Uniform approximation by some Hermite interpolating splines

ABSTRACT

E. Neuman (*)

In this paper some upper bound for the error |l s-fll, is given, where fe Cl(a, b}, butsis a so-
called Hermite spline interpolant (HSI) of degree 2q -1 such that f(x;) = s (x;), £"(x;) = s"(x),

s(J)(xi) =0 (i=0,1,...,m j= 2,3,...,q-1; n> 0, q¢> 0) and the knots x; are such that

a=x9<x7<...<x,= b. Necessary and sufficient conditions for the existence of convex HSI

are given and upper error bound for approximation of the function f e clia, b by convex HSI

is also given.

1. INTRODUCTION AND NOTATION

For a given interval [a, b] (-« < a < b < =) and given
natural number n > 0 let A denote a fixed partition
of the interval [a, b] such that

pra=xg<xy<..<x, ;<x =b

By H(q)(A) (q - integer, g > 0) we denote the so-called

Hermite space of all real-valued functions s(x) (x¢€[a, b}])

such that :

(i) in each subinterval (x;, x;,¢) (i=0,1,...,n-1)
s(x) is an algebraic polynomial of degree at most
2q-1,

(@) s(x)eCcda, b].

Each function s(x) € H(q) (a) is called Hermite spline.

Let us consider the following interpolating problem :
for a given real-valued function f e C 1 [a, b] find the
function s (x) € gld) (a) {q > 1) such that :

() i =sx) £lxg=sa, s 0x)=0

1
(i=0,1,.cc,m; j=2,3,..0,q~1).

It is obvious that the problem (H) possesses exactly
one solution for any arbitrary function fe C 1[a, b}
This solution s(x) is called Hermite spline interpolant.

In the section 2 of this note some fundamental func-
tions used later are constructed. Section 3 contains
some upper bound for the error | s-fll _ (where func-
tion s is solution of (H)).This bound is given in terms
of the modulus of continuity w(f, h) of the functions
f (Theorem 3.1), where
w(f,h)= su
Ix-y

Additionaly the upper error bound for approximation
of the function feCl [a, b] by a convex Hermite
spline interpolant (CHSI) is given (Theorem 3.2). This
bound is also given in terms of w(f, h). Necessary and
sufficient conditions for the existence of CHSI are
given in Proposition 3.1. In the section 4 some re-
marks are given.

2. SOME FUNDAMENTAL FUNCTIONS

Now we assume that the integer q > 1. In the con-
struction of the solution s (x) of (H) an important
role play the so-called fundamental functions

%0 (t), ¢l(t), \[Jo(t), 1}/1(t) (t € [0, 1]) such that :
05(0) = 64(1)= 1, ¢0<1)=¢1(0)=¢1“)(0>=¢1”)<1)=0

1=0,1; j=1,2,...,q-1), (2.1)

V50)=w1=(1), v5(1)=¥10=¥ 0 0)=p0)=0
(1=0,1; j=0,2,3,...,q-1). (2.2)

Easy calculation shows that functions ®0 and ¢ are
such

_1f 91 q-1
¢1(t)~—5;f0xq (1-x)37 dx,
oo(t) +6,(t)=1 (te[0,1]), (2.3)

1 g-1 -1
a =f0xq (l—x)q dx.

<L If (x) -£(y)l (x,ye€fab],0<h<b-a). From this also follows that ¢(t) > 0, ¢, (t) > 0 for
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t € [0, 1]. For functions t]/o and l]/l we have explicit
formulas

Vol =t1-B, () ¥q(0=(1-07 (1),

_ 1 f 9-2 q-1
Bq(t) =5 _(f) x (1-x) dx, (2.4)

9

-2
dx (te[o,1]),

Hence also follows that
Yo (>0,

Elementary calculations show that

\Dl(t) < 0 for te]0,1]. (2.5)

(2.6)
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3. MAIN RESULTS

For simplicity of further notations let f; = f(x;),
fi'= f'(xi) (i= 0, 1, ceney n), Ji= (Xi, Xi+1),

hi=xi+1—xi (i= 0, 1, ...,n-—l).

In virtue of (2.1) - (2.2) the function s (x) € H(q) (a)
which is a solution of (H) is given (for x € J;) in the
following way

s(x) = f;00(t) + f; 101 () + hIE V() + £ 1¥4(t)]
X-X;
(t= ).
h; (3.1)

Now we are able to formulate the first of our theorems.

THEOREM 3.1. For a given function f€ Clia, b]let

s(x) € u(@ (8) be a solution of the Hermite interpolat-
ing problem (H). Then we have the following estima-
tion

”S-f"w < w(f,h)+ Fhaq,

where F= max Ifi|, h= max h,and
O<i<n ! O<ig<n-1 !
F (2-q,q;1+q;—;)
a =2921 (3.2)
q 2F1(2—q,q;1+q; 1)

(here ,F (a, b; c; x) denotes an hypergeometric func-
tion with parameters a, b, c).

Proof
Forxe]; (i=0,1,...,n-1)in virtue of (3.1) and

we have s(x) - f(x) = [£-f(x)Joq(t)Hf; 1 -f(x)]4 (1) (2.3)

+ hi[fi'lpo(t) + fi’-l- 1 wl(t)].
From (2.3) and (2.5) we have

Is(x) - f(x)| < w(f,h) + Fh 0 glfi 1[¢0(t) - Yy(t)]

(3.3)
Now let Y(t) = ¥(t) - ¥ (t) (t€[0,1]). Below we
prove that Ogaicldl(t) = \l/(%—) =g where aq is

given by (3.2). From (2.4) and (2.5) follows that

W(0) = Y(1) = 0, P(t) > 0 and ¥ (t) < O for t € [0,1].

Hence there exists exactly one point t, in (0, 1) for

which max ¥(t) = Y(ty). This point is a solution of
O<t<1

the equation

Fxd72(1-x3 2ax=b .
o q

Easy calculation shows that t( = %— Further from

(2.4) we obtain ¥(3-)= _7q(%—). Using the identity [1]

k-1
x
1

e

k
! dx:‘uTzFl(l’k;l"'k; -fu)
(1+Bx)

we obtain t[/(%) = ag- Hence and from (3.3) follows

the thesis of our theorem.
Now necessary and sufficient conditions for the con-
vexity (in each subinterval J;) for the Hermite spline

interpolant s (x) € H q (a) are given.
PROPOSITION 3.1. With the assumptions of Theorem

3.1 the Hermite spline interpolant s (x) (x € J;) is con-
vex if and only if the following inequdlities are satisfied

aff+ @-Df,q _ fia-f @V +afiy,
2q -1 h, 2q-1
(i=0,1,....n-1).

(3.4)

Proof
As it follows from (3.1), (2.3) and (2.4) the inequality
s"(x) > 0 (x€J;) is equivalent to the following one

i b q q
(t €[0,1]). Hence in virtue of (2.6) we obtain (3.4).
Now we can prove the following

THEOREM 3.2. With the assumptions of Theorem 3.1
and with the additional assumption that the Hermite
spline interpolant is convex in each subinterval
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J; (i= 0,1,..., n-1) we have the following estima-
tion
ls-fll , < w(f,h)+ Fh(l+ aq),

where F, h, a_ are the same as in Theorem 3.1.

q9
Proof
Forx€J; (i=0,1,...,n-1) in virtue of (3.1), (2.3)
and (2.5) we have
6,1 -6

2L hoy(0)+ Fh{¥(t)

1

Is(x) - f (x)] < If; - £(x) ] +

-¥1(0]

i +1- &

From (3.4) we have < F. Hence and from

i
the above inequality we obtain the thesis.

4. REMARKS

1. For the Hermite interpolating problem (H) the
estimation of the error [js—f|| _ (where sand f
are the same as in Theorem 3.1) in terms of
w(f’, h) was given in [3].

2. Assuming additionaly that for alli=0,1,...,nis
f; = 0 Passow [2] proved : if f;> f; ; (< £ )

(i=0,1,...,n-1) then the spline function s (x) is
nondecreasing (nonincreasing) in each subinterval
J; (i=0,1,...,1-n).
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