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ABSTRACT 

New simultaneous iteration techniques are developed for solving the generalized 

eigenproblem Ax = X Bx , where A and B are real symmetric matrices and B is positive 

definite. The approach is to minimize the generalized Rayleigh quotient in some 

sense over several independent vectors simultaneously. In particular, each new vector 
iterate is formed from a linear combination of current iterates and correction vectors 
that are derived from either gradient or conjugate-gradient techniques. A Ritz 

projection or simultaneous iteration process is used to accelerate convergence. For 

one of the gradient versions, convergence and asymptotic rates of convergence are 

established. Also, some numerical experiments are reported that demonstrate the 

convergence behavior of these methods. 

I. INTRODUCTION 

This paper is concerned with the development of a gradient-type 
numerical method for solving problems of the form 

Ax=hBx, (1) 

where A and B are real, symmetric matrices and B is positive definite. We 
are treating the case for which it is undesirable to factor either A or B, or a 
linear combination of A and B, into a product of matrices that lead to the 
direct solution of linear equations in these matrices. More precisely, we 
assume that A and B are large and sparse and that the direct solution of 
equations involving these matrices is either impossible or impractical. We 
also assume that the problem is to compute one or a few of the extreme 
eigenvalues and their eigenvectors. Problems of this type arise often in 
structural analysis and reactor problems, for example (cf. [l], [2]). 

These assumptions prevent the direct use of many standard techniques 
such as the Lanczos [3] and power [4] methods. “Factorization-free” 

*This work was supported by Air Force grant AFOSR76-3019 and National Science 
Foundation grant MCS7843847. 

LINEAR ALGEBRA ANLI ITS APPLZCATIONS 34:195-234 (1980) 195 

0 ELsevier North Holland, Inc., 1980 

52 Vanderbilt Ave., New York, NY 10017 0024-3795/80/000195+40$01.75 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81977931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


196 D. E. LONGSINE AND S. F. MCCORMICK 

techniques that do apply include algorithms based on optimizing the Rayleigh 

quotient by such methods as coordinate relaxation [S], gradient [6], and 

conjugate gradient [7]. These methods apply to the computation of extreme 

eigenvalues only, although others can be computed with the aid of deflation, 

matrix transformations, or projection techniques. Of course, care must be 

taken to avoid destroying the sparsity of A and B. However, as we shall see, 

simultaneous iteration (cf. [S]) can be used in conjunction with gradient-type 

methods to compute several extreme eigenvalues and their eigenvectors. This 

approach, which is made somewhat like that for the power method, is the 

subject of this paper. 

There are, of course, other factorization-free techniques for solving (l), 

including the outer-loop power, inverse iteration, or Lanczos methods used 

in combination with some inner-loop iteration scheme such as conjugate 

gradients. These combined techniques and the approaches of this paper are, 

in fact, closely related. For example, the single vector version of SIRQIT-G 

described below is essentially equivalent in form to a combined Rayleigh 

quotient iteration and gradient method using only one inner loop iteration 

per outer loop step. A promising combined algorithm is Lanczos/conjugate 

gradients which could be formulated in either the direct sense to compute 

the extreme eigenvalues or the inverse form for the interior one. We are 

presently comparing the technique with SIRQIT-CG, which is tested below. 

The (conjugate) gradient methods for Rayleigh-quotient minimization are 

amenable to simultaneous acceleration as it was first proposed with the 

power method [8]. (Th e slightly more efficient approach developed by 

Rutishauser [9] does not apply, however, since we cannot in general assume 

that the iterates are derived from the image of a stationary linear operator. 

For a brief discussion of these two projection techniques, see [lo].) The 

gradient method extended in this way is described in the next section, as is 

its relationship with a simultaneous coordinate overrelaxation scheme due to 

Schwarz [ll]. In Sec. III, global convergence is established for B=I and 

local convergence for general B. Rates are developed in Sec. IV. The 

conjugate-gradient version is described briefly in Sec. V, and numerical 

examples provided in Sec. VI. 

II. SIMULTANEOUS GRADIENT METHODS 

We introduce the following notation: 

n: the dimension of A and B; 

p: the number of vectors used simultaneously to compute p approxi- 

mate solutions of (1); 
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A: diag(X,,..., A,), where h, < . . . < An are the eigenvalues of (1); 

U: the matrix having the corresponding B-orthonormal eigenvec- 
tors ur,..., u, as its columns, so that UTAU= A and UTBU=Z. 

We partition A and U into 

and U=( U, U,), 

respectively, where Al is the leading p X p minor of A, and U, is the n X p 
matrix consisting of the first p columns of U. Let (x, y ) denote the Euclidean 

inner product of x and y, and let (x, Y)~= (Bx, y) denote the inner product 

in the metric B. 
The simultaneous R ayleigh-q uotient iterative minimization methods 

(SIRQIT), which we now describe, represent a class of methods for approxi- 

mating A, and U,. (Of course, the largest eigenvalues can be computed by 

replacing A with -A, that is, by maximizing the Rayleigh quotient.) SIRQIT 

is based on certain properties of the Rayleigh quotient 

R(X)==g$ XEW, x#O 

and its gradient 

VR(x)= -& [ AX-R(~)B+ 

For simplicity, since only the direction of VR(X) is important, we use 

g(x)=Ax-R(x)Bx. (3) 

The extreme values of R(x) are X, and h, occurring at scalar multiples of ur 

and u, , while u2, . . . , u,_~ are saddle points of R(x) with values X, ,..., X,-r. 

The critical points of R(x) are precisely the eigenvectors of (1). 

SIRQIT attempts to minimize R( zi) for each column, zi, of an n X p matrix 

2. This is obtained from the previous iterate Y, with columns yr, . . . , yP, and 

from G(Y), with columns g(yr),..., g( y,). A p x p matrix S is determined 

from a class of “permissible step matrices” so that the columns of Y - G( Y )S 

in some sense represent the best set of solutions of (1) from span( Y, G(Y)), 

the column span of (Y, G(Y)). (S ee R emark 2 below.) For example, the class 

of permissible step matrices might be restricted to the set of diagonal 
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matrices, with the effect that columns of Y - C( Y )S are determined inde- 

pendently (and ignorantly) of each other. Most generally, the class might 

include all real p X p matrices, with the effect that the columns of Y - G( Y )S 

approximately represent the best set of solutions of (1) in the column space 

of (Y, G(Y)). In SIRQIT we have chosen what amounts to a compromise 

between these two extremes. Specifically, we first compute G(rj,) =& in 

turn by B-o_rthogonalizing g(y,) from zi,..., zi_i, and then form Y-C% by 

restricting S to be a diagonal p X p matrix. Thus, iteration on the successive 

columns of Y can make intelligent use of information contained in the 

previous columns of Y and G(Y ). This has the net effect that the permissible 

step matrices applied to G(Y) are just the upper triangular matrices. A 

general outline of smorr is as follows: 

(i) Let the tolerance E > 0 and initial n X p matrix X(O) = (x p,, . . , x,“)) be 

given such that X(“)TBX(o)=Z. Let i= 0. 
(ii) Let Yci) be the solution of the problem that results from orthogonally 

projecting (1) onto span(X(‘)), the span of the columns of Xc’). (See Remark 

1 below.) Note that Y(‘)rAY(‘)=D(‘), a diagonal pxp matrix, and Y(‘)rRY(‘) 
= 

1,. 
(iii) Set G(Y(‘))=AY(‘)-BY(‘)D(‘). Check for convergence by testing 

the condition 

where we have written G(Y(‘))=(g(y$‘)),...,g(yf’)). 
(iv) Set Zci)= Y(‘)-G(Y(‘))S(‘), where Sci) is a pXp matrix chosen to 

improve the approximation to U, from span(Y(‘), G(Y(‘))). (See Remark 2 

below.) 

(v) Set Xci+‘) = Z(‘)M(‘), where M(‘) =MFLP is an upper triangular ma- 

trix constructed so that X(‘+‘)rBX(‘+‘) =I,. (For example, Xc’+‘) might be 

constructed by a Gram-Schmidt process in the metric B.) Increment i by 1 

and go to (ii). 

REMARK 1. The orthogonal projection step in (ii) is an attempt to solve 

(1) projected onto span( Xc’)) which is equivalent to finding the classical 

eigenvalues and eigenvectors of the matrix @i = X(‘)rAX(‘), where X(‘)rBX(‘) 

= 1. This can be accomplished (cf. [l], [lo], or [ll]) by first finding a unitary 

matrixQsuchthatQT~,Q=D=diag(d,,...,d,),,whered,<d,<... <d,, 
and then setting Y(i)=X(i) Q. Note that Y(‘)BY(‘) = I,. The computation of 

Q can be accomplished by routines such as TREDZ and IMTQLZ in IMSL [12] or 

EISPACK [ 131. 
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REMARK 2. As we have indicated, the matrix S in step (iv) can be 
determined in a variety of ways. The following approach seems to be among 
the best in terms of numerical behavior. Specifically, a little reflection 
suggests many possible variations, depending on the process for B-orthog- 
onalization, choice of step size, and Ritz step implementation. Many of these 
variations are not well founded, and others we tried did not perform as well 
in practice. (See, however, the discussion of SIRQIT-G2 below.) The following 
approach also facilitates the theoretical development of the convergence 
rates presented in Sec. IV. Dropping the subscripts and superscripts for 
convenience, S is chosen as a diagonal matrix where each diagonal entry, sk, 
is found by minimizing R(yk -s&J over s. Then the resulting zk is made to 
be B-orthonormal to zi,. . . , z~_~. Here, & is the result of B-orthogonalizing 

g(yk) from q...., zkel, namely, 

dY1) 

i = 

for k-l, 

which can be accomplished by the Gram-Schmidt method, for example. To 
derive a closed form expression for s, we set equal to zero the derivative of 
R( yk-sgk) with respect to s, which yields 

u.?+bs+c=O, (4 

where 

(5) 

(6) 

(7) 

These simplify be recalling that yTBy = 1 and yTAy =d. Solving (4), we have 

-b-es 
s, = 2a ’ (8) 

or equivalently, 
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For b>O,c<O: 

For b<O,c<O: 

For b>O,c>O: s 
S_ 

R 

W' RI3 
3 

For b<O,c>O: 
+ S+ 

hS 

s_ 

a>0 _ 
a<0 ----_+e-c - 

s+ 

R(Y) 
R(6) 

-u 
S+ 

FIG. 1. The roles of s+ and s_. 

Numerically, to avoid cancellation, it is best to use (8) when b<O and (8’) 
when b > 0, provided s, is used. To illustrate that s, (and not s_) should be 
used to minimize R(y -si) over s, consider the expansion R( y -82) =R( y) 
-sgrg(y)+O(s’). Noting that c= -grg(y) and b=gTBg(R(g)-R(y)), a 
graphical display of R( y -sg) as a function of s yields eight classes of 
functions as depicted in Fig. 1. This illustration, which can be made rigorous, 
shows clearly that the choice s, always yields the minimum. Note that when 

B=I, then a>0 and c<O, so that e > 1 bl, which implies that 
s, >o. 

The complete SIRQIT process which uses (5) through (8) to compute S will 
henceforth be called SIRQIT-G. 

An alternate and theoretically more powerful choice for S is achieved in 
effect by projecting (1) onto span( Y, G( Y )) and letting the columns of 2 be 
the solutions of the projected problem that correspond to the p smallest 
projected eigenvalues. Specifically: 

(a) B-orthonormalize G(Y) from Y, calling the resulting matrix C?. 
(b) Project (1) onto span( Y, E) and solve in a manner similar to step (ii). 
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Let 0 denote the eigenvectors of the projected 2 p X 2p matrix. -- 
(c) Set X equal to the p columns of the matrix (Y, G)Q that correspond 

to the p smallest eigenvalues of the projected problem. 

Note that XTBX= I,, so that step (v) in SIRQIT is not needed. For future 

reference, we shall refer to this version of SIRQIT that uses (a)-(c) to compute 

S as SIRQIT-~2. 

There are a few minor numerical drawbacks of ~1~~1~x2. First, the 

dimension of the projected problem is twice that of SIRQIT-G, although the 

computation in (b) may be somewhat reduced by using the special properties 

of the matrix @s= (Y, G)rA(Y, c). Specifically, &s has the form 

G"GG(Y) 

1 eTA(? ’ 

which is asymptotically equal to 

Note that the columns of r!? are of unit length, while those of G(Y) tend to 

zero as convergence occurs. Thus, the process of diagonalizing &?a can be 

simplified somewhat as the iterates near the solution U,. However, this is just 

the point at which SIRQIT-G may be used, since SIRQIT-G and SIRQIT-G2 exhibit 

similar asymptotic behavior. This was confirmed by the results of several 

numerical experiments. In practice, it may in fact be best to start with 

SIRQIT-G2 followed by the use of SIRQIT-G (with G replacing the use of 6; 

that is, with S as a diagonal matrix). However, the major purpose of this 

paper is to present a theoretical development of these methods in terms of 

convergence conditions and rates with numerical support for the results. 

Choice of these methods depends on the goals, application, and setting in 

which they are to be used. No concrete recommendations are made in this 

paper. 

A second minor drawback of SIRQIT-~2 is the lack of a guarantee that the 

columns of G(Y) are linearly independent. In fact, quite independently of 

convergence, strong numerical dependence occurs quite frequently in prac- 

tice. Thus, it is important either to reorthogonalize (Y, f?) in the B-inner- 

product sense or to discard those columns of G ( Y ) that are computationally 

dependent. The latter can be accomplished by testing the norm of each 

successively computed column of G. 
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Schwarz [ 111 uses a simultaneous coordinate-relaxation approach analo- 

gous to our gradient-type SIRQIT-~2. The method, in essence, chooses succes- 

sive groups of columns of the identity matrix (instead of columns of G) and 

performs a Ritz projection on the space spanned by these directions together 

with the present approximations. The classical version of coordinate relaxa- 

tion is attractive in that each single component of the present approximation 

is in turn altered by an easily computed correction. Unfortunately, because 

of the added complexity of the Ritz step, the simultaneous version appears to 

lose some of this attraction. 

III. CONVERGENCE RESULTS 

In this section, we assume that X1 <A a and B = I. (See Remark 6 below 

for the general case BZZ.) We begin the convergence proofs with a series of 

lemmas, the first of which shows that X(‘) is of full rank whenever X(O) is, 

i=l,2 )... . This assures that step (ii) is feasible for each iteration of SIRQIT-G. 

In Lemma 2 we show that if X(O) is not completely deficient in uI, that is, if 

uTX(‘) #O, then neither is Xc’), i = 1,2,. . . i Lemmas 3 and 4 together imply 

that the Rayleigh quotient of each column of X(O), X(I), . . . , form monotically 

decreasing sequences bounded below in turn by A i, A,, . . . , A, and, in effect, 

that they cannot converge unless the corresponding g(yf)) tend to zero. 

Some of the consequences of Lemmas 3 and 4 are outlined immediately 

thereafter in order to provide a basis for Theorem 1, which is our main result 

on convergence. 

REMARK 3. Let Zck_IJ = (z,, . . . , z~_~), and define the projection 
operator 

&=I-z,,_,,zT,_,,. 

Then z= Pkg(yk), Pkgk=gk, P,z,=z,, and P,y,= y,. The last two equalities 

follow from the fact that the ,z 1,. . . , zk_ 1 are linear combinations of 

i?(Yl)?..., g(yk-I) and ylP..., ykPl. Hence, if g(yk) is used in place of gk in 

SIRQIT-G, then the effect of producing zk can be absorbed into the step size 

sk. More precisely, span(Z) = span( z^), where z^= Y - G( Y )S. Asymptotically, 

there is no difference between the use of g(yt) and g,., since the differences 

between them tend to zero. Hence, the effect of choosing sir based on either 

g(yk) or & is asymptotically the same. This will be useful in the following 

proofs. 
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LEMMA 1. Zf X(O) is off 11 u rank, then so is XC’) for each i = 1.2,. . . . 

Proof, We proceed by induction. The case i = 0 is true by assumption. 
Assume that X(‘) is of full rank p so that X (i)rX(i)=Z. Since y(i)=X(i)Q, we 

then have that Y(i)rY(i)=Z. Then, since Y(‘)rG(Y(‘))=O, it follows that 

which differs from Z by a nonnegative definite matrix. Thus, f(‘)rZI(‘) and, 
hence, Z(i)rZ(i) and X(‘+r)rX(i+r) are nonsingular. This implies that Xci+ ‘) 
is of full rank p, and the lemma is proved. n 

LEMMA 2. Assume that X(O) is not completely deficient in ul, namely, 
that u~X(~)#O. Then none of the XCi) are completely deficient in ul, 
i=l,2,... . 

Proof. Proceeding by induction, the case i = 0 is true by assumption. 
Assume that Xci) is not completely deficient in ur. Clearly, then, Yci) is not 
completely deficient in ur , so we may let k be the smallest index in 

{1,2,..., p} for which u~y~)#O. But, then, 

Iu;[ yii’-g( yf))+](= lu;yi”[ l+(dl’)-A,)+]1 

>o. 

Hence, by Remark 3, we have uTz/‘) #O for some i possibly different from k. 
Clearly, then, Z(‘) and hence Xci+r) are not completely deficient in ur. The 
lemma is proved. n 

LEMMA 3. For each column zf) of z(‘) and each column yh’) of YCi), we 
have 

R( zp) -R( yl”) = - llg~‘l12sI() 

= - IIp$‘)g( yf')l12s~'. 
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Proof. Dropping the superscripts (i) for convenience, note that 

Hence, 

(9) 

since 

(Ag,,Yk)=(~kyg(Yk))=(Pk~k’g(Yk))=(gk~~k). 

Differentiating the quantity R( zk) - R( yk) with respect to the parameter sk 

and setting it equal to zero implies that 

2[ l+s,2(gk> &)I (4 R(&) -WY,)] - 1>-2{G[ WkP(Yk)l 

-2s,}s,(g,, &)=O. 

This simplifies to 

$(ikT gk)+sk[ R(ZkW(Yk)] -l=O* (10) 

Hence, 

From (9) we then have 

R(Zk) -R(Yk)- - 

= -(gk, ikb,~ 

and the lemma follows. 
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Proof. Dropping the superscript (i), recall from Sec. II that each of the 

sk’s is positive when B = 1. Hence, from Lemma 3 we can conclude that 

R(z~) -R(&)=R@k) -R&j +R(Y~) -R&k) 

= -Il~kl12~k+R(~k)-R(gk). 

From (10) it follows that 

O= -II&II “~f+~k[R(y,,-R(~,)l+I. 

Thus, 

R(Q)-R(&)= -t. 

The lemma now follows from noting that 

X,<R(x)<h, 

for any x in R”. n 

REMARK 4. From Lemma 3, it is clear that { R(r~))}~, is a monotoni- 

cally decreasing sequence for each k- 1,2,. . . , p. Since it is bounded below 

by A,, then it must converge. By Lemma 4, it follows that Sl,‘) tends to zero 

as i tends to co. Hence, examining each k= 1,2,. . . , p in turn implies that 

each sequence { T~)}~_~ is convergent and that each I( g( yf))II tends to zero. 

now to show th!: 1 
In particular, x ’ tends to uit for some jk in { 1,2,. . . , n}. The difficulty is 

‘k = k for each k. We do this for k = 1 in the next theorem, 

although the proof for general k has eluded us. (See Remark 6 below.) 

REMARK 5. As xc) approaches u,~, the scalar & that minimizes R( yk - 
sg(yr;)) over s becomes arbitrarily close to the scalar sk that minimizes 

R(yk-sgk) over s. This is true because g( yk) is asymptotically orthogonal to 
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Z,,_ 1j for each k. To be more precise, dropping the superscript (i), note that 

dYkh = dYk)TYl-wAYk% 

MYk)ll IldYdll 

= _ Sl[ dYk)%ll 

II dYk)ll 

for each l=I,2,..., k - 1. The right-hand side can be made arbitrarily small 

for large enough i, since gji) tends to zero. Roughly speaking, this implies 

that at convergence each column of X behaves almost as though no other 

vectors are used in the computation. We exploit this behavior in the proof of 

Theorem 1 by adapting the work of Faddeev and Faddeeva [14] to our 

setting. In particular, we note that convergence of xr) to some eigenvector 

uik implies roughly that the quantities zf), xp), and yf) are asymptotically 

equal. More precisely, for any E >0 there exists an N < cc such that, apart 

from a normalization factor near unity, we have 

1=1 
l#k 

and 

xl’Lzl’-‘L 

l#k 

where (dropping the indices in the summation notation for convenience) 

and 

for all i > N. Combining 

then guaranteed that 

ef-‘)= x ieLf-‘)/ <E 

these equations, with a possibly larger N we are 
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where 

for all i> N. 

THEOREM 1. Assume that X(O) is not completely deficient in ul. Then 

bm yi')= lim xji)=ul. 
i-00 i+m 

Proof. To reach a contradiction, assume that yi’) does not converge to 

u i. Thus, no column of YCi) converges to u i. In what follows, as in Remark 

5, we ignore normalization factors of XC’), Y(‘), and Z(‘) since they are 

arbitrarily close to unity. For example, for each k= 1,2,. . . , p, we write 

where jr,>2, and h, is of unit length and orthogonal to ui and uir;. For 

convenience, we drop the superscripts (i) in the coefficients for this proof. 

Then, by an argument analogous to that in [14], we are guaranteed of the 

existence of coefficients ok and constants K, emin, and omax such that 

where 

and 

As in Remark 5, we write (assuming the worst case hi= uir, Z#k) 

y~+1)=e;ul+uil+8;h;- &&;q+u,,+8;h;) 

=(E;- ~Kkr”;)Ul+(l- &k16;)ujt+6h, 
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where, as before and in what follows, we take the summation symbol Z to 

include the limits 1= 1 to l= p, 1 Z k. Let N be so large that 

and 

) (l+%in)-(l+%axby& [ 
l+KK, T 

Thus, the ratio of the coefficient of ur in y!i+‘) to the coefficient of uir in 

y(‘+‘) has increased from the corresponding ratios for y!‘). Of course, some 
yk+‘) with perhaps k#r has the largest component in u1 with respect to ub 

so the value of r might change with i. Nevertheless, a sequence {y~~)}~N can 

be constructed so that 

This contradicts the convergence assumption implying that one of the yf’ ‘S 

must converge to ur. Clearly, since the Ritz process orders the columns of 

Yci) according to their Rayleigh quotients, the column that converges to ur 

must be yr (*). Therefore, xp) must also converge to ur and the theorem is 

proved. H 
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REMARK 6. The proof of convergence of SIRQIT-G presented here is 

deficient in two respects. First, the proofs rest heavily on the assumption 

that B =I. Extension to more general B might be obtainable, although an 

alternative theoretical approach is probably necessary. The second deficiency 

is that the proof does not establish ordered convergence in the sense that the 

kth column of x (‘I converges to uk. This was done for k = 1, and some 

compelling statements can be made for k = 2,3,. . . , p, but the complete proof 

appears to be beyond our grasp. Of course, in practice, after the first column 

of xci) has been accepted, convergence of the second column to a slight 

perturbation of ua is assured. This follows because “deflated” iteration at this 

point is equivalent to unrestricted iteration on a slight perturbation of (1). 

This approach can thus be used in turn to establish a practical sort of 

ordered convergence. 

Neither of these deficiencies is present in the local theory of convergence. 

In particular, a very simple proof of convergence can be given under the 

assumption that 

This alternate approach, which is straightforward, establishes ordered conver- 

gence for general BZZ. However, this theory is restricted to local conver- 

gence and suffers somewhat from an esthetic point of view. 

IV. RATES OF CONVERGENCE 

Although we no longer require B =I, we shall assume throughout this 

section that ordered convergence of X(‘) to U, is guaranteed for the initial 

guess X(O), namely, that 

lim Xci)= U,. 
ido0 

[This is guaranteed, for example, when B= Z and when R( ~1’)) <h,+ i. (See 

Remark 6 in the previous section.)] 

We present the asymptotic rates of convergence as asymptotic upper 

bounds for the ratios 

p3(q’)-q 
IR( yl") -q ’ 
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i=1,2,..., p. As we shall see, these rates depend upon the eigenvalues of the 
subproblems 

c&w=pw (11) 

and 

r(i)w=p(c&qZw, (12) 

where 

M$ denotes the matrix with columns u,, ui+r,. . . , up, and DI is a diagonal 
matrix with diagonal entries Xi, Ai+ i, . . . , X,. The complexity of these expres- 
sions is the direct result of the fact that, in general, UTB2U#Z. It therefore 
becomes necessary to examine the subspaces BU, and BU, to see how their 
lack of orthogonality effects rates of convergence. The problems (11) and 
(12) provide the basis for this,determination. 

When B = I, note that CL’ is just A, - h,Z. Thus, the problem (11) not 
only provides a measure of the distribution of the eigenvalues of (l), but also 
indicates in some sense how B differs from I on the subspace span(U,). 
Further note that l?(j) is zero when either i =p or B= 1. The problem (12) 
therefore provides a measure of how B distorts the orthogonal&y of the 
subspaces span( B ‘I2 U, ) and span( Bli2U2). The presence of the matrix 
Di -X jZ in the definition of I(i) serves to dampen the effect of this distor- 
tion. 

THEOREM 2. Let {ZL$ i, Z~(pi!~, . . . , yJI’)} and { P$~, $i2,. . . , p;‘} de- 
note the eigenvalues of the problems (11) and (12), respectively, each listed in 
increasing algebraic order. Let 

and 
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Assume that hp<hp+l. Then 

jTg +;‘9-$ <r +r _r r 

i-+03 ! I R(yy’)-xi l 2 l 2’ (13) 

When B = I, these quantities reduce to 

and r,=O. 

Before we proceed with the proof of Theorem 2, we establish the 

following three lemmas. Lemma 5 shows that asymptotically SIRQIT produces 

correction vectors that lie essentially in the space spanned by the columns of 

BU,. This is crucial to proving that rates of convergence depend upon p. 

LEMMA 5. For each j=l,2 ,..., p, write 

e.(‘)y!i)=ui+s:i)D(i)+e~i)hl’), 
1 1 

where ~1’) Espan({ug 1 < k < p, k#j}) hi’) Espan(U ) ’ r 2, 

near unity, and 

I(+)llB= Ilhj’)&= 1. 

Then there exists a constant c > 0 such that 

Isfi’l < I+$ 

fbr some k=l,2 ,..., p, k#j. 

Bj’) is a coefficient 

Proof. For the moment we assume that the first p eigenvalues of (1) are 

distinct. Dropping the superscript (i) and fixing i, we then write 

“i= 2 Ok”k, 
k#i 
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For the moment, sums Xfzrc are to be taken over the integers 1,2,. . . , p. Now 

there must exist some index k such that ( uk ( is no smaller than the arithmetic 

mean, that is, 

Consider 

where 

Ok= x Yl”,* 
I#k 

Then for j # k we have 

and 

O= ($3 Yk), 

=-kYj++k+$~k(Vj, Vk),+EfEk(hi, hk), (14) 

o=(A!!i’ Yk) 

=~kYiXi+6i’IkXk+GjSk(Al)i, Vk)+EjEk(Ahi, hk). 05) 

Combining (14) and (15), we have 

Gja,(Xk-Aj)+G,SiK,-Ej&k~2=0, 

where 

(16) 
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and 
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K,=‘i(hi, h,),-(Ahi, hk)* 

Rewriting (16) yields 

Lq o,(h,-Ai)+GkKl]=&i&kK2. 

By the choice of k, 

jak(Xk--hj)+SkKII ZJ”k(Ak--Xj)l - 16kKlJ 

>(p-l)-“2~~~-Xil--J~lrK1/ 

>o 

for IfSkI sufficiently small. The lemma now follows for distinct eigenvalues of 

(1) by setting 

K2 

‘= a,(h,-hi)+G,K, ’ 

For the case of multiple eigenvalues, let r represent the number of distinct 

eigenvalues in the set {A,, A,,..., AP}. We assume that l<r<p. (The case 

r= 1 follows trivially.) The proof just presented for distinct eigenvalues (i.e., 

r=p) now extends as follows. Let y represent the span of the eigenvectors 

corresponding to hi. Let m, denote the dimension of Vi. We then have 

tliyi=vi+Si~ qvl+eihi, 
Z#i 

where v[ E V, and 

Here we take the sums over the range 1= 1,2,. . . , r. Now for some k we may 

assume 
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But there exists some index k’ such that Ck, is in V,, 

8k,yk<=dk,+6k. 2 pliTl+Ek,hk,, 
Z#k 

and 

where each 6, E V,. Taking inner products of yt and ykC as in (14) and (15) 
introduces a multiple of 13~ contributed by the inner product of ukS and the 
sum Zlzia,u,. This multiple is thus bounded below by IX,- $1 
[mk(r- l)] -” -0(6,,). A c ange h in c defined above then allows the 
extension of this proof to multiple eigenvalues, and the lemma is proved. n 

The significance of Lemma 5 is that 

so that yi is asymptotically equal to ui+ Eihi. Thus, yi is nearly in the 
B-orthogonal complement of span( { uk : 1 < k d p, k# j}). Making use of this 
together with the fact that zzi is arbitrarily close to y1 and hence ui (as in Sec. 
III), we then have the following lemma. 

LEMMA 6. Define 

j= 1, 

q!i)= 
1 uk),hji)T(A-X,B)Zuk, i>l. 

With &ii) given as in lemma 5, define the quantities 

and 
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Let the notation O(y) denote terms of order T/~)=X~~~~~), S(‘)=Zii;,‘lSf), 
and &ji) collectively. That is, O(y) tends to zero as the maximum of these 

terms tends to zero. Then the step size fm SIRQIT-G satisfies 

s(i)= 
hjijT( A-AiB)2hji) 

1 
hli)T(A-XiB)3hj’)+qli) 

+0(y). 

Hence, 

R(q)-A. 
‘cl- 

[ hjijT( A -A,B)2hjf)]2 
R( yi”‘) -Ai hji)T(A--htB)hjf)[ hff)T(A-$Z3)3hjf) +#‘] 

+0(y). 

Proof. Dropping the superscript (i) and writing yi=ui+ethi (see the 
comment just before this lemma), it is easy to see that 

R( yi)=A,+ 
e;h;(A-X&h/ 

1+&f * 

Thus, 

gj=dYj) 

=AYj-R(YjPYj 

=e,(A-h,B)h,+O(e;). 

Note that 

Clearly, II~jll="(Ej) since IIg, 11 =O(ei). Substitution into (5), (6), and (7) 
shows that a j = 0( E?), i > 1. [Throughout this proof, a/, bj, and cj will denote 

the quantities given in (5), (6), and (7), respectively, for the jth column of Y.] 
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Again, for j = 2,3,. . . , p, we have 

ci=-(&iYgi) 

= -+;(A-XiB)“hi+O(+)+O($). 

Moreover, 

Note that 

=$(A-hiB)&+o(e;) 

j-l 
=E~h~(A-XiB)3hi- x (gi> zk)B 

k=l 

X [ ~:(A-h,B)gi+g~(A-Xi~)zk] +0(&Q)- 

That the first term in square brackets is negligible follows from the observa- 
tion that 
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Note also that 
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f-1 j-l 

- kzl(gi, z,)&(A-X&k= - k~l(gi~~k)~f‘(A-~iB)~k+o(SEf) 

i-1 

=-E; 2 ((A-XiB)hj,uk)$;(A--hiB)zuk 
k=l 

Hence, 

In what follows, the case i= 1 can be accounted for by remembering that 

q1 = 0. Substitution of the above expressions into (8) shows that 

Sj= 

h;( A -XiB)2hi 

h;(A-h,B)3hj+qj 
+0(v) 

= -cp,+O(Y). 

Hence, 

R(zi)= 
R(y,)-2sjy,?A&+s;&Agj 

1-2sjy7?gj+s;g;Bgi ’ 
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so that 

= ef(hr(A-hiB)hj-[ hT(A-hjB)“hj12[ hT(A-X/B)3hj+~j]-1) +o(y) 

1+0(&j) 

Therefore, 

R(zj)-hj =l_ 

[ h;(A-hjB)2hi]2 

R(Yj)-Aj h;(A-hjB)hj[ h;(A-hjBpj+qj] 
+0(y) 

and the lemma is proved. n 

The next lemma treats two special maximum problems needed for the 

proof of Theorem 2. They are applied in conjunction with the problems (11) 

and (12) to get the final result. 

LEMMA 7. Suppose E and F are k x k symmetric matrices. If E2 is 
positive &finite and F is nonnegative definite, then 

max [ l-(dE~)~( 
wEz%” 

t4huwlu-‘] =( K)’ 

w#O 

and 

max w’Fw[ wT(E2+F)w]-‘=fi. 
WERk k 
lo#O 

Here, pk and p 1 are the largest and smallest, respectively, of the eigenvalws 
of E, and pk is the largest eigenvalue of the generalized eigenpmblem 

Fw=pE2w. (17) 
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Proof. Let 
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f,(w)=l- bTW2 
wTwwTE2w 

and 

f2( w) = 
w=Fw 

wT(E2+F)w * 

In order to use a Lagrange-multiplier argument, the constraint w#O is 
replaced by wTw - 1 = 0, with gradient 2w. Solutions of the maximum 
problems imply the existence of real numbers t,, t2 (not both zero) and ts, t4 
(not both zero) such that 

t,Vf1(w)+t2=0 

and 

But the homogeneity of fi and f2 implies that their gradients at w are 
orthogonal to w. This implies that t2 = t4 = 0, so the maxima of fi and f2 occur 
at the zeros of their gradients. We focus first on f2, since the argument for it 
is simpler. Note that 

for appropriate constants cy2 and p2. Hence, the gradient of f2 is zero if and 
only if w is an eigenvector of (17). But then 

fi(W) = 

p wTE2w 

wTE2w+PwTE2w 

P =- 
1+p * 
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wTFw 
P= ~ >o, 

wTE2w 

then the maximum of fi is attained by setting p = pk. This proves the lemma 

for fs. The argument for fi is slightly more complicated. We first note that 

V_&(w)= ( qE2+P,E+-Q)w 

for appropriate constants ~yi, pi, and yr. Thus, the gradient of fi is zero if 

and only if w is a linear combination of at most two eigenvectors of E. 
Setting w = T,q, + rmqm, where q, and q,,, are eigenvectors of unit length of E 

associated with the eigenvalues pL1 and p,,,, respectively, and rrs+ T:= 1, we 

then have 

Assume that y,<yl, and set .$=p,,,/~~ and t=r$. Then 

fJw)= (l-W-O2 
t&2-1)+1 ’ 

where 0 <& < 1 and 0 < t < 1. The maximum of fi( w) over t occurs at 

t= l/(1+&), so that 

l-5 2 
max f1(w)= 1+5 ) 

o<t<1 ( 1 
which is largest when 5 is as small as possible, namely, when m = 1 and 1= k. 
This proves the assertion for fi, and the lemma now follows. I 
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Proof of Theorem 2. Define 
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f(hi)=l- 
(h;(A-h,B)2hi) 

hT(A-$B)h/[h;(A- X,B)3h,+qj] ’ 

where the qi are defined as in Lemma 6. Dropping the subscript i for 

convenience, the proof now rests on the determination of the maximum 

value off subject to the restriction that h lies in span(U,). The difficulty for 

the case B# Z first appears here in the fact that span( U,) is generally no 

longer an invariant subspace of A - XB. However, the matrix A - AB is 
positive definite on span(U,), a property central to the remainder of the 

proof. 

The constraint that h is in span(U,) is accounted for by setting h = Uv, 
wherev=(O,O ,..., O,vr+r ,..., v,)r. SettingG=(t+,+r ,..., v,)‘. themaximum 

problem can then be written as 

Let 0 = U ‘B’U. Then 0 is positive definite on R” and BU= UO. Hence it 

follows that 

f(Uu)=l- 
(v~U~(A-AB)~UV)~ 

vTUT(A-hB)Uv[ u~U~(A-XB)~UV+~] 

cl- 
( vw3L)2 

uq v%&L + y] ’ 

where n = A -XI. We shall make use of the partitions that correspond to 

U= (U, U,) given by 

and 

n, 0 

/ ! 0 x2 * 
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The entries of n, are strictly positive, and we define @” in the same way. 

Let x; and nt denote the diagonal p x p matrices with diagonal entries 

given by 

--Ib-$11’2, k<j, 

(Ak-hj)1’2, k>j, 

and 

d+ _ Ihk-Xj11'2~ 

k - i (hk-Aiy2, 
k<i, 

kaj, 

-- 
respectively. Recalling that h=A,, then it is easily seen that x =A-li+, 

where n’ is the n X n diagonal matrix whose first p X p block is x F and 

whose remaining diagonal entries are those of x?/“. Note that (18) now 

becomes 

f(Uv)=l- 
( vmxv)2 

.%I[ v~o~o~v + q] 

=I--- 
( *~+Eoll+h)2 

v%+X-v[ *~+h-ox+n-on+n-v+q] 

cl- 
( Klcn-@R+K)2 

KTK[ KT( x-07i1+)2K +q] ’ 

where K = x+v = n-v. To simplify the expression further, let C= n-@x’, 

so that 

f(Uv)=l- 
( KTCK)~ 

KTK[KTC2K+q]' 

To use the block representation K= (OT (T1/221)T)T=(OT to=)=, we partition 
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C according to 
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We may then write ( KTCK)2= ( w’C,w)” and KTC2K=~T(C&+C21C12)~. 
Define 

LW=l-- 
( w’c,w)2 

w’w[ wT(c22+c21c12)w+q] * 

Clearly, 

To examine q in (18), define the n-vector $I by its entries 

Then 

9 = ~I~(A-AB)~U+. 

Let 6 denote the (j- I)-vector whose entries are the first j- 1 of $L Let 

%I) denote the matrix consisting of the first j - 1 columns of V, and x ( I _ 1j 
be the leading (i-l)x(j-1) minor of 1. Then 

4 = -oTU(A-hB)2U$ 

= -u~%J=B~U& 

- - 
= -~~2U2~B2U~i_l)h(i_,)~. 
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&= u,;_,,B(A-XB)h 

- 
= U&,B2U,A,V. 

Again let w = x112v, so that 

q= -w~~‘~~UZTB~U~~_~)~,~_,,U,;~_,,B~U~~~~W. 

ThUS, 

WTC,,C,,W + q = WT,TT,W 

= wTrw ) 

where I?, is the matrix that consists of the last p-j+ 1 rows of C,,. We 

Lemma 7 now applies with E= C,, and F=r. That the hypotheses are 
satisfied follows from the observations that C, and hence C& are positive 

definite and r is nonnegative definite. This last assertion is true because 

r = r;rl. This proves Theorem 2. 
n 

REMARK 7. Since the rank of l?(j) is no larger than p - i, the null space 

of r(i) is very large when pen. Further, the matrix Ci2 involves only the 

larger eigenvalues of (1). Thus, the contribution of J?(j) to the value of the 

bounds on the rates will often be quite small. Of course, when B is badly 

conditioned, this contribution may be on the same order of magnitude as 
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that for C&. This is clarified in the corollary below, which relates the ratios 
rl and r, to A and K = K( B), the condition number of B. 

COROLLARY 1. Let 

r,= wn-~jH~,+l-q 2 
1 i K(X,-Q+Pp+l-$) 1 

and 

r; = 
(K-l)e(hp-Ai) 

(K-1)2(hp-Xi)+4K(Xp+l-Xj) * 

Then rl < T;, r2 < ri, and (13) becomes 

Proof. We first examine the bound r;. Let v = x112w, and write 

BU,v= UCj_ljcCj-lj+ Wjcj+ U2c2, 

where ci and c2 are vectors of dimension p-j + 1 and n-p, respectively. 
Now 

wTC2*=c5i c 22 2 22 

and, with Dj=diag(O, Xi+,-hj,...,h,-Ai), we have 

WTp,=,?&. 
1 1 1’ 

Since 

c2= U2TB2U2v 
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and u#O, then c, is nonzero. Using this notation, we may then rewrite re as 

- 

r2= max 
CT D, ci 

cz #=o ci’ q ci + cs% 2c2 

Now set 

so that r, is bounded from above by m( m + 1) - ‘. Define 

II cj II ’ 
c=max-. 

C&O IIc2112 

Then the largest value of m is achieved by setting ci = c ‘i2ep and c2 = ep+ 1. 
With ~~=(c$_~),cT)~, then 

c<maY llcA12 
C&O II c2 II 2 

II m32U2u II 2 
==max 

uTUTB3U u 2 2 
=max 

ozo uTUTB2U UTB2U2u 
-1 

2 2 2 

where the last line follows by noting that 

UJJ~= B-' - U2U;. 

Let 

uTUTB3U u 

f4(‘) = uT~T~:u uT;2~2~ ’ 
2 2 2 
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The maximum of f4( V) is at least unity, so that 

In fact, 

< max 
v~U,~B~U,~J 

~=~=l ( ~I~U,~B~U,V)~ 

4 TB2q 
= max ~ 

qTq=l (qTBq)2 

whereq=B . 1/2U2v Changing the form in order to invoke Lemma 7, we have 

tty1 ( qTBq)2 
qTB2q =[I- Evl( I- J:;$):q)l’ 

=[l-(g=Jy 

(K+1)2 
=p 

4K ’ 

which is at least unity. Hence, 

C< 
K2+2K+1 -1 

4K 

(K-1)2 =p 
4K * 

Thus, r2 < rz as claimed. 

To examine the bound r;, rewrite (11) as 
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where v = n 2 ii2w. Then 

max v~U~~B~U~V= max q*Bq 
v%=l 9'9=1 

where b,, is the largest eigenvalue of B. In a similar manner, we have that 

min v~U,~B~U,V > b,, 
0=0=1 

where b, is the smallest eigenvalue of B. We can thus bound the eigenvalues 

for (11) according to 

and 

Substitution of these bounds into the expression for ri yields the bound r;, 

and the corollary is proved. n 

V. THE CONJUGATE-GRADIENT VERSION 

The method of conjugate gradients applied to the solution of linear 

equations involving positive definite symmetric matrices was first described 

by Hestenes and Stiefel [15]. It is based upon successive correction vectors 

that are conjugate with respect to the associated matrix, that is, the directions 

are orthogonal in the inner product induced by this matrix. Bradbury and 

Fletcher [7l used a nonlinear version of the conjugate-gradient method to 

solve the algebraic eigenproblem. A summary of further developments for 

eigenproblems can be found in [16] and [17]. We propose the use of this 

method in conjunction with simultaneous iteration which we briefly describe 

below. 

The conjugate gradient version of SIRQIT treated here, which we call 

SIRQIT-CG, is a simple generalization of conjugate-gradient minimization of 

the Rayleigh quotient. In particular, our approach is to perform several steps 

of the iterative process on each of the individual columns of X, perform a 
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Ritz acceleration on X, and restart the entire procedure. Thus, Ritz 
acceleration is used precisely when the conjugate gradient iteration is to be 
restarted. This is critical, since interaction among the columns of X 
undermines the motivation for using columnwise conjugate directions. 

Conjugacy of the direction vectors can be attempted by explicit use of 
the Hessian (or bigradient) of R(x) given by 

An asymptotically equivalent approach (cf. [IS]) is to modify the current 
gradient by a properly chosen scalar multiple of the previous direction. For 
the kth column of the ith iterate Yci), one such choice is given by 

pp = Ik(YP)l12 
Ik(YP)l12' 

i< k<p. (19) 

Numerical experience suggests that this is probably the best approach in 
terms of efficiency. 

SIRQIT-CC is outlined as follows: 

(i), (ii), and (iii) are the same as in SIRQIT as described in section II. 
(iv) Compute \k(‘)=G(Y(‘))-~k(‘-‘)~(i), where ‘33,(i) is a diagonal ma- 

trix of dimension p with diagonal entries /3t) given in (19). 
(v) Set Z(‘)=Y(‘)-\k(‘)S(‘), where Sci) is a diagonal matrix determined 

to minimize R(zp)) for each k = 1,2,. . . , p. (See Remark 8 below.) 
(vi) Decide whether or not to restart (presumably by fixing the number 

of conjugate-gradient iterations at the start of SIRQIT-CC): 

(a) If so, make the replacement X(‘+‘)=Z(‘)M(‘), where M(‘) is determined 
(in effect by the G ram-Schmidt procedure) as an upper triangular matrix so 
that X(‘+‘)rBX(‘+‘)=Z. Increase i by 1 and go to step (ii). 
(b) If not, make the replacement Y(‘+‘) = Z(‘)M(‘), increase i by 1, and go to 
step (iii). 

REMARK 8. Let I)~, I)~,. . . , \tp and yi, y2,. . . , yP represent the columns of 
\k and Y, respectively. Each diagonal element, sk, of S = Sci) is found by 
minimizing R( yk --st,bL) with respect to s. Equations (4) through (8) are used 
with g replaced by #k for each k= 1,2,.. ., p. Note that c= -$lg(yk) and 
b=t+b~Bt/~,[R(t,b~) -R(yk)], so that the choice s+ in either (8) or (8’) again 
assures minimization of R( yk-sqk). 

Conjugate-gradient techniques tend to accelerate gradient methods, so 
that SIRQIT-CG is very useful in a neighborhood of the solution. Near solutions 
the Y iterates are nearly A- and B-orthogonal, and hence so are the columns 
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of Z. Steps (ii) and (vi) have little effect on this orthogonality. This is 
fortunate, since otherwise it may be necessary to add a B-orthogonalization 
step in (iv). This would amount to a mixing of the columns of Z and 
destruction of the underlying motivation for conjugacy, thus undermining 
the method itself. 

There are two other natural ways to develop a conjugate-gradient scheme 
that is properly integrated with simultaneous iteration for solving (1). Both 
involve extending the Rayleigh-quotient concept to Rnxp by defining 

where R,: RnXP-+R. Viewing Rnxp as an np-dimensional vector space, a 
nonlinear version of conjugate gradients can then be applied to the problem 
of minimizing RG( X) subject to the constraint that XTBX= I, X in Rnxp. 
Ignoring B-orthonormahzation, this yields a method of the form 

x(i+l) =x(i) -sl\k(i) 
3 

where \k(‘) is computed in terms of \k(‘-‘) and the gradient of R,( Xc’)) in 
Rnxp and in accordance with the conjugacy requirement. The step size is a 
scalar determined to minimize R,( Xc’)--s\k(‘)) over s. The difficulty with 
this first approach is that, roughly speaking, the iteration is extended in 
scope (to Rnxp) without a commensurate increase in power (e.g., the step 
size is only a scalar quantity). 

A second approach involves using the same direction, \k(‘), but comput- 
ing the step size implicitly by determining Xci+‘) as the first p eigenvectors 
of (1) as it is projected onto span( X (i), qci)). However, although this exten- 
sion appears to have the necessary power, it is unfortunately an improper 
extension of Rayleigh-quotient minimization by conjugate gradients. (The 
Hessian given in (18) operates columnwise on X. Thus, conjugacy of n Xp 

matrices is not a well-defined concept.) 
We have confirmed the poor behavior of both of these alternative 

extensions in numerical tests. 

VI. NUMERICAL RESULTS 

In this section, we content ourselves with illustrating the convergence 
properties of SIRQIT-G and SIRQIT-CG by reporting on numerical tests involv- 
ing four artificially constructed eigenvalue problems. Each problem is con- 
structed with n= 10, B =diag(l,2,. . . , lo), U generated by applying the 
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Gram-Schmidt procedure in the B inner product to a random set of n 
vectors, and A = BUUTB. (Although these methods are intended for prob- 
lems with very large n, the purpose of this section is to illustrate simply the 
accuracy and sharpness of the rates developed in Sec. IV. Extensive numeri- 
cal tests and comparisons with the Lanczos-conjugate-gradient method are 
left to a later paper.) The problems differ according to choices for the entries 
of the diagonal matrix of eigenvalues, A. (Note that there is no loss of 
generality by restricting our attention to diagonal B, since SIRQIT is invariant 
under orthogonal transformations.) We also assume that p-4 and that only 
the first three eigenvalues and their eigenvectors are desired. 

The first column of Table 1 specifies the problem by listing the diagonal 
entries of A in order, while the second indicates to which column of X the 

rates refer. The third, fourth, and fifth columns depict the rates T = ri + ra - r,r, 
predicted by Theorem 2, with the more pessimistic rates r’ = ri’ + rz - r;rl of 
Corollary 1 appearing in parentheses. The last column contains a selected 
average of rates r observed from numerical experiments with SIRQIT-C, while 
SIRQIT-CG is included for comparison. (SIRQIT-CC for these examples was 
restarted every third iteration, since longer restart periods were generally 
less efficient.) 

We finish with an example that helps to clarify the statements of Sec. IV 

concerning the eigenproblems (11) and (12). Specifically, the effect of the 
condition number of B on ri and rz of Theorem 2 depends upon the 
subspaces span( Vi ) and span( U, ). However, the pessimistic values r; and ri 
of Corollary 1 are determined independently of these subspaces. As this 
example illustrates, although these bounds can sometimes be attained, it is 
also possible that the condition of B has no effect at all. 

EXAMPLE. Suppose f >E> 0, and let V= (q ua ua u, us), where ui = 
(l+E)-1/2(ei +e,), u, =(1+e-1)-1/2(ei--E-1e5), us =e,, u, =es, and us = 
e,. Note that VTBV= I. Choosing U by permuting columns of V in some 
way, let B=diag(l,l,l,l, E), A=diag(0,1,2,3,4), and A=BUAUTB. Fixing 
p=2 and i= 1, then Corollary 1 yields the estimates 

and rL= 
(1 --E)2 

&+(l-e)2 

However, depending upon the permutation used to define U, Theorem 2 
provides the sharper estimates as follows: 

(i) If U=(u, us u4 u5 u,), then 

ri=(E)p and r2=0. 
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(ii) If U- (u3 u1 u, 2)s u2), then 

(iii) If V = V, then r1 = 5 and r, = 0. 

Observe that the only difference between the first two examples is that the 
first two columns of V are interchanged. Further, in (iii), the estimates are 
independent of the condition, e-l, of B. The impact of B, therefore, 
in distorting not only the orthogonality of B’12 V, and B”2V2, but also 
the orthonormality of B l/‘Vz with itself, is of more consequence than the 
condition number of B alone. In (i), the presence of x, serves to dampen the 
effects of VITB2V2. Finally, (ii) provides an example for which rl and r2 are 
of comparable size. 

As a final comment, we wish to again emphasize that this paper reflects 
more of an attempt to analyze some theoretical aspects of the simultaneous 
gradient-type methods (with numerical illustrations) than to provide specific 
guidance to the proper choice of those techniques. However, it should be 
noted that of the gradient-type methods, SIRQIT-G2 is probably the most 
robust, but its greater computational cost suggests_ that it is perhaps best 
used to start SIRQIT-G (using perhaps G in place of G). In terms of efficiency, 
however, SIRQIT-CG should prove to be the best choice in general. 
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