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Abstract In this study, Response Surface Methodology (RSM) and Artificial Neural Network (ANN)
predictivemodels are developed, based on experimental data of the Oxidative Coupling ofMethane (OCM)
over Na–W–Mn/SiO2 at 0.4MPa, whichwas obtained in an isothermal fixed bed reactor. Results show that
the simulation and prediction accuracy of ANNwas apparently higher compared to RSM. Thus, the Hybrid
Genetic Algorithm (HGA), based on developed ANN models, was used for simultaneous maximization of
CH4 conversion and C2+ selectivity. The pareto optimal solutions show that at a reaction temperature of
987 K, feed GHSV of 15790 h−1, diluents amounts of 20 mole%, and methane to oxygen molar ratio of 3.5,
themaximumC2+ yield obtained fromANN-HGAwas 23.91% (CH4 conversion of 34.6% and C2+ selectivity
of 69%), as compared to 22.81% from the experimental measurements (CH4 conversion of 34.0% and C2+
selectivity of 67.1%). The predicted error in optimum yield by ANN-HGA was 4.81%, suggesting that the
combination of ANN models with the hybrid genetic algorithm could be used to find a suitable operating
condition for the OCM process at elevated pressures.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

The catalytic Oxidative Coupling ofMethane (OCM) to higher
hydrocarbons (especially ethane and ethylene) has been the
subject of challenging research in utilizing natural gas as
a chemical feedstock. Among various catalysts explored for
methane coupling, the Mn/Na2WO4/SiO2 catalyst, first stud-
ied by Fang et al. [1,2], is considered to be one of the most
promising. Therefore, it has been extensively studied by several
researchers [3–10]. Most work on this catalyst was conducted
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under pressures below one atmosphere. However, for commer-
cial applications and in order to reduce the size of the reactor, it
is required to perform oxidative coupling of methane at higher
pressures. Also, performing the OCM reaction at elevated pres-
sures economically favors product separation and energy sav-
ing [11]. On the other hand, higher pressure will lead to a drop
in C2+ selectivity and yield, i.e. higher pressures will facilitate
undesired total oxidation reactions.

Among the earliest economic studies on commercialization
of OCM based processes by Union Carbide in 1992 [12], it had
been assumed that the reactor pressure could increase up to
0.44 MPa without a major impact on C2+ yield of the reaction
per pass. In a more recent feasibility study by RIPI (Research
Institute of Petroleum Industry) and JOGMEC (JapanOil, Gas and
Metal Company) [13], it has been found that the plant cost index
reaches its minimum value if the reactor operates at 0.4 MPa
pressure, assuming the catalyst performance does not change
by increasing the pressure to 0.4 MPa.
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So, it is important to determine reaction conditions that op-
timize the performance of this process at an elevated pressure.
For this purpose, an appropriate kinetic model is required. In
the case of the Na–W–Mn/SiO2 catalyst, most reported kinetic
models in the literature [14,15] are based on gathered reaction
data at atmospheric total pressure. On the other hand, exper-
imental results at higher pressures for this catalyst [16] show
that as a result of several secondary and crossing reactions that
may occur, the OCM reactions at elevated pressures are more
complex than those at atmospheric pressure.

Application of the conventional modeling approach is not
well suited for OCM reactions at elevated pressures because of
the lack of a suitable kinetic model. However, this problem can
be overcomebyusing empiricalmethods. In empiricalmethods,
two approaches are possible; statistical based, and artificial
intelligence-based black box.

In statistical-based approaches, Response Surface Method-
ology (RSM) has been extensively used in various processes
[17–20]. However, its application in OCM processes is very
rare [4,21,22].

Artificial Neural Networks (ANNs) are now successfully used
in many areas of science and engineering [23–27]. Application
of ANN for the modeling of OCM process has been the subject
of some articles. Abdolahi et al. [28] used a neural network for
prediction of CH4 conversion, ethylene and C2+ selectivity on
the periodic operation of the OCM process over the Ce/Li/MgO
catalyst. A hybrid Genetic Algorithm (GA) with ANN was also
used by Haung et al. [29] to design optimal catalyst and
operating conditions in the OCM process. Recently, Istadi and
Amin [30] used this technique for modeling and optimization
of the catalytic dielectric barrier discharge plasma reactor for
CO2-OCM processes.

With the aforementioned background, there is no report ad-
dressing the modeling and optimization of OCM reactions at
elevated pressures. Therefore, in this study, we report experi-
mental data obtained for OCM reactions over a Na–W–Mn/SiO2
catalyst at 0.4MPa in an isothermal fixed bed reactor. Next, two
RSM and ANNs modeling approaches were used to recognize
the relationship between input variables, such as feed methane
to oxygen molar ratio, feed GHSV (Gas Hourly Space Velocity),
feed diluents amounts, reaction temperature and output vari-
able. Finally, the modeling capabilities of RSM and ANNs were
compared and the GA multi-objective optimization algorithm,
based on the best mentioned methods, is applied for simulta-
neous maximization of CH4, conversion, and C2+ selectivity, to
obtain the Pareto optimal solutions.

2. The experimental work

2.1. Catalyst preparation

The SiO2 was first prepared by the co precipitation method.
Calculated amounts of sodium silicate (Na2SiO4) and sulfuric
acid (H2SO4)were added to 400ml distilledwater at 353 K,with
a pH equal to 8, at constant stirring to produce a thick paste. The
paste was spread and dried for 24 h at 373 K. Thereafter, it was
calcined in air for 5 h at 723 K.

The Na–W–Mn/SiO2 catalyst was prepared by a two-step
incipient wetness impregnation method. An aqueous solution
with an appropriate concentration of Mn(NO3)2 · 6H2O was
added to prepare SiO2 support, evaporated to dryness, and dried
in air at ambient temperature for 24 h and then 373 K for one
day. After that, the Na2WO4 ·2H2O solution, having appropriate
concentration, was added to the prepared material, followed
Figure 1: Schematic of the quartz fixed bed reactor.

by drying, similar to the previous step. The catalyst was then
calcined at 1123 K for 15 h and the resulting powder was
pelletized, crushed and sieved to 30–35 mesh.

The Atomic Absorption Spectrophotometry (AAS) (A- Ana-
lyst 200) and inductively coupled plasma (ICP) (Wear Metal
Analyzer—Plasma 400) analyses, show that the components
wt% in the prepared catalyst are 1.4wt% Na–2.1wt%W–1.5wt%
Mn/SiO2. The details of the catalyst characterizations are given
in our previous article [31].

2.2. Experimental set up

A micro catalytic fixed bed reactor, made of quartz, with
0.01 m inner diameter, located in a vertical furnace with two
electric heaters, was used to measure the performance of the
catalyst under various conditions (Figure 1). The diameter
of the pre-catalytic and post-catalytic zone was reduced to
6 mm and filled with quartz chips (mesh 20/25), in order
to minimize the contribution of any gas-phase reactions. An
amount of 4 gr catalyst was placed at the hottest part of
the reactor. The reaction temperature was measured using
the Ni/Cr–Ni/Al thermocouple within the quartz thermo-well,
which was inserted into the center of the catalyst bed. In all
experiments, the reactant gases, CH4, O2 and N2, were co-
fed into the reactor and their flow rates were controlled with
mass flow controllers. The reactor effluent gases, after removing
water by condensation at 268 K, were analyzed by an online
gas chromatograph (CHROMPACK CP-9000) with a thermal
conductivity detector for detecting O2, N2, CH4, CO, CO2, C2H4
andC2H6. A flame ionization detectorwas used for detecting the
higher hydrocarbons. The pressure of the systemwas controlled
using a pressure controller.

The CH4 conversion (XCH4 ), selectivity (SC2+ ) and yield (YC2+ )
of the product hydrocarbons are calculated using the following
equations: see Eqs. (1)–(3) is given in Box I.

Table 1 presents the experimental data which are used in
this work for development of ANN and RSMmodels.



J. Sadeghzadeh Ahari et al. / Scientia Iranica, Transactions C: Chemistry and Chemical Engineering 20 (2013) 617–625 619

1)

2)

3)
XCH4% =
moles of CH4 converted
moles of CH4 in feed

∗ 100, (

SC2+% =


n(moles of Cn hydrocarbons in products )

(moles of CO + moles of CO2 +


n(moles of Cn hydrocarbons)) in products
∗ 100 n ≥ 2, (

YC2+% = XCH4 ∗SC2+ ∗100. (

Box I
Table 1: Experimental data at 0.4 MPa used in this study for development
of ANN and RSMmodels.

T (K) Feed’s
GHSV(h−1)

Feed’s
CH4/O2

molar ratio

Feed’s
N2 mole%

XCH4% SC2+%

983.00a 14285.00 5.97 0.07 22.41 75.25
973.00a 12766.00 5.99 0.03 8.18 66.42
998.00a 15790.00 3.97 10.17 32.32 72.68
948.00a 14285.00 5.97 0.07 3.93 52.22
948.00a 15790.00 3.96 19.63 30.62 70.97
958.00a 12766.00 3.12 20.41 34.77 61.85
973.00a 12766.00 4.09 0.12 29.24 69.79

1023.00a 14285.50 3.03 19.39 35.74 62.32
998.00a 14285.00 3.94 0.19 28.82 65.54
998.00a 14285.50 3.09 10.38 35.99 63.31
963.00a 14285.50 4.08 10.47 31.67 72.51
998.00a 12766.00 3.13 9.42 34.62 61.55
948.00a 12766.00 3.13 9.42 34.62 61.55
973.00a 15790.00 3.97 10.17 32.32 72.68
948.00a 15790.00 3.13 10.33 36.11 63.93
998.00a 14285.50 3.03 19.39 35.74 62.32
998.00a 14285.00 3.15 0.02 35.27 62.53
973.00a 14285.00 5.97 0.07 17.04 70.12
998.00a 12766.00 5.99 0.03 22.57 75.18
963.00a 14285.00 3.15 0.02 35.27 62.53
973.00a 15790.00 3.15 18.86 35.79 65.90
973.00 15790.00 3.96 19.63 31.74 72.41
948.00 12766.00 5.99 0.03 3.42 53.48
948.00 12766.00 4.09 0.12 27.06 68.78

1023.00 14285.50 3.09 10.38 35.99 63.31
998.00 15790.00 3.13 10.33 36.11 63.93
998.00 15790.00 3.96 19.63 31.74 72.41
953.00 12766.00 4.09 10.43 30.62 71.06
998.00 14285.00 5.97 0.07 22.41 75.25

1023.00 15790.00 6.12 0.03 22.00 75.39
948.00 15790.00 3.20 0.00 35.14 63.86
948.00 15790.00 3.97 0.16 27.91 68.67

1023.00 15790.00 3.97 0.16 29.99 67.71
1023.00 14285.50 4.08 10.47 31.67 72.51
1023.00 15790.00 3.96 19.63 31.74 72.41
998.00 15790.00 3.15 18.86 35.79 65.90
998.00 15790.00 3.97 0.16 29.99 67.71
948.00 12766.00 3.19 0.00 33.80 61.01

1023.00 15790.00 3.20 0.00 35.14 63.86
998.00 15790.00 6.12 0.03 22.00 75.39
998.00 12766.00 3.19 0.00 33.80 61.01

1023.00 12766.00 3.12 20.41 34.77 61.85
1023.00 15790.00 3.13 10.33 36.11 63.93
1023.00 12766.00 4.09 10.43 30.62 71.06
973.00 14285.00 3.94 0.19 28.82 65.54

1023.00 14285.00 5.97 0.07 22.41 75.25
1023.00 14285.00 3.15 0.02 35.27 62.53
943.00 14285.50 4.08 10.47 23.73 67.31
973.00 15790.00 6.12 0.03 22.00 75.39
998.00 12766.00 4.09 0.12 29.24 69.79
988.00 12766.00 5.99 0.03 21.71 74.56

1023.00 15790.00 3.97 10.17 32.32 72.68
1023.00 12766.00 5.99 0.03 22.57 75.18
948.00 15790.00 3.97 10.17 31.33 71.99
948.00 14285.50 3.03 19.39 35.74 62.32

1023.00 14285.00 3.94 0.19 28.82 65.54
998.00 14285.50 4.08 10.47 31.67 72.51

1023.00 12766.00 3.19 0.00 33.80 61.01
Table 1 (continued)

T (K) Feed’s
GHSV(h−1)

Feed’s
CH4/O2

molar ratio

Feed’s
N2 mole%

XCH4% SC2+%

943.00 12766.00 4.09 10.43 6.38 48.87
1023.00 12766.00 3.13 9.42 34.62 61.55
973.00 15790.00 3.97 0.16 29.99 67.71

1023.00 15790.00 3.15 18.86 35.79 65.90
1023.00 12766.00 4.09 0.12 29.24 69.79
948.00 12766.00 3.12 20.41 4.98 42.55
998.00 12766.00 3.12 20.41 34.77 61.85
948.00 14285.50 3.09 10.38 35.99 63.31
948.00 14285.00 3.94 0.19 27.98 66.55
998.00 15790.00 3.20 0.00 35.14 63.86
998.00 12766.00 4.09 10.43 30.62 71.06
948.00 15790.00 6.12 0.03 3.43 55.68
948.00 15790.00 3.96 19.63 19.00 79.00
973.00 15790.00 3.96 19.63 24.00 81.30

1023.00 15790.00 3.96 19.63 24.00 81.30
a These data were used as test set.

3. Artificial Neural Network (ANN)

ANNs are widely accepted as an approach offering an
alternative way to tackle complex and ill-defined problems.
The Back-Propagation (BP) neural network is a widely used
supervised neural network modeling. A typical BP neural
network is a single direction multilayer neural network. It
contains one input layer and one or more hidden layers. Each
layer comprises one or more nodes, called neurons. A neuron in
a certain layer receives information from all the neurons of the
preceding layer. It sums the information, weighted by the factor
corresponding to the connection and the bias of the network,
and transmits this sum to all the neurons of the next layer using
an activation function (e.g. the sigmod function). The number
of nodes in the input and output layers represent, effectively,
the number of variables used in the prediction and the number
of variables to be predicted. However, the appropriate number
of hidden layers and nodes on these hidden layers cannot be
known in advance and are normally set through trial and error.
Two steps are required to build a back-propagation neural
network:

Step 1: Network architecture selection including:
(a) Determination of the type of transfer function (sigmoid,

hyperbolical tangent or linear) in each layer.
(b) Determination of the number of hidden layers and nodes.
Step 2: Validation of the model.
The network architecture is determined by trial and error

during the training phase, while validation of the model is
performed via evaluating model performance using the test
data.

4. Response surface methodology

RSM is a collection of mathematical and statistical tech-
niques useful for the modeling and analysis of problems. So, it
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can be used for cases in which complex relations are involved.
The method involves relating a single output variable to a
number of input variables. Adequacy of the proposed model is
revealed using the diagnostic checking tests provided by analy-
sis of variance (ANOVA). In this study, the full quadratic model
(Eq. (4)) was used to correlate the dependent and independent
variables:

Y = b0 +

n
i=1

biXi +

n
i=1

biiXi
2
+

n−1
i=1

n
j=i+1

bijXiXj, (4)

where Y is the response variable (methane conversion or C2+
selectivity), b0 is the offset term (constant), bi are regression
coefficient for linear effects, bii are the quadratic coefficients, bij
are the interaction coefficients, n is the number of independent
variables and Xi are the actual values of the independent
variables.

5. Multi objective optimization

The quadratic model of RSM can be easily optimized using
conventional gradient-based methods. These optimization
methods require the objective function to be continuous,
differentiable andmore importantly smooth, so, they cannot be
used efficiently for optimizing the input space of an ANNmodel.

One of the Global Optimization Algorithms (GOA) is the Ge-
netic Algorithm (GA). GA is an intelligent stochastic optimiza-
tion technique based on the mechanism of natural selection
and genetics. It starts with a set of trial solutions (called pop-
ulations) and then the final solution evolves iteratively by ap-
plying some genetic operators (e.g., selection, cross over and
mutation). Based on the GA ability, it can be used to optimize
the input space ANN models. A notable characteristic of this
algorithm is that it can find the region of the optimal values,
quickly; however, the ability of an accurate search in this re-
gion is not satisfactory for complex systems. Therefore, GA is
often hybridized with a Local Optimization Algorithm (LOA) to
improve its performance as a global optimization technique.

In the present work, the Pareto optimal solutions are
obtained from multi objective optimization using the post-
hybridization of GA with a LOA. MATLAB GA optimization
toolbox (Version 7.6.0324) using the function ‘‘fgoalattain’’ is
used as the hybrid local search method [32]. That uses the final
solution from GA as its initial point.

The optimal problem could be expressed in the following
formula:

f (xi) = max(XCH4%), (5)
g(xi) = max(SC2+%),

where:

xi = T (K), CH4/O2,GHSV(h−1) and N2 mole%.

For the mentioned multi objective optimization problem,
the decision variables (operating parameters) are chosen from
the corresponding bounds that are already listed in Table 1.

6. Results and discussion

6.1. Predictive modeling with ANN

In order to reduce the time consuming trial and error steps
for suitable numbers of hidden layers andnodes, and to increase
the accuracy of the models, separate networks for the predic-
tion of methane conversion (XCH4 ) and C2+ selectivity (SC2+ ) are
Table 2: Statistical results and details of the neural network models used
for prediction of XCH4% and SC2+%.

Model
SC2+% XCH4%

No. of hidden layer 1 2
No. of nodes 4-6-1 4-6-2-1
Type of transfer function logsig–purelin tansig–tansig–purelin
R2 (train) 0.994 1.00
MSE (train) 0.272 0.006
AARE%(train) 0.612 0.237
R2 (test) 0.976 0.998
MSE (test) 0.861 0.209
AARE% (test) 1.05 1.479

Note: Total number of weights and bias adjusted during the training period
is 37 and 47 for the C2+ selectivity and methane conversion networks,
respectively.

developed. The networks were built with the neural network
toolbox, MATLAB software. The back-propagation training was
achieved using the Levenberg–Marquadt algorithm (function
‘trainlm’), principally because of its fast convergence rate for
moderately sized networks.

For the data set considered in the present study, the input
variables, as well as the target variables, are first normalized
into the range of −1 to 1, using the following formula:

Xn =
2(X − Xmin)

Xmax − Xmin
− 1, (6)

where Xmin and Xmax are the minimum and maximum values of
the raw data. After normalization of experimental data (73 data
points), they are randomlydivided into two subsets: training set
(70% of total data) and test set (30% of total data). The training
set is used to estimate the neural network parameters (weight
and biases) and the test set is used to validate the networks.

The performance of each network is evaluated by statistical
criteria. The statistical criteria consist of correlation coefficient
(R2), Mean Square Error (MSE) and Average Absolute Relative
Error (AARE). The R2 statistic measures the linear correlation
between actual and predicted parameter values. The MSE
and AARE values are used to quantify the error between the
observed and predicted values. The optimal value for R2 is 1.0,
and for MSE and AARE is 0.0. These statistical measures are
defined as:

R2
= 1 −

n
i=1

(Xobs − Xcal)
2

n
i=1

(Xobs − X cal)2
, (7)

MSE =
1
n

n
h=1

(Xobs − Xcal)
2, (8)

AARE =
1
n

 Xobs − Xcal

Xobs

 ∗ 100, (9)

where, n is the number of data points, X the average of X over
the n samples, and Xobs and Xcal are the actual and predicted
values.

The final networks were selected on the basis of the lowest
errors (MSE and AARE) and highest R2 value on the training and
test sets of data. The results are presented in Table 2.

According to the obtained results, the final network for
prediction of C2+ selectivity consists of four neuron input layers,
six neurons in the hidden layer and one neuron in the output
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Figure 2: Architecture of the neural network model used in this study for
prediction of SC2+%.

Figure 3: Architecture of the neural network model used in this study for
prediction of XCH4%.

layer, as shown in Figure 2. The activation function between the
input and the hidden layer was ‘logsig’, as given by:

f (x) =
1

1 + e−x
. (10)

And the one between the hidden layer and the output layer was
‘pureline’, given by:

f (x) = x. (11)

The final network for prediction of CH4 conversion consists of
one input layer with four neurons, two hidden layers with six
and two neurons, respectively, and one output layer with one
node, as shown in Figure 3. The activation function used for the
hidden layers is ‘tansig’, given by:

f (x) =
1 − e−x

1 + e−x
, (12)

and ‘pureline’ for the output layer.
The inputs of the selected neural networks were feed

methane to oxygen molar ratio, feed GHSV, feed diluents
amounts and reaction temperature, and output of the devel-
oped networks were C2+ selectivity and CH4 conversion, re-
spectively.

The weight and bias values of each layer for final models are
shown in Tables 3 and 4.

6.2. Predictive modeling with RSM

MATLAB software version 7.6.0324 was used for regression
analysis of the experimental data to calculate the model
coefficients and also for evaluation of the statistical significance
of themodels. TheRSMmodelswere trained and testedwith the
same data used for development of the neural network models.
However, here, no normalization was done.
Table 3: Bias and weights of the methane conversion network.

Table 4: Bias and weights of the C2+ selectivity network.

The final models are as follows:

XCH4% = −1844.57 + 4.72X1 + 0.05X2 − 73.28X3 − 6.75X4

− 3.69 × 10−5X1X2 + 0.08X1X3 + 0.01X1X4

+ 7.17 × 10−5X2X3 + 1.13 × 10−4X2X4 − 0.07X3X4

− 3.16 × 10−3X1
2
− 7.54 × 10−7X2

2

+ 0.59X3
2
− 0.04X4

2, (13)
SC2+% = −1273.78 + 3.16X1 + 0.04X2 − 47.99X3 − 5.88X4

− 4.18 × 10−5X1X2 + 0.09X1X3 + 4.06 × 10−3X1X4

+ 1.53 × 10−4X2X3 + 1.66 × 10−4X2X4 + 0.24X3X4

− 2.202 × 10−3X1
2
− 3.63 × 10−7X2

2

− 1.65X3
2
− 0.01X4

2, (14)

where X1, X2, X3 and X4 are the reaction temperature (°C),
feed GHSV(h−1), feed methane to oxygen molar ratio and feed
diluents (N2) amounts (mole%), respectively.
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Table 5: Analysis of variance results for RSMmodel of methane conversion.

Source Degree of
Freedom

(DF)

Sum of
Square
(SS)

Mean
Square
(MS)

F-
value

p-value

Regression 14 2826.29 201.88 9.52 <0.0001
Residual 37 766.05 20.7
Total 51 3592.34
R2

= 0.79

Table 6: Analysis of variance results for RSM model of hydrocarbons
selectivity.

Source Degree of
Freedom

(DF)

Sum of
Square
(SS)

Mean
Square
(MS)

F-
value

p-value

Regression 14 2144.59 153.19 8.07 <0.0001
Residual 37 702.53 18.99
Total 51 2847.12
R2

= 0.75

The significance of each model was assessed from determi-
nation coefficient (R2), which was found to be 0.79 and 0.75 for
XCH4% and SC2+% models, respectively. These values imply that
79% and 75% of the total variation in methane conversion and
C2+ selectivity can be explained by the developed models. In
addition, the correlation coefficient (R), 0.89 and 0.87, for the
models (XCH4% and SC2+%), signifies an acceptable correlation be-
tween the experimental and predicted values.

The ANOVA technique is used to check the adequacy of
the developed models. First, the F-ratio of the model is cal-
culated as a ratio of mean square regression error and mean
square residual error. Then, the calculated F-ratio of the model
is compared with the corresponding tabulated value (F-table)
for a specified level of confidence. If the calculated value of the
F-ratio is greater than the F-table (i.e.: f (P −1,N −P, α)), then,
a statistically significant regression model is obtained. In the
F-table, P − 1 and N − P are degrees of freedom for regres-
sion and residual, respectively, and α is specified level of sig-
nificance. Also, P is the number of regressionmodel parameters
andN is the number of experimental data used for development
of the model.

Results obtained by the ANOVA technique are shown in
Tables 5 and 6. As can be seen, the computed F-ratios are
9.52 (XCH4%) and 8.07 (SC2+%) and both of these values exceed
the F-table (f (14, 37, 0.95) =1.97) based on 95% confidence
level. Also, the calculated probability values (p-value) from the
analysis of two models are <0.0001. Therefore, regarding the
F-ratios and p-values of the developed models, it can be
concluded that the developed models give almost good
prediction, and were significant at a high confidence level.

In the multiple regression analysis, the p-value and t-value
are used to check the significance of each parameter of the
model. The smaller the p-value, or the greater the magnitude
of t-value, indicates that the model terms are significant. If the
p-value of a parameter is larger than 0.05, the confidence level
of this parameter is below 95%, and if the p-value is equal to
1, the parameters do not affect the response variable. In usual
cases, the termwith a p-value>0.05 can be eliminated from the
model. However, in this study, the insignificant terms are still
maintained to support the hierarchical nature of the developed
models.

From the above discussion, the results in Table 7 can be
considered the examination basis of the effect of the operating
parameters on the OCM reaction performance at 0.4 MPa.
Table 7: t-value and p-value of each variable in the developed RSMmodels.

RSM model for prediction
of XCH4%

RSMmodel for
prediction of of SC2+%

Model term t-value p-value t-value p-
value

Constant −3.16 0.003 −2.28 0.029
X1 3.10 0.004 2.17 0.037
X2 2.06 0.046 1.80 0.080
X3 −3.29 0.002 −2.25 0.031
X4 −2.78 0.008 −2.53 0.016
X1X2 −2.28 0.028 2.70 0.010
X1X3 3.47 0.001 3.79 0.001
X1X4 2.78 0.009 1.44 0.158
X2X3 0.13 0.898 0.29 0.776
X2X4 1.52 0.138 2.31 0.026
X3X4 −0.30 0.764 1.00 0.322

X2
1 −2.94 0.006 −1.96 0.057

X2
2 −1.07 0.293 0.54 0.595

X2
3 0.51 0.612 −1.50 0.142

X2
4 −2.09 0.043 −0.50 0.617

From Table 7, the linear term of feed methane to oxygen
molar ratio (X3) and its interaction with reaction temperature
(X1X3) have the largest effect onmethane conversion, at 99.95%
confidence level of significance, as indicated by the lowest
p-value (<0.005) and the highest absolute t-value (3.29 and
3.47). Next, the linear and quadratic terms of the reaction
temperature (X1 and X2

1 ) show a substantial significant effect
at 99% confidence level (p-value < 0.01). The linear term of
feed GHSV (X2) and its interaction term of reaction temperature
with feed GHSV (X1X2), the quadratic and linear terms of
feed diluents amounts (X2

4 and X4) and its interaction term
with reaction temperature (X1X4) are at 95% confidence level
(p-value< 0.05). Next, in order of significance, is the interaction
term of feed GHSV with feed diluents amounts (X2X4), which is
statistically significant at 80% confidence level.

As illustrated, interaction terms of the reaction temperature
with feed methane to oxygen molar ratio (X1X3) has the
largest effect on C2+ selectivity, because it has the lowest
p-value (0.001) and the highest t-value (3.79). Also, in this case,
X2, X1X4, X2X3, X3X4, X2

1 , X2
2 , X2

3 andX2
4 could be considered less

significant in affecting C2+ selectivity, as their p-values are
greater than 0.05.

7. Comparison of regression analysis and ANNmodels

The developed ANN and regression models were compared
for all experimental data sets. The R2, R2

adj, MSE, AARE% and
variance for the developed models were calculated and listed
in Table 8. As shown in Table 8, the developed ANN models
have the lowest errors (MSE, AARE% and variance) and highest
determination coefficients (R2 and R2

adj), with respect to the
developed RSMmodels. Figure 4 shows the predictive values by
ANN and RSMmodels versus the experimental values (test data
set) for methane conversion and C2+ selectivity, respectively.
As can be seen, the predicted values by ANNmodels were close
to the experimental values. Thus, the comparison between the
developed models shows that ANN models have a much better
prediction than the regression models. This higher predictive
accuracy of ANN models can be attributed to their universal
ability to capture the non-linearity of the system, whereas the
developed RSM models non-linearity is limited to its quadratic
terms.
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Table 8: Comparison of predictive ability of RSM and ANN.

Parameters Train data Test data
ANN RSM ANN RSM

XCH4 SC2+ XCH4 SC2+ XCH4 SC2+ XCH4 SC2+

R2 1.00 0.99 0.79 0.75 1.00 0.98 0.73 0.62
R2
adj 1.00 0.98 0.71 0.66 1.00 1.03 0.10 −0.27

MSE 0.01 0.27 14.73 13.51 0.21 0.86 24.11 13.34
AARE% 0.24 0.61 18.61 4.31 1.48 1.05 19.67 4.53
Variance 0.06 0.94 20.70 18.99 −0.17 −1.13 84.39 46.69
Table 9: Pareto optimal solutions.

Operating conditions Performance

XN2 (mole%) CH4/O2 GHSV(h−1) T (°K) XCH4% SC2+% YC2+%

20.00 3.52 15790.00 989.00 34.54 69.22 23.91
20.00 3.15 15790.00 948.00 35.75 65.52 23.42
20.00 3.33 15790.00 982.40 35.20 67.51 23.76
20.00 3.38 15790.00 986.79 35.06 67.99 23.84
20.00 3.27 15790.00 949.36 35.45 66.59 23.60
20.00 3.45 15790.00 988.63 34.85 68.55 23.89
20.00 3.49 15790.00 987.53 34.70 68.90 23.90
20.00 3.24 15790.00 986.70 34.43 66.78 23.66
20.00 3.16 15790.00 987.05 35.58 66.09 23.52
20.00 3.31 15790.00 985.15 35.27 67.35 23.75
20.00 3.50 15790.00 986.78 34.64 69.02 23.91
20.00 3.47 15790.00 987.63 34.78 68.72 23.90
20.00 3.35 15790.00 983.03 35.14 67.73 23.80
20.00 3.42 15790.00 988.86 34.94 68.33 23.87
20.00 3.27 15790.00 988.07 35.37 67.00 23.70
20.00 3.20 15790.00 948.00 35.66 65.88 23.49
20.00 3.18 15790.00 948.00 35.69 65.76 23.47
20.00 3.25 15790.00 948.34 35.54 66.29 23.56
20.00 3.40 15790.00 988.43 35.00 68.16 23.86
20.00 3.52 15790.00 989.06 34.54 69.22 23.91
8. Optimization

In this work, ANN models with a hybrid genetic algorithm
were used to obtain the Pareto optimal set for simultaneous
maximization of CH4 conversion and C2+ selectivity of the
OCM process. The optimal operating set derived using the
developed ANN models is presented in Table 9. Table 9 shows
the optimal results for simultaneous maximization of CH4
conversion and C2+ selectivity when the C2+ yield is greater
than 23%. It shows that optimal results can be achieved by
changing the operating parameters of feed methane to oxygen
molar ratio and reaction temperature from 3.15 and 948 K to
3.52 and 989 K, respectively, while the feed N2 mole% and
feed GHSV have constant values (20 mole% and 15790 h−1).
Enhancement of C2+ yield is necessary for the OCM process
to be commercialized. Table 9 shows that the maximum C2+
yield of 23.91% was estimated at the feed diluents amounts of
20 mole%, the methane to oxygen molar ratio of 3.5, GHSV of
15 790 h−1, and reaction temperature of 987 K. Therefore, an
additional experiment was carried out in order to validate the
optimum yield result.

A comparison of maximum predicted C2+ yield with the
developed ANN models and relevant experimental result is
given in Table 10. The comparison shows that the predicted
and experimental C2+ yields for the developed ANN models
were 23.9% and 22.8%, respectively, and the predicted error
in optimum yield by ANN models was 4.8%. The low errors
between the predicted and observed values confirm that
the ANN modeling, combined with hybrid genetic algorithm
optimization, is a useful tool for optimization of the OCM
process at elevated pressures.
Table 10: Comparison of optimized values and experimental results.

Estimated
resultsa(%)

Experimental
resultsa(%)

Relative error (%)

XCH4 SC2+ YC2+ XCH4 SC2+ YC2+ XCH4 SC2+ YC2+

34.6 69.0 23.9 34.0 67.1 22.8 1.9 2.8 4.8
a Operating conditions: N2 = 20 mole%, CH4/O2 = 3.5, GHSV =

15790.0 h−1 and T = 987 K.

9. Conclusions

This study reveals that the oxidative coupling of methane
(OCM) operated at 0.4 MPa has a commercial potential.
Therefore, optimal operating conditions under this pressure
must be determined for industrial purposes. However, it is
difficult to establish a mathematical model based on the
fundamental laws of chemical kinetics due to the complexity
of its homogeneous–heterogeneous kinetics. In this work, the
experimental data for OCM reactions over the Na–W–Mn/SiO2
catalyst was obtained at 0.4Mpa and used to develop predictive
models based on RSM and ANN techniques.

These study results show that the mean square error
and average absolute relative error for the developed neural
network models for predicting methane conversion and C2+
selectivity were much smaller than those for the developed
RSM models. This indicated that the ANN models have a
much higher modeling ability than the RSM based models.
A combination of developed ANN models with the hybrid
genetic algorithm has been used to obtain the optimal values
of operating conditions for simultaneous maximization of CH4
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Figure 4: Comparison of RSM and ANN model for prediction of test data set
(a) CH4 conversion, (b) C2+ selectivity.

conversion and C2+ selectivity of the OCM process at 0.4
MPa. The predicted operating conditions were experimentally
tested to get actual CH4 conversion and C2+ selectivity. The
good agreement between the predicted and observed values,
demonstrates the power and reliability of the ANN models
and hybrid genetic algorithm for optimization of OCM reaction
conditions. It was found that the C2+ yield of 22.8% can be
obtained at 0.4MPa, which is the highest reported performance
for anOCMcatalyst at highpressures. This resultmay encourage
other research and development groups to intensify their
efforts toward commercialization of OCM based processes.
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