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1, Introduction 

We have reported that muscular exercise (swimming 
in water at 22’C for 2 h)enhances the activity of phos- 
phoenolpyruvate carboxykinase and the gluconeogenic 
capacity of rat kidney cortex [I ,2]. These effects are 
probably mediated by the metabolic acidosis which 
takes place during exercise as result of muscular over- 
production of lactate [3]. 

The increase of renal gluconeogenesis in experi- 
mental metabolic acidosis seems to be related to the 
enhancement of the reaction catalyzed by phospho- 
enolpyruvate carboxykinase, as indicated by the con- 
centrations of intermediate metabolites of this process 
[4,5]. Consequently, we have measured the content 
of gluconeogenic intermediates in kidney after 2 h 
of swimming in order to obtain further evidence on 
the relation between the effect of exercise on gluco- 
neogenesis and metabolic acidosis. 

2. Materials aud methods 

Female Wistar rats (150-200 g) were used. The 
animals were forced to swim in a water bath (22°C) 
for 2 h. At the end of exercise, they were sacrificed 
by cervical dislocation. A-portion of liver or one of 
the kidneys was rapidly excised and clamped between 
metal tongs precooled in liquid nitrogen [6]. The 
time elapsing between dislocation of the neck and 
freezing the organ was 8-10 s. The frozen tissue was 
pulverized in a mortar, extracted with perchloric 
acid solution and neutralized with KOII, as in 171. 

Lactate was determined as in [8] ; aspartate as in 

[9 ] ; malate, as in [IO] ; pyruvate, phosphoenol- 
pyruvate, 2.phosphoglycerate and 3-phosphoglycerate 
as in [ 1 l] ; dihydroxyacetone phosphate, glycer- 
aldehyde 3.phosphate and fructose 1,6_bisphosphate, 
as in [ 12 ] ; glucose 6-phosphate and fructose 6-phos- 
phate as in [ 131. 

3. Results and diicussion 

In the liver from exercised rats the content of 
lactate was decreased whereas the concentrations of 
malate, aspartate ,2-phosphoglycerate , fructose 
6-phosphate and glucose 6-phosphate were increased 
(table 1). Assuming that the content of malate and 
aspartate reflect that of oxalacetate (which is unstable 
and present in small concentrations in tissues), the 
rise in malate and aspartate in connection with the 
absence of a significant e~~cement for phospho- 
enolpyruvate indicate a low activity of phosphoenol- 
pyruvate carboxykinase . Therefore, the decrease in 
lactate content is not likely due to gluconeogenesis 
but to oxidative consumption in the tricarboxylic 
acid cycle. On the other hand, the rise in fructose 
6-phosphate and glucose 6-phosphate can be explained 
by the operation of glycogenolysis. It is well estab- 
lished that glycogen degradation takes place during 
exercise [14]. 

The effect of exercise on the renal content of 
ghrconeogenic intermediates is shown in table 2. Like 
in liver, lactate was decreased and there was a rise in 
the content of fructose 6-phosphate and glucose 
6-phosphate. On the contrary, mrtlate and 2-phospho- 
glycerate did not charge, asparate and fructose bis- 
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Table 1 
Effect of exercise on the hepatic content of intermediates of ~u~neogene~ 

Experimental Con~n~ations of metabolites (nmolfg fresh Liver) 
conditions 

Lactate Pyruvate Malate Aspartate Phosphoenol- 2-Phospho- 
pyruvate glycerate 

Control 1470 f 125 (11) 
782 f 40 (7)b 

82 f 18 (10) 606 f 46 (9) 
1213 + 122 (7)b 

695 f 59 (9) 
2053 +z 202 (S)b 

129 * ll(11) 84* 11(12) 
Exercise 138 * 23 (7) 141 f 7 (5) 134 f 6 (6)a 

Experimental 3-Phospho- TrioseP Fru-1,6-P, Fru-G-P Glcd-P 
conditions glycerate 

Control 439 f 16 (12) 43 f 8 (9) 21* l(9) 89 * 10 (II) 531* 52 (11) 
Exercise 45.5 f 33 (7) 43 f 3 (7) 17 * 3(7) 152t 13 (5)a 819*56 (7)a 

P values were calculated by Student’s t-test: ap < 0.01; b P < 0.001 

Abbreviations: Triose-P, sum of triose phosphate; Fru-1,6-P, fructose 1,6_bisphosphate; Frud-P, fructose C-phosphate; G&&-P, 
glucose 6-phosphate 

The rats were forced to swim in a warm water bath (at 22°C) for 2 h. The results are means f SEM with the number of observa- 
tions in parentheses 

phosphate were decreased and there was a rise in the 
content of phosphoenolpyruvate . 

The decrease in the content of aspartate is note- 
worthy. Actually, phosph~nolpy~vate carboxy- 
kinase is-mainly a cytosolic enzyme in rat kidney 
[15]. Instead, oxalacetate, the substrate for phospho- 
enolpyruvate formation, is produced in the mito- 

chondria. The transport of oxalacetate from the mito- 
chondria to the cytosol is brought about through its 
reversible conversion to aspartate when lactate is the 
~uconeogenic precursor [ 161 as occurs during 
exercise. So, the content of oxalacetate under these 
conditions is reflected by the concentration of 
aspartate, The rise of phosphoenolpyruvate toge,ther 

Table 2 
Effect of exercise on the renal content of intermediates of gluconeogenesis 

Experimental Concentrations of metabolites (nmol/g fresh kidney) 
conditions 

Lactate Pyruvate Malate Aspartate Phosphoenol- 2-Phospho- 
pyruvate glycerate 

Control 1867 f 136 (8) 46 * 2 (8) 392 * 21(6) 1122 t 86 (9) 43 f 2 (8) 
82 f 10 (S)b 

34 f 8 (8) 
Exercise 966 f 115 (7)’ 39 t 4 (5) 377 -I 71(S) 845 f. 34 (4) 35 s 4 (5) 

Experimental 34hospho- Triose-P Fru-1,6-P, Fru-6P Glc-6-P 
conditions glycerate 

Control 152 + 20(6) 32 f 4 (5) 25 * 2 (6) 16* l(7) 
Exercise 223 f 34 (5) 43 i 8 (6) 18* 2 (6)b 33 f 4 (5)b 

37 f 3(9) 
118 f 6 (S)c 

P values were calculated by Student’s r-test: a P < 0.02; b P < 0.01; c P < 0,001 

Abihreviotions: see table 1 

The rats were forced to swim in a warm water bath (at 22’C) for 2 h. The results are means f: SEM with the number of observa- 
tions in parentheses 
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with the decrease of aspartate indicate therefore that 
the activity of phosphoenolpyruvate carboxykinase 
is enhanced ‘in vivo’ during exercise, like that reported 

for acidotic rats [4,5]. 
Renal gluconeogenesis seems to be also enhanced 

at the fructose bisphosphatase reaction during exercise 
as can be deduced from the decrease in the fructose 
bisphosphate content and the rise of fructose 6-phos- 
phate and glucose 6-phosphate. 

In summary, the results described here provide 
additional support to the hypothesis that the effect 
of exercise on renal phosphoenolpyruvate carboxy- 
kinase is mediated by metabolic acidosis and suggest 
that renal gluconeogenesis is accelerated ‘in vivo’ 
under these conditions. 
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