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Abstract

We provide an updated scan of the allowed parameter space of the two-loop Zee–Babu model for neutrino 
mass. Taking into account most recent experimental data on μ → eγ as well as the mixing angle θ13 we 
obtain lower bounds on the masses of the singly and doubly charged scalars of between 1 and 2 TeV, with 
some dependence on perturbativity and fine-tuning requirements. This makes the scalars difficult to observe 
at LHC with 14 TeV even with optimistic assumptions on the luminosity, and would require a multi-TeV 
linear collider to see the scalar resonances. We point out, however, that a sub-TeV linear collider in the 
like-sign mode may be able to observe lepton flavor violating processes such as e−e− → μ−μ− due to 
contact interactions induced by the doubly charged scalar with masses up to around 10 TeV. We investigate 
the possibility to distinguish the Zee–Babu model from the Higgs triplet model using such processes.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Non-zero neutrino mass requires an extension of the Standard Model (SM). Among the plen-
itude of possibilities, an attractive way to explain the smallness of neutrino masses is to invoke 
loop processes, see for instance [1–3] for recent discussions. Then the scale of the new physics 
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responsible for generating neutrino mass can be not too far from the TeV range, which makes 
those type of models potentially testable at colliders and/or in experiments searching for charged 
lepton flavor violation (LFV). An economical way of radiative neutrino mass generation is to 
enlarge the scalar sector of the SM [4,5]. In this work we concentrate on a particularly simple 
model of this kind, namely the so-called Zee–Babu model [6–8]. In this model two SU(2)L sin-
glet scalars are introduced, one singly charged and one doubly charged, and neutrino masses 
are generated at two-loop level. Through the exchange of heavy scalars, lepton flavor violating 
processes such as μ → eγ can become observable and the new scalars could be accessible at col-
liders. In particular, the doubly charged scalar may induce very clean like-sign bi-lepton events. 
Possible connections to Dark Matter within this model have been discussed in [9,10]. Vacuum 
stability considerations can be found in [11].

In this paper we provide an update of previous phenomenological studies of the Zee–Babu 
model [12–15], motivated by various new experimental results relevant to this model. First, pre-
cision measurements on reactor neutrinos [16–18] have confirmed that the smallest neutrino mix-
ing angle is non-vanishing and close to the previous upper bound, i.e., sin2 θ13 � 0.023 [19]. Sec-
ond, in 2013 the MEG Collaboration has provided a new upper limit on the LFV process μ → eγ , 
with a branching ratio smaller than 5.7 × 10−13 [20]. We perform a parameter scan of the model 
taking into account up to date constraints on various LFV and other low-energy processes as 
well as neutrino oscillation experiments. As a consequence we find that most likely the charged 
scalars of the Zee–Babu model will be out of reach for the Large Hadron Collider (LHC), includ-
ing the 14 TeV configuration. Below we comment on the possibilities to observe them indirectly 
through LFV processes at the proposed International Linear Collider (ILC) in the like-sign mode.

An alternative way to generate neutrino masses is the so-called Higgs triplet model, where 
an SU(2)L triplet scalar is introduced, which couples to the lepton doublets and gives rise to a 
neutrino mass term from the vacuum expectation value of the neutral component [4,5,21–23]. If 
the triplet mass is in the TeV range the doubly charged component could be produced at colliders 
through the Drell–Yan process, and subsequently decay to lepton pairs, leading to similar sig-
natures as the doubly charged scalar in the Zee–Babu model. If a doubly charged scalar should 
be found at a collider below the lower bounds in the Zee–Babu model discussed below, it may 
point towards the Higgs triplet model. In contrast, if no resonance is found the triplet can lead to 
similar LFV processes at a like-sign electron collider as the Zee–Babu scalar. However, due to 
the different mechanisms to generate neutrino masses, the specific flavor structure of those pro-
cesses are distinctive in the two models. We discuss possibilities to distinguish the two models, 
once such LFV events were observed at a future collider.

The outline of the paper is as follows: In Section 2, we present the framework and characteris-
tic features of the Zee–Babu model. In Section 3, we focus on the low-energy processes mediated 
by the doubly charged scalar and summarize the current constraints on the relevant Yukawa cou-
plings. Numerical analyses on the model parameters are given in Section 4. In particular, we 
illustrate the allowed ranges of the scalar masses. We further discuss in Section 5 signatures of 
the doubly charged scalar at a future linear collider. The discrimination between the Zee–Babu 
model and the triplet model is investigated in Section 6. Finally, in Section 7, we summarize our 
results and conclude.

2. The Zee–Babu model

The particle content of the Zee–Babu model is that of the SM extended with two complex 
SU(2)L singlet scalars, a singly charged scalar h+ and a doubly charged scalar k++, which 



526 D. Schmidt et al. / Nuclear Physics B 885 (2014) 524–541
couple to left-handed lepton doublets L and right-handed lepton singlets e, respectively. The 
contribution to the Lagrangian is

L = fabL
C
Laiσ2LLbh

+ + gabeC
a ebk

++

− μh−h−k++ + h.c. + VH , (1)

where the scalar potential VH contains additional couplings among scalar fields. The presence 
of the tri-linear term μk++h−h− together with the two Yukawa-type terms in the first line of 
Eq. (1) implies that lepton number is violated.1 A Majorana mass term for neutrinos is generated 
via a two-loop diagram, yielding

m
(ν)
ab = 16μfacmcg

∗
cdIcdmdfbd, (2)

where mc are charged lepton masses and Icd is a two-loop integral [25], which approximates to

Icd ≈ I = 1

16π4

1

M2

π2

3
Ĩ

(
m2

k

m2
h

)
. (3)

Here, M = max(mk, mh) and Ĩ (r) is a dimensionless function of order unity, see e.g., [14]. Note 
that the charged scalars couple only to leptons and not at all to hadrons. Therefore, they might 
contribute to for instance the Fermi constant for leptonic processes, and hence lepton–hadron 
universality tests provide constraints on the couplings of the scalars, see Section 3.

Since f is an antisymmetric matrix in flavor space, we have detm(ν) = 0, and hence one 
of the light neutrinos is massless. The neutrino mass eigenvalues m1, m2, m3 are obtained by 
diagonalization of (2) by means of the unitary matrix U :

U = R23PδR13P
−1
δ R12PM, (4)

where Rij correspond to the elementary rotations in the ij = 23, 13, and 12 planes (parametrized 
in what follows by three mixing angles, with cij ≡ cos θij and sij ≡ sin θij ), and Pδ =
diag(1, 1, eiδ) and PM = diag(1, eiσ , 1) contain the Dirac and Majorana CP phases, respectively. 
Here only one Majorana phase σ is involved, since one neutrino is massless. Depending on 
the neutrino mass ordering, either m1 (normal ordering, NO) or m3 (inverted ordering, IO) is 
zero. The non-zero neutrino mass states are then determined by the solar and atmospheric mass-
squared differences �m2

21 and |�m2
31|, where �m2

ij ≡ m2
i − m2

j .
Using the antisymmetricity of fij (the couplings of h+), they can be expressed in terms of the 

neutrino mixing angles [12–14]. In the NO case, we have

feτ

fμτ

= s12c23

c12c13
+ s13s23

c13
e−iδ, (5)

feμ

fμτ

= s12s23

c12c13
− s13c23

c13
e−iδ. (6)

Since s13 is relatively small compared to the other mixing angles, we can neglect the second 
terms in the above expressions, and obtain the approximate relation

1 In the original Zee–Babu model as displayed in Eq. (1), the trilinear term which violates lepton number by two units 
has to be introduced “by hand”. It is possible to have instead a lepton number conserving interaction which generates the 
μ term by spontaneous symmetry breaking, see e.g., [9,24].
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feμ � feτ � fμτ /2 (7)

by assuming s2
12 � 1/3 and s2

23 � 1/2. For the IO case, the two non-trivial equations are

feτ

fμτ

= − s23c13

s13
e−iδ, (8)

feμ

fμτ

= c13c23

s13
e−iδ, (9)

which imply

|feτ |
|feμ| = tan θ23 � 1 and |fμτ | � |feτ | s13

s23
. (10)

Using Eq. (2), the Yukawa couplings gab of the doubly charged scalar are related to the neu-
trino mass matrix elements as

m
(ν)
22 = ζ

(
f 2

μτωττ − 2feμfμτωeτ + f 2
eμωee

)
m

(ν)
23 = ζ

(
fμτfeμωeμ + feτ feμωee − f 2

μτωμτ − fμτfeτωeτ

)
m

(ν)
33 = ζ

(
f 2

μτωμμ + 2feτ fμτωeμ + f 2
eτωee

)
(11)

where ωab = mag
∗
abmb (no sum) with ma being the charged lepton masses and ζ ∝ μ is a nu-

merical factor stemming from the loop function.

3. Experimental constraints

The experimental bounds on the Zee–Babu model mainly come from lepton flavor violating 
processes at low-energy scales mediated by the heavy scalars, and the universality of weak inter-
actions. In this section, we summarize the relevant low-energy scale experimental limits on the 
Zee–Babu model.

• Lepton flavor violating decays �−
a → �+

b �−
c �−

d , which are mediated by the doubly charged 
scalar k++ at tree level. The branching ratio is given by BR(�−

a → �+
b �−

c �−
d ) = Rbcd

a ×
BR(�−

a → �−
b νν̄) with

Rbcd
a = 1

2(1 + δcd)

∣∣∣∣gabg
∗
cd

GF m2
k

∣∣∣∣
2

. (12)

• Universality in �−
a → �−

b νν̄ decays: The Fermi coupling constant measured in muon and tau 
decays obtains corrections from the exchange of h+, i.e.,

[
Gτ→μ

Gτ→e

]2

� 1 +
√

2

GF m2
h

(|fμτ |2 − |feτ |2
)
. (13)

Furthermore, by assuming the unitarity of the CKM matrix, one can test the universality of 
the couplings in hadronic and leptonic decays, which gives

|Vud |2 + |Vus |2 + |Vub|2 � 1 −
√

2

G m2
|feμ|2. (14)
F h
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In Eqs. (13) and (14) GF is the Fermi coupling constant as given by the SM contribution. 
We show only the leading terms in the couplings fab, which emerge from the interference of 
the SM diagram with the ones mediated by the Zee–Babu scalars.

• Rare lepton decays: �−
a → �−

b γ (for a 	= b) can be mediated at one-loop level by both k++

and h+, and the branching ratios read BR(�−
a → �+

b γ ) = R
bγ
a × BR(�−

a → �−
b νν̄), where

R
bγ
a = α

48π

(∣∣∣∣ (f
†f )ab

GF m2
h

∣∣∣∣
2

+ 16

∣∣∣∣ (g
†g)ab

GF m2
k

∣∣∣∣
2)

. (15)

• Muonium to antimuonium conversion through the exchange of k++: The process μ+e− →
μ−e+ is well bounded experimentally, leading to constraints on the effective coupling related 
to the following four-fermion operator

GMM̄ = −
√

2

8

geeg
∗
μμ

m2
k

. (16)

• Muon and electron anomalous magnetic moments: a = (g − 2)/2 obtains addition contribu-
tions δa from both h+ and k++, with

δaa = − m2
a

24π2

(
(f †f )aa

m2
h

+ 4
(g†g)aa

m2
k

)
, (17)

where a = e, μ. The bound from δae is very weak (only relevant for scalar masses above 
103 TeV) and therefore we include only the constraint from δaμ.

• μ–e conversion in nuclei: The loops which mediate the decays μ− → e−γ generate an 
effective μeγ vertex which induces μ–e conversion in nuclei. Using the result from [26] we 
obtain

CR(μN → eN) � 2e2G2
F

Γcapt
× (∣∣Ah

RD + eAh
LV (p)

∣∣2 + ∣∣Ak
RD + eAk

LV (p)
∣∣2)

, (18)

where D and V (p) represent overlap integrals of the muon and electron wave functions. The 
form factors are given by the same expressions as in the case of the Higgs triplet model [27]

Ah
R = − (f †f )eμ

768
√

2π2GF m2
h

,

Ak
R = − (g†g)eμ

48
√

2π2GF m2
k

,

Ah
L = − (f †f )eμ

144
√

2π2GF m2
h

,

Ak
L = −

∑
a=e,μ,τ

g∗
aegaμ

6
√

2π2GF m2
k

F

(−q2

m2
k

,
m2

a

m2
k

)
, (19)

where the loop function is [28]

F(x, y) = 4y

x
+ log(y) +

(
1 − 2y

x

)√
1 + 4y

x
log

√
x + 4y + √

x√
x + 4y − √

x
. (20)

Note that in the Higgs triplet model both the singly and doubly charged scalars couple to 
left-handed leptons (since both are components of the same SU(2) triplet field), whereas in 
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Table 1
Summary of experimental constraints and the corresponding bounds on the Yukawa couplings. Here r = m2

k
/m2

h
, and 

g∗
eαgαμ = g∗

eegeμ + g∗
eμgμμ + g∗

eτ gτμ and so on.

Constraint Ref. Bound (90% C.L.)

∑
q=d,s,b |Vuq |2 0.99990 ± 0.0006 [29] |feμ|2 < 0.014 (

mh
TeV )2

μ–e universality
Gτ→μ

Gτ→e
= 1.0001 ± 0.0020 [29] ||fμτ |2 − |feτ |2| < 0.05 (

mh
TeV )2

μ–τ universality Gτ→e
Gμ→e

= 1.0004 ± 0.0022 [29] ||feτ |2 − |feμ|2| < 0.06 (
mh
TeV )2

e–τ universality
Gτ→μ

Gμ→e
= 1.0004 ± 0.0023 [29] ||fμτ |2 − |feμ|2| < 0.06 (

mh
TeV )2

δaμ (28.7 ± 80) × 10−10 [29,30] r(|feμ|2 + |fμτ |2) + 4(|geμ|2 + |gμμ|2 + |gμτ |2)

< 3.4 ( mk
TeV )2

μ− → e+e−e− BR < 1.0 × 10−12 [31] |geμg∗
ee| < 2.3 × 10−5 (

mk
TeV )2

τ− → e+e−e− BR < 2.7 × 10−8 [32] |geτ g∗
ee| < 0.009 (

mk
TeV )2

τ− → e+e−μ− BR < 1.8 × 10−8 [32] |geτ g∗
eμ| < 0.005 (

mk
TeV )2

τ− → e+μ−μ− BR < 1.7 × 10−8 [32] |geτ g∗
μμ| < 0.007 (

mk
TeV )2

τ− → μ+e−e− BR < 1.5 × 10−8 [32] |gμτ g∗
ee| < 0.007 (

mk
TeV )2

τ− → μ+e−μ− BR < 2.7 × 10−8 [32] |gμτ g∗
eμ| < 0.006 (

mk
TeV )2

τ− → μ+μ−μ− BR < 2.1 × 10−8 [32] |gμτ g∗
μμ| < 0.008 (

mk
TeV )2

μ → eγ BR < 5.7 × 10−13 [20] r2|f ∗
eτ fμτ |2 + 16|g∗

eαgαμ|2 < 1.6 × 10−6 (
mk
TeV )4

τ → eγ BR < 3.3 × 10−8 [33] r2|f ∗
eμfμτ |2 + 16|g∗

eαgατ |2 < 0.52 (
mk
TeV )4

τ → μγ BR < 4.5 × 10−8 [33] r2|f ∗
eμfeτ |2 + 16|g∗

μαgατ |2 < 0.71 (
mk
TeV )4

μ ↔ e conversion CR < 7.0 × 10−13 [34] See Eq. (19)

μ+e− → μ−e+ GMM̄ < 3 × 10−3GF [29] |geeg
∗
μμ| < 0.2 (

mk
TeV )2

the Zee–Babu model h couples to left-handed and k++ couples to right-handed leptons, see 
Eq. (1). Therefore, the amplitudes for singly and doubly charged scalar mediated processes 
do not interfere in the case of the Zee–Babu model, whereas they do in the case of the Higgs 
triplet model [26].

We summarize in Table 1 the low-energy experimental constraints used in our analysis. One 
can observe that lepton flavor violating processes set more stringent bounds on the Yukawa 
couplings, in particular the μ → eγ and μ → 3e decays. The later process could however be 
suppressed in the Zee–Babu model if gee or geμ is vanishing, which is possible while still ob-
taining a valid neutrino mass matrix. The μ → eγ decay is mediated by both singly and doubly 
charged scalars, and is proportional to both Yukawa couplings f and g, which cannot vanish 
simultaneously. Therefore, the most stringent constraint on the Zee–Babu model stems from the 
μ → eγ decay.

4. Numerical analysis

We perform a scan of the Zee–Babu model parameters confronting the experimental data 
in order to obtain constraints on the scalar masses. The independent parameters can be chosen 
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as: three leptonic mixing angles; Dirac and Majorana phases δ, σ ; the Yukawa couplings gee, 
geμ, geτ , fμτ ; scalar masses mk , mh; and the μ parameter in the scalar potential. We fix the 
lepton mixing angles and neutrino mass-squared differences to the values [19] sin2 θ12 = 0.306, 
sin2 θ23 = 0.446, sin2 θ13 = 0.023, �m2

21 = 7.45 × 10−5 eV2 and |�m2
31| = 2.42 × 10−3 eV2. 

Then the remaining Yukawa couplings gab and fab are determined by Eqs. (5), (6), (8), (9), (11). 
We have checked in our numerical analysis that the uncertainties of neutrino parameters do not 
result in affect our results significantly. The remaining parameters are scanned in the following 
ranges:

δ = [0,2π)

σ = [0,π)

|gee|, |geμ|, |geτ |, fμτ = [0, κ)

μ = [
0, λ × min(mk,mh)

)
(21)

where κ parametrizes the requirement of perturbativity of Yukawa couplings. If not stated other-
wise we take κ = 1. For the tri-linear term, the μ parameter induces loop corrections to the scalar 
masses as δm2

k,h ∼ μ2/(4π)2. In the absence of fine-tuning the correction should be smaller than 
the tree-level masses, which leads to the constraint μ � 4πmk,h. Henceforth, we parameterize 
this requirement by a parameter λ, see Eq. (21). The phases of gee, geμ, geτ are chosen randomly, 
whereas fμτ can be taken real without loss of generality. For a given set of the parameters in 
Eq. (21) we check if all other values for gab and fab are less than κ ; if not then the point is 
discarded. If the perturbativity constraint is fulfilled we compare the model predictions to the 
experimental data with a χ2 function

χ2
i = (ρi − ρ0

i )2

σ 2
i

, (22)

where ρ0
i represents the data of the ith experimental observable, σi the corresponding 1σ ab-

solute error, and ρi the prediction of the model. The index i = 1, . . . , 17 runs over the 17 
experimental observables given in Table 1. In case of upper bounds we set ρ0

i = 0 and use the 
1σ upper bound for σi . In order to identify the allowed regions in parameter space we proceed 
as follows. For a given point in parameter space we consider the maximum χ2

i of all data points:

χ2
max = max

i
χ2

i . (23)

If χ2
max ≤ 4 is fulfilled we keep the point, otherwise it is discarded. In that way we make sure 

that all data points are fitted within 2 standard deviations. Let us stress that we do not adopt 
any particular statistical interpretation of the resulting regions in parameter space in terms of 
confidence regions, apart from the above statement that all constraints are satisfied within 2σ .

From Eqs. (11) one can see that the contribution of the couplings gee (geμ, geτ ) is suppressed 
by two powers (one power) of the electron mass. Indeed, we find always viable solutions for 
gee = geμ = geτ = 0. However, we do take into account finite values in our scan in order to allow 
for sub-leading effects induced by those couplings.

The allowed ranges of scalars masses are illustrated in Fig. 1 for both normal and inverted 
mass orderings. For scalar masses within the shadowed regions all the constraints are satisfied in 
the sense of χ2

max < 4 and λ = κ = 1 as explained above. We observe that the parameter space 
of the model is closed, however, allowing for λ ∼ κ ∼ 1 scalar masses up to O(100 TeV) are 
possible. If we allow for some fine-tuning in the scalar potential by setting the parameter λ to 
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Fig. 1. The shadowed regions correspond to allowed ranges of the scalar masses for the normal mass ordering (left panel) 
and the inverted mass ordering (right panel) by requiring χ2

max < 4 and imposing the perturbativity criterion λ = κ = 1. 
The black, blue, and red curves correspond to lower limits on the scalar masses obtained from the experimental data by 
requiring χ2

max < 4 but without the κ constraint. The black curve corresponds to the current experimental bounds. The 
blue solid and blue dashed curves show the exclusion regions from the expected μ–e conversion constraint CR(μAl →
eAl) < 6 ×10−17 and CR(μAl → eAl) < 10−18, respectively. The red line is given by assuming BR(μ → eγ ) < 10−14. 
Furthermore, gray curves delimit the region allowed by perturbativity without requiring that the experimental constraints 
are respected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 2. The same as Fig. 1 with λ = 5, i.e., allowing for a tri-linear coupling μ larger than the scalar masses, see Eq. (21).

4π , the upper bound on the scalar masses will be larger than 103 TeV (see Fig. 2). Note however, 
that large scalar masses require Yukawa couplings close to the perturbativity limit. If Yukawa 
couplings assume values gαβ, fαβ � 1 the scalar masses get pushed towards lower values. The 
lower bound on the scalar masses (black curve) is dominated by the observables from Table 1, 
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most importantly from the MEG bound on μ → eγ . We obtain the following lower bounds by 
requiring that all constraints are satisfied at 2σ :

mk > 1.0 TeV, mh > 1.3 TeV (NO)
mk > 1.4 TeV, mh > 2.0 TeV (IO)

(λ = 1). (24)

Note that the lowest possible value for the doubly charged scalar k occurs for relatively large val-
ues of singly charged scalar mass and depends also on the perturbativity/fine-tuning conditions. 
In deriving the bounds we have assumed λ = 1. If we allow values for the tri-linear coupling μ
larger than the scalar masses (amounting to some fine-tuning in the scalar potential) the lower 
bounds on the Zee–Babu scalars can be relaxed. For example, we show the mass ranges in Fig. 2
by taking a relatively large constraint λ = 5. One can see that the lower bounds on the scalar 
masses reduce to

mk > 0.5 TeV, mh > 0.6 TeV (NO)
mk > 0.7 TeV, mh > 1.0 TeV (IO)

(λ = 5). (25)

The bounds for IO can be further weakened by fine tuning of the complex phases δ ≈ π and 
σ ≈ π/2, leading to a cancellation between different terms in Eq. (11). By performing a dedicated 
search with phases constrained to be very close to those special values we find that the IO bounds 
for mk and mh in Eq. (24) reduce to around 1.0 and 1.1 TeV, respectively. Let us also stress that 
our bounds are obtained by a random parameter scan, throwing 105 points for a given choice 
of mk and mh, out of which only a fraction passes our perturbativity requirement. With such 
a method fine tuned solutions as the one mentioned above might be missed. In this sense our 
bounds for the scalar masses hold for “generic” values of the parameters.

There are several future projects aiming for improving significantly the bound on μ–e con-
version by about 4 to 5 orders of magnitude compared to the current limit [34], for instance the 
Mu2e [35,36] and COMET [37] experiments aim at sensitivities of order 10−16, whereas the 
target sensitivity of the PRISM project [38] is even of order 10−18. Furthermore, an upgrade 
program is underway for the MEG experiment aiming at a sensitivity improvement of a further 
order of magnitude [20]. We thus also show in Figs. 1 and 2 with colored contours the future ex-
perimental constraints on the charged scalars. Those improved constraints on LFV (if no positive 
signal is found) will further push up the lower bounds on the scalar masses of about 1 order of 
magnitude. However, it is still difficult to entirely rule out the Zee–Babu model, no matter for the 
normal or inverted mass ordering (depending on the perturbativity requirements).

It should be noticed that our analysis is based on the latest measurement on the smallest 
mixing angle θ13, which is indeed very crucial for the IO case. For illustration purposes, we 
show in Fig. 3 also a similar numerical analysis but using s2

13 = 0.001 (which is by now excluded 
by oscillation data). In this case, there is no overlap between the perturbativity contours and the 
experimental contours, indicating that the Zee–Babu model is incompatible with the inverted 
mass ordering if θ13 is very small. In other words, if the neutrino mass ordering is inverted, 
the Zee–Babu model can then be viewed as a natural candidate for predicting sizeable θ13, see 
e.g., [14]. Such a feature is also manifest in Eqs. (8) and (9), showing that both, feμ and feτ

are inversely proportional to s13, and therefore a too small s13 may blow up Yukawa couplings 
resulting in a conflict with lepton flavor violation constraints. Conversely, there is no inverse 
dependence on θ13 in the case of normal mass ordering, cf. Eqs. (5) and (6), and thus the choice 
of θ13 has no important impact on the Zee–Babu model parameters. We have checked this point 
numerically by choosing different values for θ13, and they all give almost the same scalar mass 
ranges for normal ordering.
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Fig. 3. Allowed ranges of the scalar masses for the inverted mass ordering for s13 = 0.001 by requiring χ2
max < 4. The 

black curve corresponds to the current experimental bounds. The shadowed area contour is allowed by the perturbativity 
criterion λ = κ = 1 (without imposing the constraints from Table 1).

As discussed above, present data pushes the masses of the singly and doubly charged scalars 
of the Zee–Babu model above the TeV, see Eq. (24). This makes the direct production at col-
liders difficult. The production cross sections of the Zee–Babu scalars have been calculated 
in [12–14], for recent work on di-leptons in general see e.g., [39,40]. ATLAS [41] and CMS [42]
have searched for doubly charged scalars decaying predominantly into muons and/or electrons 
based on approximately 5 fb−1 at 

√
s = 7 TeV, obtaining lower bounds on their mass of 

around 400 GeV. The results of [14] show that for the Zee–Babu doubly charged scalar with 
masses mk = 0.5, 1, 1.5 TeV of order 300, 10, 1 events are expected at LHC for 300 fb−1 at √

s = 14 TeV, respectively, assuming 100% branching fraction of k++ into leptons. Given the 
constraints on the masses derived above this implies that most likely the Zee–Babu scalars will 
not be observable at LHC, unless some degree of fine-tuning is accepted and the relaxed bounds 
of Eq. (25) apply. In that case, future experiments for LFV would also observe a positive signal, 
see Fig. 2.

5. Tests at an e−e− collider

At a possible future e+e− linear collider the scalars can be pair-produced by photon and Z
exchange: e+e− → k++k−−. Obviously this requires center of mass energies of 

√
s > 2mk,h, 

which in view of the bounds in Eq. (24) seems not realistic in the foreseeable future. However, 
a linear collider may also be operated in the like-sign mode. This offers a new window to search 
for LFV processes within the context of the Zee–Babu model for scalar masses up to ∼10 TeV.

The possibility to test bi-leptons at a like-sign electron collider has been considered since long 
time, see Refs. [43–50] for an incomplete list of references. Lots of work has been devoted to 
the search for lepton number violating reactions e−e− → W−W− in the context of Higgs triplet 
models. In the Zee–Babu model this process is not allowed at tree level. However, lepton flavor
violating (but lepton number conserving) reactions such as e−e− → �−

α �−
β mediated by k−− at 

tree level may be observable.
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Fig. 4. Upper limit on the cross section σ(e−e− → μ−μ−) as a function of the center of mass energy 
√

s for normal 
neutrino mass ordering for doubly charged scalar masses of 2, 2.5, and 3 TeV.

The cross section for the process e−e− → �−
α �−

β for (αβ) 	= (ee) is given by

σ(ee → αβ) = S|geegαβ |2
4π(1 + δαβ)

s

(s − m2
k)

2 + m2
kΓ

2
k

, (26)

where Γk is the width of the doubly charged scalar, and S = (1 + P1)(1 + P2) the polarization 
factor of the incoming electron beams. First, we note that this process is proportional to |gee|2. 
As mentioned above, this coupling is not determined by neutrino data and in principle it could 
be zero. Hence, no signal can be predicted. On the other hand, also the upper bound on this 
coupling is rather weak and therefore a sizeable cross section would be possible in principle. The 
upper limit on the cross section as a function of the center of mass energy is shown in Fig. 4
for unpolarized beams (S = 1). For center of mass energies of 

√
s > mk a sharp resonance can 

be observed, leading to very large cross sections in excess of 100 pb, allowing for the direct 
discovery of the doubly charged scalar. In view of the bounds from Eq. (24), this will require 
a multi-TeV collider. However, for lower center of mass energies, one may still expect visible 
cross sections, corresponding to contact interactions mediated by the heavy scalar.

We show in Fig. 5 the upper limits on the cross section as a function of the scalar mass for cen-
ter of mass energies 

√
s = 500, 700, 1000 GeV (solid curves). For a total luminosity of 50 fb−1, 

more than a few tens of events can be expected for a scalar mass mk � 10 TeV. Also note that, 
for a smaller mk , the reduction of the cross section for IO is due to the LFV constraints. While 
such a signature will not allow for the direct discovery of the doubly charged scalar via a reso-
nance, it would provide indirect evidence for a doubly charged particle. The flavor and chirality 
structure of the LFV processes e−e− → α−β− would offer additional consistency checks with 
the Zee–Babu model, as we are going to discuss in the next section.

6. Distinguishing the Zee–Babu and the Higgs triplet model

Once a signal induced by a doubly charged scalar is found at a collider experiment, an interest-
ing task will be to identify the underlying model and establish the connection to the mechanism 
to generate neutrino mass. Here we focus on ways to distinguish the Zee–Babu model from the 
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Fig. 5. Upper limits on the sum of the cross sections σ(e−e− → μ−μ−) + σ(e−e− → μ−e−) + σ(e−e− →
μ−τ−) + σ(e−e− → τ−τ−) as a function of the doubly charged scalar mass for center of mass energies 

√
s =

500, 700, 1000 GeV. Solid curves correspond to the Zee–Babu model, where σ(e−e− → μ−μ−) dominates the sum. 
Dashed curves correspond to the Higgs triplet model, where the lightest neutrino mass is fixed to 0.2 eV. The left (right) 
panel corresponds to normal (inverted) neutrino mass ordering.

Higgs triplet model, which also predicts the existence of a doubly charged scalar particle.2 The 
leptonic part of the Lagrangian contains the term

L� = hαβLc
αiτ2�Lβ + h.c., (27)

where hαβ is a symmetric Yukawa coupling matrix and � is a 2 × 2 representation of the 
SU(2)L Higgs triplet containing neutral, singly charged, and doubly charged components. Neu-
trino masses are generated by the vacuum expectation value (VEV) of the neutral component. 
Hence the Yukawa couplings hαβ are directly proportional to the neutrino mass matrix. Below 
we outline a few possibilities to distinguish the Zee–Babu model from the Higgs triplet model.

6.1. Signatures at a like-sign linear collider

Similar as in the Zee–Babu model, also in the Higgs triplet model the process e−e− → α−β−
is possible at a like-sign linear collider with a cross section in complete analogy to Eq. (26) (see 
e.g., [50]), with the coupling gαβ replaced by hαβ and S → (1 − P1)(1 − P2), taking into ac-
count that for the triplet left-handed leptons couple to the doubly charged scalar, in contrast to 
the right-handed coupling in the Zee–Babu model. In Fig. 5 we compare the maximum obtain-
able value for the sum of the cross sections for lepton flavor violating processes for the Higgs 
triplet model (dashed) to the one for the Zee–Babu model (solid). For the Higgs triplet model, 
the lightest neutrino mass is not necessarily vanishing. We find that the largest cross section ap-
pears always for larger light neutrino masses (cf. Fig. 6). Therefore, in Fig. 5 we fix the lightest 
neutrino masses to 0.2 eV. The VEV of the triplet is varied between 0.1 eV and 1 keV, where 
the largest cross sections are obtained for small values, since in this case Yukawa couplings 

2 Models accommodating neutrino masses at 3-loop level may also contain a doubly charged scalar, see e.g. [51], 
which will, however, not be discussed in the present work.
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Fig. 6. Upper limits on the sum of the cross sections σ(e−e− → μ−μ−) +σ(e−e− → μ−e−) +σ(e−e− → μ−τ−) +
σ(e−e− → τ−τ−) in the Higgs triplet model as a function of the lightest neutrino mass for center of mass energies √

s = 500, 700, 1000 GeV. The doubly charged scalar mass is set to 2 TeV. The left (right) panel corresponds to normal 
(inverted) neutrino mass ordering.

are largest. The two Majorana phases are allowed to vary freely between 0 and π , and the Dirac 
phase δ between 0 and 2π .3 As for the Zee–Babu model, we use the current experimental bounds, 
i.e., the same constraints as for the black curves in Fig. 1. For the triplet model we include the 
constraints from μ → eγ , μ → 3e, muonium–antimuonium conversion, and μ–e conversion in 
nuclei. The corresponding expression can be found for instance in [26–28]. We find cross sec-
tions of order 10–100 fb, and those results suggest that with integrated luminosities of �1 fb−1

such lepton flavor violating processes can also be expected to be observed in the Higgs triplet 
model. Note that here we are in the regime of 

√
s much smaller than the mass of the doubly 

charged scalar, which implies that no resonance is seen and hence the mass cannot be deter-
mined. Furthermore, we stress again that those curves are upper bounds, and in particular, for the 
Zee–Babu model the cross section can be easily reduced by adjusting gee which is not bounded 
from below. Therefore the size of the cross section by itself does not allow to distinguish the two 
models.

Before we discuss the possibility to use the flavor structure to distinguish the models, let us 
mention the importance of the lightest neutrino mass in the case of the triplet model. Since the 
cross section for e−e− → α−β− is proportional to hee ∝ m

(ν)
ee the value of the lightest neutrino 

mass is important, especially for normal mass ordering, where the possible size of m(ν)
ee depends 

strongly on m1. In Fig. 6 we show the maximum obtainable value for the sum of the cross sections 
for lepton flavor violating processes as a function of the lightest neutrino mass. We observe that 
for strongly hierarchical spectrum with normal ordering the cross section becomes very small. 
Hence, establishing normal mass ordering by oscillation experiments plus setting an upper bound 
on the lightest neutrino mass below 0.05 eV (for instance by cosmology or neutrinoless double 

3 We randomly choose 5 × 106 points in the parameter space for a fixed mk and search for the largest possible cross 
sections. This implies that solutions with strong fine tuning between parameter values may be missed. Our results should 
be considered therefore as upper limits for “generic” parameter choices, in the sense of the random search we are per-
forming.
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Fig. 7. Cross section ratios for processes e−e− → �−
α �−

β (or equivalently ratios of branching fractions of the doubly 
charged scalar decays). The left (right) panel corresponds to normal (inverted) neutrino mass ordering. Black points 
denote the ratios in the Zee–Babu model, while red points correspond to the ratios in the Higgs triplet model. All scalar 
masses are taken to be 3 TeV. For the triplet model we vary the Majorana phases, the lightest neutrino mass between zero 
and 0.2 eV, and the triplet VEV between 0.1 eV and 1 keV.

beta decay) would make the signal in the triplet model very small. In that case a sizeable signal 
at the like-sign collider would favor the Zee–Babu model. Note also that even for large neutrino 
masses no relevant lower bound on the cross section can be derived in the triplet model, since 
Yukawa couplings can be made very small by increasing the VEV of the triplet above the keV 
range (up to the GeV scale).

6.2. Flavor structure of the Yukawa couplings

Let us now assume that either a leptonically decaying doubly charged resonance is found at 
LHC or a linear collider, or that lepton flavor violating processes e−e− → α−β− are seen at a 
like-sign linear collider. In such a case the flavor structure of the decays or the LFV processes 
will be rather different in the two cases. Note that ratios of decay rates and LFV cross sections 
will be the same and proportional to the corresponding Yukawa couplings:

R
α1β1
α2β2

≡ Γ (k++ → α+
1 β+

1 )

Γ (k++ → α+
2 β+

2 )
= σ(e−e− → α−

1 β−
1 )

σ (e−e− → α−
2 β−

2 )
(28)

where in the Zee–Babu model we have

R
α1β1
α2β2

= (1 + δα1β1)|gα1β1 |2
(1 + δα2β2)|gα2β2 |2

, (29)

and in the triplet model an analogous relation holds but replacing the Yukawa coupling g by h. 
The important observation is that the flavor structure of those couplings will be rather different 
in the two models, with hαβ proportional to the neutrino mass matrix m(ν)

αβ , while for gαβ the 
relation to the neutrino mass matrix is more complicated.

We illustrate in Fig. 7 the cross section ratios of the LFV processes (or equivalently decay 
branching fractions) in the two models. For the sake of definiteness, all the scalar masses are 
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taken to be 3 TeV. Those results depend only weakly on the scalar masses. The different flavor
structure of the two models can be clearly seen from the plots. In particular, in the Zee–Babu 
model, the dominating decay mode is always the μμ channel, no matter of the neutrino mass 
ordering. An observation of a significant fraction of events different from the di-muon channel 
would exclude the model. The largest contribution of a different flavor combination may occur 
for IO with a fraction of μτ events with Rμτ

μμ � 0.2.
In order to see this point more clearly, we insert the neutrino mixing parameters into Eq. (11)

and obtain for the NO case

ζf 2
μτωμμ � m

(ν)
33 � m3c

2
23,

ζf 2
μτωμτ � −m

(ν)
23 � −m3s23c23,

ζf 2
μτωττ � m

(ν)
22 � m3s

2
23, (30)

where ωαβ = gαβmαmβ (defined after Eq. (11)) and terms proportional to the small parameters 
s13, m2, and me have been neglected. Therefore, one has approximately |ωμμ| � |ωμτ | � |ωττ |
for a nearly maximal θ23, and the ratios between Yukawa couplings are

gμμ : gμτ : gττ ∼ 1 : mμ

mτ

: m2
μ

m2
τ

. (31)

Since the branching ratios are proportional to |gαβ |2, one finds Rττ
μμ � m4

μ/m4
τ ≈ 10−5 and 

R
μτ
μμ � m2

μ/m2
τ ≈ 3 × 10−3, in a good agreement with the left plot of Fig. 7. Using the first 

line in Eq. (30) with m3 =
√

�m2
31 ≈ 0.05 eV, one finds that gμμ is bounded from below by 

neutrino masses [14]. Numerically we find

|gμμ||fμτ |2 � 10−3 mh max(mk,mh)

μ TeV
(NO). (32)

Taking all the scalar masses to be 3 TeV as an example, the above condition indicates |gμμ| � 0.3, 
where we have used Eq. (7) and the constraint from μ → eγ on fμτ from Table 1. This lower 
bound on gμμ is in good agreement with our numerical results.

In the case of IO the ratios in Eq. (31) hold only approximately. Because of the relations in 
Eq. (10), cancellations between the various terms in Eq. (11) become possible, leading to the 
correlation visible in the right panel of Fig. 7. We have checked numerically that for IO the 
lower bound corresponding to Eq. (32) is one order of magnitude weaker. Numerically we obtain 
a lower bound of |gμμ| � 0.1 for scalar masses of 3 TeV, which can be understood by using 
Eq. (10) and the bound on feμ from CKM unitarity shown in Table 1.

Finally, the gee contribution to the neutrino masses is strongly suppressed by the electron 
mass, and thus is allowed to be relatively sizeable compared to other Yukawa couplings. In the 
case that gμμ lies close to its lower bound, the dominating decay channel could be ee instead 
of μμ. The most interesting channels are then the μμ and ee channels. Note however, that this 
channel is not observable at the like-sign collider due to the Standard Model Møller scattering 
background. Hence this signature can only be explored if decays of an on-shell doubly charged 
scalar are observed.
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6.3. Further different signatures

Apart from exploring the flavor structure of Yukawas there are several different signatures 
to distinguish the two models. In particular, for the triplet model there is large literature on 
additional observables. Below we give a brief review of a few possibilities.

Starting with collider signatures, we note that observing a doubly charged resonance below 
the lower bounds in the Zee–Babu model (Eqs. (24) or (25)) would favor the Higgs triplet. In 
such a case exploring the flavor structure of the decays (as illustrated in Fig. 7) may be used to 
establish the relation to neutrino mass, see for instance [52]. If a resonance is observed consistent 
with the Zee–Babu bounds, one may also look for the singly charged scalar, which is predicted 
in both models. In the triplet model the mass difference between the singly and doubly charged 
scalars is given by the VEV of the Higgs doublet, v, times a dimensionless coupling in the scalar 
potential. Therefore, generically one expects a mass difference � v. In the Zee–Babu model the 
two scalar masses are unrelated. Moreover, the triplet couples to W±, which allows processes 
like for instance H+ → H++W−. Signatures of the singly charged triplet component have been 
investigated in [53–56].

Another difference of the models is that the doubly charged scalar in the Zee–Babu model 
(triplet model) couples to right-handed (left-handed) leptons. In the case of LFV processes at a 
like-sign linear collider one can use the polarization of the beams to find out the chirality structure 
of the effective operator induced by the heavy doubly charged scalar [46]. The possibility to 
determine the chirality at a hadron collider by using tau decays has been investigated in [57].

Apart from collider experiments, measurement sensitive to the absolute neutrino mass scale 
will be important, see [58] for a recent review. Since the Zee–Babu model predicts the lightest 
neutrino mass to be zero, it can be ruled out by establishing a non-zero lightest neutrino mass for 
instance in neutrinoless double beta decay experiments, kinematical neutrino mass measurement, 
and/or in cosmology, eventually combined with a determination of the neutrino mass ordering 
from oscillation experiments [59].

7. Conclusions

We have studied the current experimental constraints on the Zee–Babu model, taking into 
account recent data on lepton mixing angles and the MEG limit on μ → eγ . By performing 
a numerical parameter scan of the model we find that most likely the charged scalars of the 
Zee–Babu model will be out of reach for the Large Hadron Collider (LHC), including the 14 TeV 
configuration. If a signal should indeed be seen at LHC this would push the model into a fine 
tuned parameter region close to the limit of perturbativity. In such a case a signal in upcoming 
experiments searching for charged lepton flavor violation, such as μ → e conversion on nuclei 
or μ → eγ is guaranteed.

Even if the doubly charged scalar of the model is too heavy to be produced at a collider we 
point out that a sub-TeV linear collider operated in the like-sign mode may reveal lepton fla-
vor violating processes e−e− → α−β− due to contact interactions induced by the heavy doubly 
charged scalar. Assuming luminosities of several 10 fb−1 such processes might be observable 
for scalar masses up to 10 TeV. We stress however, that no signal can be guaranteed, since 
it is proportional to the Yukawa coupling gee which is essentially unconstrained by neutrino 
data.

Furthermore we have considered the same signature for an alternative model for neutrino 
mass, the Higgs triplet model, which has a similar particle spectrum as the Zee–Babu model, 
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although the mechanism of neutrino mass generation is very different. We have shown that those 
two models lead to a very different flavor structure of LFV signatures at a like-sign collider (or 
equivalently to ratios of branching fractions of doubly charged scalar decays, in case they are 
kinematically accessible). We have outlined various characteristic signatures of the two models. 
If neutrino mass should indeed be generated by one of those two extensions of the scalar sector 
it seems likely that the correct model can be identified by using an interplay of various collider 
signatures as well as absolute neutrino mass measurement.

8. Note added in proof

During the final stage of this work we became aware of Ref. [60] where also an updated 
parameter scan in the Zee–Babu model is performed. Taking into account the slightly differ-
ent method to derive the allowed parameter region and different perturbativity and fine-tuning 
requirements our results are consistent.
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