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In this paper, we discuss the two-group SIR model introduced by Guo, Li and Shuai
[H.B. Guo, M.Y. Li, Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR
epidemic models, Can. Appl. Math. Q. 14 (2006) 259–284], allowing random fluctuation
around the endemic equilibrium. We prove the endemic equilibrium of the model with
random perturbation is stochastic asymptotically stable in the large. In addition, the
stability condition is obtained by the construction of Lyapunov function. Finally, numerical
simulations are presented to illustrate our mathematical findings.
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1. Introduction

Epidemiology is the study of the spread of diseases with the objective to trace factors that are responsible for or con-
tribute to their occurrence. Significant progress has been made in the theory and application of epidemiology modeling
by mathematical research. Most models for the transmission of infectious diseases descend from the classical SIR model
of Kermack and McKendrick [2]. SIR model and a lot of its extensions are well investigated by many scholars [3–11]. In
recent years, multigroup models have been proposed in the literature to describe the transmission dynamics of infectious
diseases in heterogeneous host populations. One of the earliest works on multigroup models is the seminal paper by Laj-
manovich and Yorke [12] on a class of SIS multigroup models for the transmission dynamics of Gonorrhea. They established
a complete analysis of the global dynamics. The global stability of the unique endemic equilibrium is proved by using a
global Lyapunov function. Subsequently, much research has been done on multigroup models, see, e.g., [1,13–16]. Similarly,
the authors in [1,13,14] also study the question of global stability of the endemic equilibrium of multigroup models under
certain restrictions. In light of these results, complete determination of the global dynamics of these models is essential for
their application and further development.

In fact, there are real benefits to be gained in using stochastic models because real life is full of randomness and
stochasticity. Recently, several authors studied stochastic biological system, see [17–26]. In addition, some stochastic epi-
demic models have been studied by many authors, see [27–30]. In [27–29], the situation of the parameter perturbation
was considered. Dalal et al. [27,28] showed that stochastic models had nonnegative solutions and carried out analysis on
the asymptotic stability of models. Tornatore et al. [29] studied the stability of disease free equilibrium of a stochastic SIR
model with or without distributed time delay. On the other hand, white noise stochastic perturbations around the positive
endemic equilibrium of epidemic models was considered in [30,31]. Carletti [30] investigated the stability properties of a
stochastic model for phage-bacteria interaction in open marine environment both analytically and numerically. Beretta et al.
[31] proved the stability of epidemic model with stochastic time delays influenced by probability under certain conditions.
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Due to the large scale and complexity of multigroup models, progresses in the mathematical analysis of deterministic and
stochastic systems have been slow.

In this paper, we will consider the problem of the two-group SIR model in [1] with respect to white noise stochastic
perturbations around its positive endemic equilibrium. The remain part of this paper is as follows. In the next section, we
recall the deterministic multigroup SIR model and its main results given by Guo et al. [1]. Section 3 introduce the stochastic
model. In Section 4, we carry out an analysis of stability of the endemic equilibrium by means of Lyapunov functions. Finally,
numerical simulations are presented to illustrate our mathematical findings.

2. Deterministic multigroup SIR epidemic model and main results

Guo et al. [1] characterized that a multigroup model is, in general, formulated by dividing the population of size N(t)
into n distinct groups. For 1 � k � n, the k-th group is further partitioned into three compartments: the susceptible, in-
fectious, and recovered, whose numbers of individuals at time t are denoted by Sk(t), Ik(t) and Rk(t), respectively. They
considered the following multigroup SIR epidemic model:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ṡk = (1 − pk)Λk − (
dS

k + θk
)

Sk −
n∑

j=1

βkj Sk I j,

İk =
n∑

j=1

βkj Sk I j − (
dI

k + εk + γk
)

Ik,

Ṙk = pkΛk + θk Sk + γk Ik − dR
k Rk,

(2.1)

where k = 1,2, . . . ,n. The parameters in the model are summarized in the following list:

βi j: transmission coefficient between compartments Si and I j;
dS

k ;dI
k;dR

k : natural death rates of S, I, R compartments in the k-th group, respectively;
Λk: influx of individuals into the k-th group;
pk: fraction of new individuals into the k-th group who are immuned;
θk: fraction of individuals in Sk who are vaccinated;
γk: recovery rate of infectious individuals in the k-th group;
εk: disease-caused death rate in the k-th group.

All parameter values are assumed to be nonnegative and dS
k ,dI

k,dR
k ,Λk > 0 for all k.

For each k, adding the three equations in (2.1), gives

(Sk + Ik + Rk)
′ = Λk − dS

k − (
dI

k + εk
)

Ik − dR
k Rk

� Λk − d∗
k (Sk + Ik + Rk),

where d∗
k = min{dS

k ,dI
k +εk,dR

k }. Hence lim supt→∞(Sk + Ik + Rk) � Λk/d∗
k . Similarly, it follows from the first equation in (2.1)

that

lim sup
t→∞

Sk � (1 − pk)Λk

dS
k + θk

.

Observe that the variable Rk does not appear in the first two equations of (2.1). This allows us to consider first the following
reduced system for Sk and Ik⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṡk = (1 − pk)Λk − (
dS

k + θk
)

Sk −
n∑

j=1

βkj Sk I j,

İk =
n∑

j=1

βkj Sk I j − (
dI

k + εk + γk
)

Ik,

(2.2)

where k = 1,2, . . . ,n, in the feasible region

Γ =
{
(S1, I1, . . . , Sn, In) ∈ R

2n+ : Sk � (1 − pk)Λk

dS
k + θk

, Sk + Ik � Λk

d∗
k

, k = 1,2, . . . ,n

}
. (2.3)

Behaviors of Rk can then be determined from the last equation in (2.1). It can be verified that Γ in (2.3) is positively
invariant with respect to (2.2). Let intΓ denote the interior of Γ . The following results will be stated for system (2.2) in Γ ,
and can be translated straightforwardly to system (2.1).
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System (2.2) always has the disease-free equilibrium

P0 = (
S0

1,0, S0
2,0, . . . , S0

n,0
)
,

where

S0
k = (1 − pk)Λk

dS
k + θk

, k = 1,2, . . . ,n, (2.4)

is the equilibrium of the Sk population in the absence of disease (I1 = I2 = · · · = In = 0). An endemic equilibrium P∗ =
(S∗

1, I∗1, S∗
2, I∗2, . . . , S∗

n, I∗n) of (2.2) belongs to int Γ , namely, S∗
k > 0, I∗k > 0, k = 1,2, . . . ,n. Set

R0 = ρ(M0), (2.5)

where

M0 = M
(

S0
1, S0

2, . . . , S0
n

) =
(

βi j S0
i

dI
i + εi + γi

)
n×n

, (2.6)

and ρ denotes the spectral radius. The basic reproduction number R0 is the key threshold parameter whose values com-
pletely characterize the global dynamics of (2.2). Note that the matrix B = (βi j)n×n denotes the contact matrix, where
βi j � 0. The following results were proved in [1] and just recalled:

Proposition 2.1. Assume B = (βi j) is irreducible. Then the following hold.

(1) If R0 � 1, then P0 is the unique equilibrium of (2.2) and it is globally stable in Γ .
(2) If R0 > 1, then P0 is unstable and system (2.2) is uniformly persistent in int Γ .

Lemma 2.2. Assume B = (βi j) is irreducible. If R0 > 1, then (2.2) has at least one endemic equilibrium.

Lemma 2.3. Assume B = (βi j) is irreducible. If R0 > 1, then there exists a unique endemic equilibrium P∗ , and P∗ is globally asymp-
totically stable in int Γ .

The authors proved that, when R0 > 1, the endemic equilibrium of the model is unique and globally asymptotically
stable. Their proof of global stability of the endemic equilibrium relies on the use of a class of global Lyapunov functions
and graph theory. For this class of multigroup models, the results completely resolve the open problem on the uniqueness
and global stability of endemic equilibrium.

3. Stochastic model derivation

In this paper, we only consider the case of k = 2 in system (2.1):⎧⎪⎪⎨
⎪⎪⎩

Ṡk = (1 − pk)Λk − (
dS

k + θk
)

Sk − βk1 Sk I1 − βk2 Sk I2,

İk = βk1 Sk I1 + βk2 Sk I2 − (
dI

k + εk + γk
)

Ik,

Ṙk = pkΛk + θk Sk + γk Ik − dR
k Rk,

(3.1)

where k = 1,2. The global stability of the endemic equilibrium of system (3.1) has been discussed in the proof of Theo-
rem 2.3 in [1].

Here we also assume B = (βi j)2×2 is irreducible. From Lemma 2.3 in Section 2, if R0 > 1, then there exists a unique
endemic equilibrium P∗ .

We assume stochastic perturbations are of white noise type, which are directly proportional to distances S(t), I(t), R(t)
from values of S∗, I∗, R∗ , influence on the Ṡ(t), İ(t), Ṙ(t) respectively. So system (3.1) results in⎧⎪⎪⎨

⎪⎪⎩
Ṡk = (1 − pk)Λk − (

dS
k + θk

)
Sk − βk1 Sk I1 − βk2 Sk I2 + σ1k

(
Sk − S∗

k

)
Ḃ1k(t),

İk = βk1 Sk I1 + βk2 Sk I2 − (
dI

k + εk + γk
)

Ik + σ2k
(

Ik − I∗k
)

Ḃ2k(t),

Ṙk = pkΛk + θk Sk + γk Ik − dR
k Rk + σ3k

(
Rk − R∗

k

)
Ḃ3k(t),

(3.2)

where B1k(t), B2k(t), B3k(t) (k = 1,2) are independent standard Brownian motions and σ 2
ik > 0 represent the intensities

of Bik(t) (i = 1,2,3), respectively.
Obviously, stochastic system (3.2) has the same equilibrium points as system (3.1). In the next section, we will investigate

the stability of the equilibrium P∗ of system (3.2). Below we will construct a class of different Lyapunov functions from those
used in [1] to achieve our proof under certain conditions.
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4. Stochastic stability of the endemic equilibrium

In this paper, unless otherwise specified, let (Ω, F , {Ft}t�0, P ) be a complete probability space with a filtration {Ft}t�0
satisfying the usual conditions (i.e. it is increasing and right continuous while F0 contains all P -null sets). Let Bik(t) be the
Brownian motions defined on this probability space.

If R0 > 1, then the stochastic system (3.2) can be centered at its endemic equilibrium P∗ = (S∗
1, I∗1, R∗

1, S∗
2, I∗2, R∗

2), by the
change of variables

uk = Sk − S∗
k , vk = Ik − I∗k , wk = Rk − R∗

k .

By the way, we obtain the following system⎧⎪⎪⎨
⎪⎪⎩

u̇k = −(
dS

k + θk − βk1 I∗1 − βk2 I∗2
)
uk − βk1 S∗

k v1 − βk2 S∗
k v2 − βk1uk v1 − βk2uk v2 + σ1kuk Ḃ1k(t),

v̇k = (
βk1 I∗1 + βk2 I∗2

)
uk − (

dI
k + εk + γk

)
vk + βk1 S∗

k v1 + βk2 S∗
k v2 + βk1uk v1 + βk2uk v2 + σ2k vk Ḃ2k(t),

ẇk = θkuk + γk vk − dR
k wk + σ3k wk Ḃ3k(t).

(4.1)

It is easy to see that the stability of the system (3.2) equilibrium is equivalent to the stability of zero solution of system (4.1).
Before proving the main theorem we put forward a lemma in [19].
Consider the d-dimensional stochastic differential equation [19]

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB (t), on t � t0. (4.2)

Assume that the assumptions of the existence-and-uniqueness theorem are fulfilled. Hence, for any given initial value x(t0) =
x0 ∈ R

d , Eq. (4.2) has a unique global solution that is denoted by x(t; t0, x0). Assume furthermore that

f (0, t) = 0 and g(0, t) = 0 for all t � t0.

So Eq. (4.2) has the solution x(t) ≡ 0 corresponding to the initial value x(t0) = 0. This solution is called the trivial solution
or equilibrium position.

Denote by C2,1(Rd × [t0,∞];R+) the family of all nonnegative functions V (x, t) defined on R
d × [t0,∞] such that they

are continuously twice differentiable in x and once in t . Define the differential operator L associated with Eq. (4.2) by

L = ∂

∂t
+

d∑
i=1

f i(x, t)
∂

∂xi
+ 1

2

d∑
i, j=1

[
gT (x, t)g(x, t)

]
i j

∂2

∂xi∂xi
.

If L acts on a function V ∈ C2,1(Rd × [t0,∞];R+), then

LV (x, t) = Vt(x, t) + V x(x, t) f (x, t) + 1

2
trace

[
gT (x, t)V xx(x, t)g(x, t)

]
.

Definition 4.1. (i) The trivial solution of Eq. (4.2) is said to be stochastically stable or stable in probability if for every pair
of ε ∈ (0,1) and r > 0, there exists a δ = δ(ε, r, t0) > 0 such that

P
{∣∣x(t; t0, x0)

∣∣ < r for all t � t0
}

� 1 − ε

whenever |x0| < δ. Otherwise, it is said to be stochastically unstable.
(ii) The trivial solution is said to be stochastically asymptotically stable if it is stochastically stable and, moreover, for

every ε ∈ (0,1), there exists a δ0 = δ0(ε, t0) > 0 such that

P
{

lim
t→∞ x(t; t0, x0) = 0

}
� 1 − ε

whenever |x0| < δ0.
(iii) The trivial solution is said to be stochastically asymptotically stable in the large if it is stochastically asymptotically

stable and, moreover, for all x0 ∈ R
d

P
{

lim
t→∞ x(t; t0, x0) = 0

}
= 1.

Lemma 4.2. If there exists a positive-definite decrescent radially unbounded function V (x, t) ∈ C2,1(Rd × [t0,∞];R+) such that
LV (x, t) is negative-definite, then the trivial solution of Eq. (4.2) is stochastically asymptotically stable in the large.

The proof of this theorem can be found in [19].
From the above lemma, we can obtain the stochastically asymptotically stability of equilibrium as following:
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Theorem 4.3. Assume that B = (βi j)2×2 is irreducible and R0 > 1, then if the following condition is satisfied

σ 2
1k < 2

(
dS

k + θk
)
, σ 2

2k <
2(dI

k + εk + γk)(βk1 I∗1 + βk2 I∗2)

βk1 I∗1 + βk2 I∗2 + dS
k + θk + dI

k + εk + γk
, σ 2

3k < 2dR
k , (4.3)

the endemic equilibrium P∗ is stochastically asymptotically stable in the large.

Proof. It is easy to see that we only need to prove the zero solution of (4.1) is stochastically asymptotically stable in the
large. Let xk(t) = (uk(t), vk(t), wk(t))T , k = 1,2 and x(t) = (x1(t), x2(t))T .

We define the Lyapunov function V (x(t)) as follows

V (x) = 1

2

2∑
k=1

[
ak v2

k + bk(uk + vk)
2 + ck w2

k

]
, k = 1,2, (4.4)

where ak > 0, bk > 0, ck > 0 are real positive constants to be chosen later. Then it can be described as the quadratic form

V (x) = 1

2

2∑
k=1

xT
k Q kxk,

where

Q k =
(bk bk 0

bk ak + bk 0
0 0 ck

)

is a symmetric positive-definite matrix. So it is obviously that V (x) is positive-definite and decrescent.
For sake of simplicity, (4.4) may be divided into three functions: V (x) = V 1(x) + V 2(x) + V 3(x), where

V 1(x) = 1

2

2∑
k=1

ak v2
k , V 2(x) = 1

2

2∑
k=1

bk(uk + vk)
2, V 3(x) = 1

2

2∑
k=1

ck w2
k , k = 1,2.

Using Itô’s formula, we compute

LV 1 =
2∑

k=1

ak vk
[(

βk1 I∗1 + βk2 I∗2
)
uk − (

dI
k + εk + γk

)
vk + βk1 S∗

k v1 + βk2 S∗
k v2 + βk1uk v1 + βk2uk v2

]

+ 1

2

2∑
k=1

akσ
2
2k v2

k

=
2∑

k=1

ak
[−(

dI
k + εk + γk

)
v2

k + (
βk1 S∗

k v1 + βk2 S∗
k v2

)
vk

]

+
2∑

k=1

ak

[
1

2
σ 2

2k v2
k + (

βk1 I∗1 + βk2 I∗2
)
uk vk + (βk1 v1 + βk2 v2)uk vk

]

=
2∑

k=1

ak I∗k
[
−(

dI
k + εk + γk

)
I∗k

v2
k

I∗k
2

+
(

βk1 S∗
k I∗1

v1

I∗1
+ βk2 S∗

k I∗2
v2

I∗2

)
vk

I∗k

]

+
2∑

k=1

ak

[
1

2
σ 2

2k v2
k + (

βk1 I∗1 + βk2 I∗2
)
uk vk + (βk1 v1 + βk2 v2)uk vk

]

=
2∑

k=1

ak I∗k
[
−(β̄k1 + β̄k2)

(
vk

I∗k

)2

+
(

β̄k1
v1

I∗1
+ β̄k2

v2

I∗2

)
vk

I∗k

]

+
2∑

k=1

ak

[
1

2
σ 2

2k v2
k + (

βk1 I∗1 + βk2 I∗2
)
uk vk + (βk1 v1 + βk2 v2)uk vk

]
. (4.5)

Set β̄i j = βi j S∗ I∗ . Here we choose a1 I∗ = β̄21, a2 I∗ = β̄12, i.e., a1 = β21 S∗, a2 = β12 S∗ . Substituting this into (4.5), yields
i j 1 2 2 1
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LV 1 = β̄21

[
−(β̄11 + β̄12)

(
v1

I∗1

)2

+
(

β̄11
v1

I∗1
+ β̄12

v2

I∗2

)
v1

I∗1

]

+ β̄12

[
−(β̄21 + β̄22)

(
v2

I∗2

)2

+
(

β̄21
v1

I∗1
+ β̄22

v2

I∗2

)
v2

I∗2

]

+
2∑

k=1

ak

[
1

2
σ 2

2k v2
k + (

βk1 I∗1 + βk2 I∗2
)
uk vk + (βk1 v1 + βk2 v2)uk vk

]

= −β̄12β̄21

(
v1

I∗1
− v2

I∗2

)2

+
2∑

k=1

ak

[
1

2
σ 2

2k v2
k + (

βk1 I∗1 + βk2 I∗2
)
uk vk + (βk1 v1 + βk2 v2)uk vk

]

�
2∑

k=1

ak

[
1

2
σ 2

2k v2
k + (

βk1 I∗1 + βk2 I∗2
)
uk vk + (βk1 v1 + βk2 v2)uk vk

]
. (4.6)

Similarly, from Itô’s formula, we obtain

LV 2 =
2∑

k=1

bk(uk + vk)
[−(

dS
k + θk

)
uk − (

dI
k + εk + γk

)
vk

] + 1

2

2∑
k=1

(
akσ

2
1ku2

k + bkσ
2
2k v2

k

)

=
2∑

k=1

bk

[
−

(
dS

k + θk − 1

2
σ 2

1k

)
u2

k −
(

dI
k + εk + γk − 1

2
σ 2

2k

)
v2

k − (
dS

k + θk + dI
k + εk + γk

)
uk vk

]
,

LV 3 =
2∑

k=1

ck wk
(
θkuk + γk vk − dR

k wk
) + 1

2

2∑
k=1

ckσ
2
3k w2

k

=
2∑

k=1

ck

[
−

(
dR

k − 1

2
σ 2

3k

)
w2

k + θkuk wk + γk vk wk

]
. (4.7)

Then we compute

LV = LV 1 + LV 2 + LV 3

�
2∑

k=1

ak

[
1

2
σ 2

2k v2
k + (

βk1 I∗1 + βk2 I∗2
)
uk vk + (

βk1 v1 + βk2 v2
)
uk vk

]

+
2∑

k=1

bk

[
−

(
dS

k + θk − 1

2
σ 2

1k

)
u2

k −
(

dI
k + εk + γk − 1

2
σ 2

2k

)
v2

k − (
dS

k + θk + dI
k + εk + γk

)
uk vk

]

+
2∑

k=1

ck

[
−

(
dR

k − 1

2
σ 2

3k

)
w2

k + θkuk wk + γk vk wk

]

=
2∑

k=1

{
−bk

(
dS

k + θk − 1

2
σ 2

1k

)
u2

k −
[

bk

(
dI

k + εk + γk − 1

2
σ 2

2k

)
− 1

2
akσ

2
2k

]
v2

k

+ [
ak

(
βk1 I∗1 + βk2 I∗2

) − bk
(
dS

k + θk + dI
k + εk + γk

)]
uk vk

− ck

(
dR

k − 1

2
σ 2

3k

)
w2

k + ckθkuk wk + ckγk vk wk

}
+

2∑
k=1

ak(βk1 v1 + βk2 v2)uk vk

= L0 V +
2∑

k=1

ak(βk1 v1 + βk2 v2)uk vk, (4.8)

where

L0 V =:
2∑

k=1

{
−bk

(
dS

k + θk − 1

2
σ 2

1k

)
u2

k −
[

bk

(
dI

k + εk + γk − 1

2
σ 2

2k

)
− 1

2
akσ

2
2k

]
v2

k

+ [
ak

(
βk1 I∗ + βk2 I∗

) − bk
(
dS + θk + dI + εk + γk

)]
uk vk
1 2 k k
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− ck

(
dR

k − 1

2
σ 2

3k

)
w2

k + ckθkuk wk + ckγk vk wk

}
(4.9)

is the linear part of the right-hand side of inequality.
In (4.9) we choose

ak
(
βk1 I∗1 + βk2 I∗2

) − bk
(
dS

k + θk + dI
k + εk + γk

) = 0,

then

bk = ak(βk1 I∗1 + βk2 I∗2)

dS
k + θk + dI

k + εk + γk
, (4.10)

i.e.,

b1 = β21 S∗
2(β11 I∗1 + β12 I∗2)

dS
1 + θ1 + dI

1 + ε1 + γ1
, b2 = β12 S∗

1(β21 I∗1 + β22 I∗2)

dS
2 + θ2 + dI

2 + ε2 + γ2
.

Moreover, using Cauchy inequality to θkuk wk and γk vk wk , we can obtain

θkuk wk � 1

4

(
dR

k − 1

2
σ 2

3k

)
w2

k + θ2
k u2

k

dR
k − 1

2σ 2
3k

,

γk vk wk � 1

4

(
dR

k − 1

2
σ 2

3k

)
w2

k + γ 2
k v2

k

dR
k − 1

2σ 2
3k

. (4.11)

Substituting (4.10) and (4.11) into (4.9), yields

L0 V �
2∑

k=1

{
−

[
bk

(
dS

k + θk − 1

2
σ 2

1k

)
− ck

θ2
k

dR
k − 1

2σ 2
3k

]
u2

k

−
[

bk

(
dI

k + εk + γk − 1

2
σ 2

2k

)
− 1

2
akσ

2
2k − ck

γ 2
k

dR
k − 1

2σ 2
3k

]
v2

k

− 1

2
ck

(
dR

k − 1

2
σ 2

3k

)
w2

k

}

= −
2∑

k=1

(
Aku2

k + Bk v2
k + Dk w2

k

)
, (4.12)

where

Ak = bk

(
dS

k + θk − 1

2
σ 2

1k

)
− ck

θ2
k

dR
k − 1

2σ 2
3k

,

Bk = bk

(
dI

k + εk + γk − 1

2
σ 2

2k

)
− 1

2
akσ

2
2k − ck

γ 2
k

dR
k − 1

2σ 2
3k

,

Dk = 1

2
ck

(
dR

k − 1

2
σ 2

3k

)
.

Let us choose ck such that

0 < ck < min

{
dR

k − 1
2σ 2

3k

θ2
k

bk

(
dS

k + θk − 1

2
σ 2

1k

)
,

dR
k − 1

2σ 2
3k

γ 2
k

[
bk

(
dI

k + εk + γk
) − 1

2
(ak + bk)σ

2
2k

]}
.

On the other hand, the condition in (4.3) is satisfied, so Ak, Bk, Dk are positive constants. Let λ = mink=1,2{Ak, Bk, Dk}, then
λ > 0. From (4.12), one sees that

LV � −λ
∣∣x(t)∣∣2 + ◦(∣∣x(t)∣∣2)

.

Hence LV (x, t) is negative-definite in a sufficiently small neighborhood of x = 0 for t � 0. According to Lemma 4.1, we
therefore conclude that the zero solution of (4.1) is stochastically asymptotically stable in the large.

The proof is complete. �



242 J.J. Yu et al. / J. Math. Anal. Appl. 360 (2009) 235–244
Fig. 1. Deterministic trajectories of SIR model (3.1) for initial condition S1(0) = 5.5, I1(0) = 1, R1(0) = 2, S2(0) = 4, I2(0) = 0.5, R2(0) = 1.5.

Fig. 2. Stochastic trajectories of SIR model (3.2) for σ11 = 0.5, σ21 = 0.7, σ31 = 0.8, σ12 = 0.8, σ22 = 0.6, σ32 = 0.75 and �t = 10−3.

5. Numerical simulation

Computer simulations of this mathematical model agree well with mathematical theory. In order to confirm the stability
results of Section 4 we numerically simulated the solution of the stochastic system (3.2). For simplicity, we assume pk =
θk = εk = 0 and dk = dS

k = dI
k = dR

k in systems (3.1) and (3.2). Furthermore, let Λ1 = 4.725, d1 = 0.5, γ1 = 0.9, β11 = 0.15,
β12 = 0.175; Λ2 = 2.4, d2 = 0.4, γ2 = 0.8, β21 = 0.1, β22 = 0.25. Hence we obtain S∗

1 = 5.25, I∗1 = 1.5, R∗
1 = 2.7; S∗

2 = 3,
I∗2 = 1, R∗

2 = 2. Moreover, we always choose initial value (S1(0), I1(0), R1(0), S2(0), I2(0), R2(0))T = (5.5,1,2,4,0.5,1.5)T .
In the absence of noise, we simulate the global stability of the endemic equilibrium of deterministic system (3.1) in

Fig. 1.
On the other hand, we show the numerical simulation of the stochastic system (3.1). Given the discretization of sys-

tem (3.2) for t = 0,�t,2�t, . . . ,n�t ,⎧⎪⎪⎨
⎪⎪⎩

Sk,i+1 = Sk,i + (Λk − dk Sk,i − βk1 Sk,i I1,i − βk2 Sk,i I2,i)�t + σ1k
(

Sk,i − S∗
k

)√
�tε1k,i,

Ik,i+1 = Ik,i + (
βk1 Sk,i I1,i + βk2 Sk,i I2,i − (dk + γk)Ik,i

)
�t + σ2k

(
Ik,i − I∗k

)√
�tε2k,i,

R = R + (γ I − d R )�t + σ
(

R − R∗)√�tε ,
k,i+1 k,i k k,i k k,i 3k k,i k 3k,i
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Fig. 3. Stochastic trajectories of SIR model (3.2) for σ11 = 0.4, σ21 = 0.45, σ31 = 0.39, σ12 = 0.3, σ22 = 0.42, σ32 = 0.35 and �t = 10−3.

Fig. 4. Stochastic trajectories of SIR model (3.2) for σ11 = 39.23, σ21 = 39.30, σ31 = 39.24, σ12 = 39.25, σ22 = 39.27, σ32 = 39.28 and �t = 10−3.

where time increment �t > 0, and ε1k,i, ε2k,i, ε3k,i , k = 1,2 are N(0,1)-distributed independent random variables which can
be generated numerically by pseudo-random number generators.

In Fig. 2, the numerical simulation shows that the endemic equilibrium of stochastic system (3.2) is global asymptotically
stable under the condition (4.3). Fig. 2 shows a realization of the dynamics of this system for σ11 = 0.5, σ21 = 0.7, σ31 = 0.8,
σ12 = 0.8, σ22 = 0.6, σ32 = 0.75, whilst Fig. 2 corresponds to σ11 = 0.4, σ21 = 0.45, σ31 = 0.39, σ12 = 0.3, σ22 = 0.42,
σ32 = 0.35. Moreover, comparison of Figs. 2 and 3 suggests that fluctuations reduce as the noise level decreases. Note that
the condition (4.3) is just a sufficient condition. When this condition is not satisfied, the stochastic system (3.2) may be
unstable. If we choose σ11 = 39.23, σ21 = 39.30, σ31 = 39.24, σ12 = 39.25, σ22 = 39.27, σ32 = 39.28, then the solution of
the stochastic system (3.2) is not asymptotically stable but explode to infinity at the finite time (see Fig. 4).
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