap sample, the network chooses RAP1 in
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Figure 3. Examples of Network Structures Inferred from Expression Data and Regulatory Sequence

(A–D) Sequence constraints selected by each network and the combinations which are predictive of a particular expression pattern. For each
network, all realized states of the sequence variables, xi, and the fraction (probability) of genes participating in the expression pattern for
each state of the sequence variables are shown: filled (blue) for xi � 1, and empty for xi � 0. Red indicates high, and green indicates low
probability of being in the expression pattern.
(E–G) Actual mean expression pattern (red) and predicted mean expression pattern (green) for all genes predicted to participate in patterns
(1), (2), and (4). For prediction, each gene is assigned to the most probable pattern found from all networks.

the ← orientation with the regulatory partner M213, and 4D. Also shown is the distribution for an equally strong
RAP1 →. These rules are clearly able to distinguish afinds that a second copy of RAP1 can substitute for this

regulatory partner. It was previously observed that two set of genes that are tightly expressed in pattern (1).
Examples of genes that are selected by these rules areRAP1 binding sites can activate transcription synergisti-

cally (Woudt et al., 1986). If a gene has RAP1 in the ← shown in Figure 4E: all are ribosomal proteins. Examples
of genes which have an equally strong RAP1 bindingorientation and either M213 or a second copy of RAP1,

the gene will be expressed in pattern (1) 100% of the site, but in the → orientation, are shown in Figure 4F.
These genes are known to be involved in other pro-time, while if both M213 and a second copy of RAP1

are absent, the chances of being expressed in pattern cesses, and do not participate in expression pattern (1).
Many of the motifs chosen by the network closely(1) drop to 14%. Without one RAP1 in the ← orientation,

the presence of either M213 or a second copy of RAP1 match one of roughly 20 known regulatory elements,
and citations to the experimental support are included→ is insufficient to produce this expression pattern (2%

and 0%, respectively). in the Supplemental Data (available on Cell website).
But the subtle differences appear to be significant forA second resampling (Figure 3D) finds a second regu-

latory partner, M230. If a gene has a RAP1 in the ← prediction, since our motifs learned by Gibbs sampling
and optimization were selected over the known motiforientation and M230, there is a 92% chance that it

will be regulated like a ribosomal protein, in expression set by a substantial margin. More examples of learned
regulatory rules for other expression patterns are de-pattern (1). If there is only RAP1 ←, the chances of being

in expression pattern (1) drop to 29%. These results scribed in Supplemental Data, Supplemental Figure S2
available on Cell website. A list of the most frequentlyindicate that these motifs can substitute for the second

copy of RAP1, given the proper orientation of the first learned motifs is shown in Supplemental Data, Supple-
mental Table S1 available on Cell website.RAP1 binding site.

The distribution of correlation coefficients for the The types of constraints learned by the network indi-
cate the prevalence of various modes of combinatorialgenes selected by the predictive rule [RAP1← and (M213

or M230 or a second copy of RAP1)] is shown in Figure regulation in S. cerevisiae (see Supplemental Data avail-
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Figure 4. Sets of Genes Selected by the Inferred Constraints for Expression Patterns (4) and (1) (rRNA transcription and ribosomal proteins).

(A) When PAC is within 140 bp of ATG and RRPE is within 240 bp of ATG, the genes are tightly coregulated (blue). When PAC and RRPE are
further from ATG, coregulation is lost, and the distribution of correlations is close to random, (compare to Figure 2C).
(B) Examples of genes that satisfy the positional constraint and their expression pattern (right).
(C) Examples of genes that do not satisfy the positional constraint and their expression (right).
(D) When RAP1 is present in the ← orientation with the motifs M213, M230, or a second copy of RAP1, the genes are tightly coregulated
(blue). When an equally strong RAP1 ← is present alone (data not shown), or in the → orientation, the distribution is close to random (green).
(E) Examples of genes that satisfy the orientation and partner constraints, and their expression (right).
(F) Examples of genes that have an equally strong RAP1 →, and their expression (right).

able on Cell website). It is important to note that the test set genes by only looking at their promoter se-
quences. We repeat this for each of the five test sets.degree of combinatorial regulation uncovered here rep-

resents a lower limit, and a broader sampling of physio- Even small noise levels in the expression data would
make it impossible to predict a gene’s expression pat-logical conditions may yield a higher average number

of regulators per gene and perhaps more complex rules. tern exactly, so we must incorporate a reasonable
amount of flexibility in our assessment of what qualifies
as a correct prediction. We do so by predicting a gene’sPredicting Gene Expression Patterns

from Sequence participation in one of the 49 expression patterns de-
scribed above. Thus to be correctly predicted, a genePostgenome biology is largely defined by the challenge

of mapping genetic information to phenotype. Because must be predicted to be participating in the expression
pattern to which it is closest. The correlation coefficientof its direct physical coupling to the gene, mRNA expres-

sion dynamics provides the most proximal “phenotype” cut-off (C � 0.65) used to define these expression pat-
terns seems appropriate given the measurement noise,for addressing this challenge. In this context, predictive

accuracy is the objective arbiter of how well we under- and the strong functional enrichments we found in Table
1. A complication is that some of these expression pat-stand this process. The more accurate our predictions

are, the more likely our model is capturing the essential terns are very similar or overlapping, e.g., expression
patterns (2) and (3) or (47) and (48) shown in Figure 1A.underlying mechanisms. To this end, we assess the net-

work’s ability to predict expression patterns of genes Thus to avoid penalizing for prediction in a very close
expression pattern, we consider a prediction in an over-from sequences which it had not seen before (the 20%

test set). We infer rules using the 80% training set genes, lapping expression pattern correct. Overlapping expres-
sion patterns are defined to have correlation betweenand then predict the expression pattern of the reserved
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ment to expression patterns. Using only single motifs,
with the optimal depth cut-off, the mean correlation of
each gene to its predicted expression pattern is 0.36.
With full networks the average number of parent nodes
(selected motif elements or constraints) is 2.8, and the
mean correlation of each gene to its predicted expres-
sion pattern is 0.51. While the percent of genes correctly
assigned to an expression pattern increases from 26.6%
to 73% using our full network, the average correlation
of the genes to their predicted expression pattern in-
creases dramatically, from 0.02 to 0.51. This increased
correlation is a global measure of the degree to which
we can predict gene expression, and the dramatic shift
of the curve to higher correlation demonstrates that our
global predictive accuracy approaches that detailed
above for the specific examples shown for PAC/RRPE
and RAP1 in Figure 4. The increase from single parents
to full networks also indicates the significant degree of
combinatorial regulation. Without resampling, the mean
correlation is only 0.42. That resampling improves the
results is primarily indicative of redundant modes of
regulation: each resampling can learn different ways of

Figure 5. Statistical Significance of 73% Prediction Accuracy regulating a particular expression pattern. For compari-
(A) Because some of our 49 expression patterns are similar, we son, we have also tried multiple linear regression (Busse-
consider prediction in an overlapping pattern (red) correct, but pre- maker et al., 2001) with our full motif set, and find that
diction in a nonoverlapping pattern (blue) is incorrect. Overlapping

it performs somewhat worse than single motifs (meanpatterns must have mean expression patterns which are correlated
correlation of 0.25), likely due to overfitting.better than C � 0.65, the radius of each pattern.

(B) 100,000 independent random assignments of all genes to expres- To provide a visual demonstration of our predictive
sion patterns always get near 26.6% correct. The distribution is accuracy, we compare the actual expression profiles of
close to normal and has a standard deviation of 1.9%, so the P-value genes in one test set to the model’s prediction based
for our prediction of 73%, 24 standard deviations from the mean, solely on sequence (Figure 6B). The actual expression
is P � 10�127.

profile of the test set was hierarchically clustered (Eisen
et al., 1998), and our predicted expression profile for
each gene is displayed in the same order. As can betheir mean expression greater than 0.65, the same as
seen, except for the �27% of genes which we fail tothe cut-off defining the radius of an expression pattern,
predict correctly, there is impressive global concor-as shown schematically in Figure 5A. Prediction in an
dance between the two sets of profiles. These predic-overlapping expression pattern most frequently occurs
tions are somewhat “coarse-grained,” presenting uswhen (perhaps because of noise) a gene is assigned to
with the challenge of extracting increasingly subtle fea-a neighboring expression pattern but is actually suc-
tures from future refinements of our model.cessfully predicted using rules learned in a different, but

very similar, expression pattern.
We correctly predict the expression patterns of 73%, Application to Caenorhabditis elegans

S. cerevisiae provides a suitable test of our algorithmor 1898 of the 2587 clustered genes in the five test sets,
as shown in Table 1. Each gene is in four crossfold in an organism where much is known about gene regula-

tion and where there is an abundance of high qualityvalidation training sets (these are averaged) but only one
test set (these are combined). This degree of accuracy is expression data. However, we are also interested in the

applicability of our approach to multicellular organisms.highly significant. If no expression patterns overlapped
we would expect to predict correctly 1/49 or approxi- As a preliminary test, we applied our algorithm to Affy-

metrix expression data collected during embryonic andmately 2% of the time. Because there is significant over-
lap of some expression patterns, randomly assigning later development in C. elegans (Baugh et al., 2003; Hill

et al., 2000). The combined dataset contains 20 pointsgenes to expression patterns gives 26.6% � 1.9% cor-
rect on average. The distribution of 100,000 independent in a time course from staged embryos: 1 oocyte sample,

13 embryonic samples, 5 larval samples, and 1 adultrandom assignments for all genes is shown in Figure 5B.
Since these independent random samples are normally sample. We used 2000 bp of 5� upstream regulatory

sequence for each gene that was expressed significantlydistributed to a good approximation, the P-value for our
prediction of 73% is �10�127. in this dataset (5547 genes in 30 expression patterns).

Given the larger regulatory DNA sequences, the poten-Another measure of our ability to predict gene expres-
sion, which does not have complications due to overlap- tially more complex regulation, and the tissue depen-

dent expression of many genes, we were surprised toping expression patterns, is the distribution of correla-
tion coefficients of each gene to its predicted expression find that we could predict the expression patterns of

roughly half of these genes. In this initial study, we havepattern, as shown in Figure 6A. Three distributions are
shown, comparing full networks, networks that are con- not looked for regulatory elements in introns or down-

stream regions. We have also ignored the effect of oper-strained to use only single motifs, and random assign-
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Figure 6. Global Predictive Accuracy

(A) The distribution of correlation coefficients
of each gene to its predicted expression pat-
tern, using full networks, single motifs, and
random assignment. The mean correlation for
full networks is 0.51, compared to 0.02 for
random assignment.
(B) Hierarchical clustering of the 518 genes
in one of the five test sets (left) and our predic-
tion (right) for each of these genes, over all
255 conditions of the dataset.

ons and alternative splicing. In addition, gene architec- early phases of embryonic development, respectively.
Expression pattern (23) is enriched for genes involvedture predictions are less well established in C. elegans

compared to S. cerevisiae. All of these effects could in cell motility (P � 3.2 � 10�25), and peaks during larval
phases of development. Genes whose promoters satisfychange the relevant regulatory regions for some genes

and including them should improve our predictive ac- the inferred combinatorial rules recapitulate the phased
temporal expression of the original patterns, as showncuracy.

Comparatively little is known about transcription fac- by the dashed lines in Figure 7G. Expression pattern
(28) is found to be regulated by three motifs: M320,tor binding sites in C. elegans. Figure 7 shows the ex-

pression profiles for four of these expression patterns M324, and M323. The constraints governing the function
of these motifs include AND and OR logic, and spatialand the regulatory programs responsible for their ex-

pression. Expression patterns (4), (15), and (28), are constraints, as shown in Figure 7A. Motif M324 selects
coregulated genes by itself if it is within 180 bp of ATG.strongly enriched for TFs (genes in the gene ontology

classification “DNA dependent regulation of transcrip- M320 is functional only in combination with either M323,
or M324, with the positional constraint that M320 andtion”) with Bonferroni corrected P-values of 9.3 � 10�18,

3.6 � 10�17, and 3.9 � 10�6, respectively. Expression M324 must be within 160 bp of each other. The 83 genes
which satisfy the combined rule [(M324 within 180 bppatterns (4), (15), and (28) peak in the late, middle, and
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Figure 7. Examples of Regulatory Networks Learned for Embryonic and Larval Development in C. elegans

(A–D) Sequence constraints selected by each network and the combinations which are predictive of a particular expression pattern, as in
Figure 3. Expression patterns (28), (15), and (4), peak during early, middle, and late embryonic phase, and are enriched for genes involved in
transcriptional regulation. The three patterns are predicted to be turned on by distinct sets of motifs. Expression pattern (23) peaks during
larval development and is enriched for genes involved in cell motility.
(E) Examples of known transcription factor genes that are selected by the network for expression pattern (28).
(F) Examples of major sperm proteins that are selected by the network for expression pattern (23).
(G) Actual expression patterns (solid), and predicted expression patterns (dashed) using the sequence constraints (A–D) which confer high
probability of participating in each pattern.

of ATG) or (M320 and M323) or (M320 and M324, within elegans, and has strong similarity to a motif found to
be overrepresented in the 5� regulatory region of four160 bp of each other)] are highly correlated, and their

expression peaks in early embryonic development, as histone genes (Roberts et al., 1989), but which has not
previously been shown to be predictive of their expres-shown in Figure 7G. Among the genes selected by this

constraint are the known transcription factors med-1, sion. Examples of histone genes which are selected by
this motif are shown in Supplemental Data, Supplemen-med-2, unc-30, fkh-3, fhk-4, and tbx-38, and their regula-

tory regions are shown in Figure 7E. The genes med-1 tal Figure S3 available on Cell website. Expression pat-
tern (4) is regulated by the rule [(M437) or (M435 andand med-2 have been shown (Maduro et al., 2001) to

be regulated by the maternal transcription factor SKN-1 M142)], as shown in Figure 7C, which selects 226 genes.
Expression pattern (23) is regulated by [M217 or M229],(Bowerman et al., 1992), which spatially restricts their

expression to EMS. Motif M324 selects two sites 15 bp as shown Figure 7D, which selects 162 genes (M221
provides mild improvement). This rule selects 55% ofand 43 bp upstream of the SKN-1 consensus sites

(An and Blackwell, 2003; Blackwell et al., 1994) in med-1 the 47 major sperm protein genes (msp), responsible
for the amoeboid locomotion of sperm cells (L’Hernault,and med-2. These sites are within the 180 bp fragment

shown to be sufficient for proper expression of med-1 1997). M217 is close to a sequence found to be overre-
presented in 10 msp genes (Klass et al., 1988), but whichand med-2 (Maduro et al., 2001), and may contribute to

the proper temporal regulation of these genes. again has not been tested for its effect on expression.
Examples of genes selected by these motifs are shownExpression pattern (15) is regulated by the rule [(M91

within 280 bp of ATG) or (M87) or (M88)], as shown in in Figure 7F. Figure 7G shows the actual expression
patterns (solid) and the predicted expression patternsFigure 7B, which selects 202 genes. At the learned

depth, M88 selects 64% of the 73 histone genes in C. for genes that satisfy these constraints found by the
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network (dashed), demonstrating that our approach is from DNA sequence alone. The large number of combi-
natorial rules which pass our predictive validation crite-able to find sequence constraints that are predictive of

proper expression during development. rion, provide the community with a rich source of high-
yield hypotheses for experimental analysis. Our success
with C. elegans indicates that our general approach isPrevalent Themes and Biological Insights
applicable to multicellular eukaryotes, but the larger reg-The examples detailed above highlight the key discover-
ulatory regions in these genomes still present a signifi-ies of our approach. First, we find a great deal of redun-
cant challenge. Also, combinatorial regulation is likelydancy in the modes of transcriptional regulation (OR
to be much more elaborate. In this setting, successfullogic). Second, many factors require at least one partner
motif detection and predictive modeling will undoubt-to be functional (AND logic). Third, one mode of combi-
edly benefit from cross-species comparisons of regula-natorial regulation is the absence of a factor that would
tory regions.cause a different mode of regulation (NOT logic). Finally,

The results presented here clearly demonstrate thatwe can now account for a large fraction of the informa-
a sufficiently general and systematic whole-genome ap-tion required for the proper expression of genes in re-
proach is able to infer predictive regulatory constraintssponse to relevant physiological perturbations and de-
from mRNA expression data and DNA sequence alone.velopmental dynamics in the two model organisms. The
Our ability to decipher more complex regulatory pro-fact that this information resides within their 5� upstream
grams is currently limited by the availability of generegions provides a global statistical proof for this impor-
expression data. From physiological perturbations andtant dogma in molecular biology.
temporal expression responses at the organismal level,However, whether all the requisite information is resi-
we have identified the regulatory information in manydent in the local DNA, is an open question. Because
previously uncharacterized genes in S. cerevisiae andof the statistical nature of our approach, we cannot
C. elegans. With the increasing availability of high qualitycorrectly predict all genes. Higher-order combinatorial
tissue specific expression data in model organisms (Kiminteractions may be difficult to learn, because they have
et al., 2001) and humans, our method presents a frame-few, or unique instances in the genome. Also, we may
work for rapidly elucidating the transcriptional regula-not be finding all of the relevant sequence features.
tory mechanisms that orchestrate diverse spatiotempo-Some relevant features may be downstream or within
ral processes in multicellular organisms.coding regions, or may be undetectable by standard

motif finding algorithms. The proper description of some
DNA regulatory elements may require nonadditive ef- Experimental Procedures

fects not included in our present position weight matrix
Clusteringdescription. Another potential limitation is that our heu-
Our modified k-means clustering uses the standard algorithm (Harti-ristic learning algorithm may not be finding the optimal
gan, 1975), except that we constrain expression patterns to only

network. Finally, noise in the expression data may set include genes within some cut-off Pearson correlation coefficient,
a hard limit on our ability to learn the relevant sequence C, and we require each expression pattern to have 10 or more genes.

Any expression pattern that does not satisfy the size constraint isfeatures and network structure.
reseeded from a random gene. With these constraints we chooseBut other failures may imply the existence of alterna-
the maximum number of expression patterns for which this algorithmtive regulatory mechanisms, e.g., because we learn the
converges. We have tried correlation cut-offs of C � 0.6, 0.65, andregulatory programs from local sequence, our failures
0.7. At lower values of C more genes participate, but the expres-

may indicate genes where longer range interactions are sion patterns are less coherent. At C � 0.65, we find 49 expression
important. A prominent cause of this type of failure may patterns of 2587 genes, and we focus on this value. Expression

patterns are considered overlapping if the correlation coefficient ofbe silencing due to large scale chromatin modification
their mean expression patterns is greater than this cut-off.near telomeres (Gottschling et al., 1990) and mating loci

(Aparicio et al., 1991), boundary elements which inhibit
local DNA sequences from signaling nearby genes (Kel- Motif Finding

We use AlignACE (Hughes et al., 2000; Roth et al., 1998; Tavazoielum and Schedl, 1991), or similar mechanisms which set
et al., 1999) with 12 bp motifs, and search up to 800 bp upstreamup chromosomal domains of gene expression (Cohen
of each gene. For S. cerevisiae, this yields a large set of motifset al., 2000). The fact that our failures are not spatially
(�2000) with significant redundancy. We reduce the overlap in this

clustered more than would be randomly expected indi- set by allowing no two motifs to score 50% of the same sites with
cates that such chromatin domains, if responsible for a normalized score �0.5, which reduces the set to 615 motifs. We

augment this set with 51 known and experimentally documentedour failures, appear to be of intermediate scale. What
TF binding sites (Hughes et al., 2000; Lee et al., 2002). Each motifis the role of local chromatin modifications? Are all such
is represented by a position weight matrix (PWM) and is graphicallymodifications subservient to the local sequence fea-
represented using sequence logos (Schneider and Stephens, 1990).tures that recruit transcription factors, which in turn re-
The ability of each of these motifs to distinguish genes in the expres-

cruit chromatin modifying machinery? These are impor- sion pattern from those not in the expression pattern can be mea-
tant questions to address in future work, and we are sured with a Bayesian score, P(N|D), given below, where in this case

the network consists of single motifs as parent nodes. Using Monte-currently in the process of exploring these possibilities.
Carlo simulated annealing (Kirkpatrick et al., 1983), we further opti-Unlike the genetic code, the cis-regulatory code is
mize the AlignACE motifs by perturbing columns of each PWM tonot universal, requiring for individual genes, heroic ex-
maximize P(N|D). Text files with the motifs, PWMs, their occurrencesperimental efforts to elucidate (Davidson et al., 2003).
in genes, the expression data, and all expression patterns can be

We have developed a whole-genome computational found in the Supplemental Data available on Cell website and at
framework for the systematic extraction of this combina- http://genomics.princeton.edu/tavazoie/Supplementary%

20Data.htm.torial code and prediction of gene expression patterns
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