
Uniform approximation by some Hermite interpolating splines 

E. N e u m a n  (*) 

A B S T R A C T  

In this paper  some upper  b o u n d  for the error II s -  f l loo is given, where  f e  C 1 [a, b],  b u t  s is a so- 
called Hermi te  spline in terpolant  (HSI) o f  degree 2 q - 1  such that  f ( x i )  = s (xi),  f ' ( x i )  = s ' ( x i ) ,  

s(J ) (xi) = 0 (i = 0, 1 . . . . .  n; j = 2, 3 , . . . ,  q - l ;  n > 0, q > 0) and the knots  x i are such that  

a = x 0 < x 1 < . . .  < x n = b. Necessary and sufficient  condi t ions  for  the exis tence o f  convex  HSI  

are given and upper  error b o u n d  for  approx imat ion  o f  the funct ion  f e C 1 [a, b] b y  convex  HSI  

is also given. 

1. INTRODUCTION AND NOTATION 

For a given interval [a, b] (- ** < a < b < **) and given 
natural number n > 0 let zx denote a fixed partition 
of the interval [a, b] such that 

: a = x 0 < x 1 < ... < x n_l  < Xn = b. 

By H(q)(a) (q - integer, q > 0) we denote the so-called 
Hermite space of all real-valued functions s(x) (xe[a, b]) 
such that : 

(i) in each subinterval (x i, Xi+l)  (i= 0, 1 ..... n - l )  
s (x) is an algebraic polynomial of degree at most 
2 q - 1 ,  

(ii) s(x) e c q - l [ a ,  b]. 

Each function s (x) e H (q) (zx) is called Hermite spline. 

Let us consider the following interpolating problem : 
for a given real-valued function f e C 1 [a, b] fred the 

function s(x) e H.(q)(a) (q > 1) such that : 

(H) f (x i )=s (x i )  , f ' (x i )=s ' (x i ) ,  s(J)(xi)=0 

(i= 0, 1 . . . . .  n; j = 2, 3 , . . . , q -  1). 

It is obvious that the problem (H) possesses exactly 
one solution for any arbitrary function f e C 1 [a, b]. 
This solution s (x) is called Hermite spline interpolant. 
In the section 2 of this note some fundamental func- 
tions used later are constructed. Section 3 contains 
some upper bound for the error II s-ill** (where func- 
tion s is solution of (H)).This bound is given in terms 
of the modulus of continuity co(f, h) of the functions 
f (Theorem 3.1), where 

~°(f'h)=lx sup<-y[ h If(x)-f(y) l  (x, ye[a,b], 0<h<b-a ) .  

Additionaly the upper error bound for approximation 
of the function feC 1 [a, b] by a convex Hermite 
spline interpolant (CHSI) is given (Theorem 3.2). This 
bound is also given in terms of co (f, h). Necessary and 
sufficient conditions for the existence of CHSI are 
given in Proposition 3.1. In the section 4 some re- 
marks are given. 

2. SOME FUNDAMENTAL FUNCTIONS 

Now we assume that the integer q > 1. In the con- 
struction of the solution s (x) of (H) an important 
role play the so-called fundamental functions 
¢~0 (t), #l( t ) '  @0(t), ~ l ( t )  (t e [0, 1]) such that:  

~0(0) = ~1(1) = 1, ¢0(1) = #1(0)= #I j) (0)= olJ)(1)= 0 

(1 = 0, 1; j = 1, 2 . . . . .  q - l ) ,  (2.1) 

~0( 0)= ~ i  = (1), ~)(1)= ~i(O)= ~l(J)(o)=~l(J)(1) = 0 

(1= 0, 1; j = 0 ,  2 ,3  . . . . .  q - l ) .  (2.2) 

Easy calculation shows that functions ~0 and ~1 are 
such 

! ~ x q - l ( l _ x ) q - l d x ,  
~ l ( t )  = aq 0 

¢0(t) + ¢1(t)= 1 (t e [0, 1]), (2.3) 

aq = f: x q-1  (1 ~ X~ q ~ l d x .  

From this also follows that ¢0(t) ~ 0, e l ( t )  ~ 0 for 
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t e [0, 1]. For functions if0 and ~/1 we have explicit 
formulas 

~ko(t ) = t [1-3q (t)], ~ l ( t )  = (1 - t)  3'q (t), 

1 ~ x q - 2 ( l _ x ) q - l d x ,  
0 

(2.4) 

I ~ x q - l ( l _ x ) q - 2 d x  

=1 q-2  
bq fO x ( 1 - x ) q - l d x .  

Hence also follows that 

(t e [0, 11), 

~0 0 ( t ) ~ 0 ,  ~k l ( t ) ~  0 for t e [0 ,1 ] .  (2.5) 

Elementary calculations show that 

a q _  q-1 (2.6) 
bq 2q-1 

3. MAIN RESULTS 

For simplicity of further notations let fi = f(xi) '  

f f= f ' ( x i )  ( i = 0 , 1 , .  .... n), J i=(xi ,  x i + l  ), 

h i = X i + l - X  i (i= 0, 1 . . . . .  n - l ) .  

In virtue of (2.1) - (2.2) the function s (x) e H (q) (ix) 
which is a solution of (H) is given (for x e Ji) in the 
following way 

s (x) = fi¢0(t) + f i+ l~ l ( t )  + hi[ff@0(t ) + ff+l~bl(t)] 

( t -  x - x  i 

h ~  ) (3.17 

Now we are able to formulate the first of our theorems. 

THEOREM 3.1. For a given function feCl[a,  b ] let 

s (x) e H (q) (ta) be a solution o f  the Hermite interpolat- 
ing problem (H). Then we have the following estima- 
tion 

II s - fll ** < ¢o ( f ,  h )  + F h a q '  

where F= max If il, h= max h i and 
0 < i < n  0 g i < n - 1  

a q = 2 _  q 2F1  ( 2 - q ' q ;  1 + q ; 1 )  
2 F1 (2-q,  q; 1 + q; 17 (3.2) 

(here 2F1 (a, b; c; x) denotes an hypergeometriz func- 
tion with parameters a, b, c). 

p oof 
For x eJi (i = 0, 1 . . . . .  n - 17 in virtue of (3.1) and 

we have six ) - f(x)= [fi-f(x)]~o(t)-~fi+l-f(x)]~l(t) (2.3) 

+ hi[fi'¢0 (t) + fi'+ 1 ~1 (t)]" 
From (2.3) and (2.5) we have 

I s ( x ) - f ( x ) l < c o ( f , h ) +  Fh max l [~0( t ) -~ l ( t ) ]  
0 < t <  

(3.3) 

Now let ~(t) = ~0(t) - ~l(t) (t el0,1]). Below we 

mta~l~ (t) 1 prove that = ~b( ) = aq, where aq is 
0g 

given by (3.2). From (2.4) and (2.5) follows that 

~b(0) = ~b(1) = 0, ~(t) > 0 and ~k"(t) g 0 for t e [0,1]. 

Hence there exists exactly one point t o in (0, 1) for 

which max @(t) = ~(r0). This point is a solution of 
0~ t~ l  

the equation 

~ x q-2 (1 -x)  q - 2 d x  = bq. 
0 

1 Further from Easy calculation shows that t o = -~-. 

(2.4) we obtain ~ ( 1 )  =_~q(1) .  Using the identity [1] 

u k-1 k 
f x dx=  ~ 2Fl(I ,  k; 1 + k; -flu) 
0 (1 +3x) 1 

obtain @(~-)__ = aq. Hence and from (3.3) follows w e  

the thesis of our theorem. 
Now necessary and sufficient conditions for the con- 
vexity (in each subinterval Ji) for the Hermite spline 

interpolant s (x) e H(q)(zx) are given. 

PROPOSITION 3.1. With the assumptions of  Theorem 
3.1 the Hermite spline interpolant s (x) (x e Ji ) is con- 
vex if  and only i f  the following inequalities are saasjqed 

• _ (q- 1) ff  + qfi '+l q f i ' + ( q - 1 ) f i + l <  f i+ l  fi < 
2q -1 h i 2q - 1 

(3.4) 
(i = 0, 1 ..... n- l ) .  

Proof 
As it follows from (3.1), (2.3) and (2.4) the inequality 
s" (x) ~ 0 (xeJi) is equivalent to the following one 

q-1  fi+ 1-  fi (2q-1)t + 
aq - - h i  (1-2 t )+  (2q-1)t-qbq fi" + bq 1-q'fi'+l~0 

(t e [0, 1]). Hence in virtue of (2.6) we obtain (3.4). 
Now we can prove the following 

THEOREM 3.2. With the assumptions of  Theorem 3.1 
and with the additional assumption that the Hermite 
spline interpolant is convex in each subinterval 
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Ji (i = o, 1, . . . ,  n - l )  we have the following estima- 

tion 

I ls-  f l l .  a co(f ,h)  + F h ( 1  + aq), 

where F, h, Ctq are the same as in Theorem 3.1. 

P roof  

For x e J  i ( i = 0 ,  1 . . . . .  n - l )  in virtue of  (3.1), (2.3) 

and (2.5) we have 

i s (x ) -  f (x)] ~ t f i -  f(x) t + t f i+l  -fil h ~  h*l(t) + Fh[~0( t )  

- 01( t ) ] .  
ffi+l- fit 

From (3.4) we have .< F. Hence and from 
h i 

the above inequality we obtain the thesis. 

4. REMARKS 

1. For the Hermite interpolating problem (H) the 
estimation of the error II s - f  IIoo (where s and f 
are the same as in Theorem 3.1) in terms o f  
co ( f ' ,  h) was given in [3]. 

2. Assuming additionaly that for all i = 0, 1 . . . . .  n is 

f i '= 0 Passow [2] proved:  i f f i >  f i + l  (fi < f i + l )  

(i = 0, 1 . . . . .  n - 1 )  then the spline function s (x) is 
nondecreasing (nonincreasing) in each subinterval 
Ji  (i = 0, 1 . . . . .  1 -  n). 
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