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A b s t r a c t - - T h e  convergence of the Kohonen feature mapping algorithm with vanishing learning 
rate parameters (VLRPs) is considered, which includes the simple competitive learning algorithm 
as a special case. A few examples show that the learning fails to converge to "global minima," in 
general. Then, we present a novel approach which enables us to find out a new family of VLRPs such 
that the corresponding learning algorithm converges to the set of "global minima" with probability 
one. The new VLRPs is a generalization of the well-known rate parameters used in the simulated 
annealing. A numerical example is also included to confirm our theoretical approach. We believe 
that this discovery is of importance for a large class of learning algorithms in neural networks and 
statistics. 

K e y w o r d s - - K o h o n e n  feature mapping algorithm, Supermartingale, Global minima, Stochastic 
differential equation, Vanishing learning rate parameters (VLRPs). 

1. I N T R O D U C T I O N  

In recent years, there are extensive research works devoted to the study of the Kohonen fea- 
ture mapping algorithm, both theoretically and numerically [1-3]. In [4,5], and references given 
therein, the authors consider the equilibrium states of the Kohonen feature mapping algorithm 
with the learning rate parameter independent of time. In [4], a thorough investigation of the 
existence and the number of the metastable states is carried out. In [6-8], the asymptotic prop- 
erty of the one-dimensional Kohonen feature mapping algorithm is studied. Recently, a novel 
approach [9] to the problem of constructing topology preserving maps is introduced, which is 
based upon a Hebbian adaption rule with winner-take-all like competition. Here, we first con- 
sider the convergence problem of the Kohonen feature mapping algorithm (see [3, p. 232]) with 
the nonincreasing vanishing learning rate parameters (VLRPs) ~(t) > 0, satisfying the usual 
restrictions found in stochastic approximation theory [10-15] 

fo ° ~(u) = oo, (I) du 

f0 ° ~2(u) du < (II) oo. 
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The constraints (I) and (II) above are usually imposed for the stochastic approximation algorithm 
(see, for example [10,12-14]), and the reason for a family of learning rate parameters satisfying 
them is fully explained in [10,14]. See also, Section 3 of the present paper, where we assert 
that  the condition (II) is not a necessary one. Examples in Section 3 show that,  in general, 
there are metastable states for the algorithm. Note that  a Canonical candidate of ~(t) under the 
restrictions (I) and (II) will be 

1 
~(t) = t-- ~, 

for 1/2 < a _< 1 (see [3, p. 223; 15, p. 259]). 
The above conclusions naturally suggest to us to ask the question: does it exist a general rule 

(VLRPs) for the learning algorithm which allows the system to get out of the metastable states? 
In other words, we look for a family of VLRPs which has a role like the decreasing ' temperature'  
in simulated annealing. Nevertheless, an example in Section 3 of the present paper indicates that  
under the constraints (I) and (II), the learning algorithm will stay at some local minima with a 
positive probability. 

It was first noted in [15, p. 259] that  in a linear learning algorithm with VLRPs the restric- 
tion (II) above is unnecessary and it could be replaced by a much weaker condition 

lim r/(t) = O. (II') 
t---*O0 

Based upon the self-similarity property of Brownian motion and results of simulated annealing 
in [16], we present a novel and rigorous approach to determine a new family of VLRPs. This new 
family of VLRPs which is between 1/log t and 1 / ~ ,  ensures that  the learning algorithm with 
the VLRPs escapes from the local minima and reaches the desired global minima with probability 
one. This fact is shown in Section 3. Note that  this family of VLRPs fulfills the restriction (I) 
and violates the restriction (II), but it satisfies (I) and (II'). We believe that  our discovery is of 
general guidance for a class of learning algorithms with VLRPs, such as the learning algorithm 
of Oja's law [3], Hebb learning [17], the em and EM algorithms [18], and some most recently 
proposed algorithms like [19,20], etc. 

2. A C O N V E R G E N C E  T H E O R E M  

2 . 1 .  N o t a t i o n  a n d  R e s u l t s  

For a concrete description of our result, we first briefly review the Kohonen feature mapping 
algorithm in detail. 

In the Kohonen feature mapping algorithm, there is a single layer of output units Oi(n) E {1, 0}, 
i = 1 , . . . ,  N at time n, each fully connected to a set of inputs ~j(n), j = 1 , . . . ,  M, via connections 
w~j(n). In the sequel, we assume that  the inputs ~j(n), j = 1 , . . .  , M  are chosen independently 
according to a probability distribution P. For each presentation of the input ~j(n), j = 1 , . . . ,  M 
we choose one of the output units, called the winner. The winner is the output unit with the 
smallest distance between its connections and the inputs 

I1~,(=) - ~(=)11, 

for vectors w~(n) = (w~j(n),j = 1 , . . . ,  M), ~(n) = (~j(n),j  = 1 , . . . ,  M),  where ]]. II represents 
the Euclidean norm. Let I(., .) be the function: 

_r(wi(n), ~(n + 1)) = I{llw,(,~)-~(n+l)ll<Jl~j(n)-~(=+l)llJ#i} (wi(n), ~(n + 1)), 

where IA is the indicator function, i.e., IA(X) = 1 if X E A and IA(X) = 0 if x ~ A. 
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The Kohonen feature mapping algorithm ensures the weights update decreasingly according to 

its distance with respect to the winner 

wij (n Jr I) ---- wij (n) -b ~(n) ~ A(i, k ) i  (wk(n), ~(n Jr 1)).  (~j (n -b i) - w ~ j  (n)) ,  
k 

(i) 

i -- 1 , . . . , N ,  j -- 1 , . . . , M  or in vector form 

wi(n q- 1) = wi(n) Jr 77(n) ~ A(i, k) f  (wk(n), ~(n + 1)).  (~(n q- 1) - wi(n)), 
k 

(2) 

where ~(n) is the positive learning parameter ~/(0) < 1, ~?(n) > r/(n q- 1), and A(i , j )  is a nonin- 
creasing function of H i -  j II. If A(i, j )  = ~iij, the above algorithm is called the simple competitive 
learning. 

After the learning procedure is finished, any set of input vectors will be partitioned into nonover- 
lapping clusters. This means that  a new incoming signal ~(n ÷ 1) is classified as the pat tern i if 
it is closest to the weight wi. In other words, the new signal ~(n + 1) is recognized to be of the 

type wi, if and only if 

IIw - ÷ 1)11 _< I1 ¢ + 1)tl, j # i .  

Note that  the nonlinearity of the dynamics above is addressed by the function I. In the case 
considered in [15, p. 279], N = 1, and so the dynamics defined by (1) is linear because there is no 
competition at all. Furthermore, when A(i,i)  -- 1 and A( i , j )  = 0 for i ¢ j ,  this case is exactly 
the simple competitive learning algorithm. 

For a compact region 12 of R M, let us introduce the definition of Voronoi tessellation associated 

with a family of vectors y = (Yi, i = 1 , . . .  N) E ~. 

DEFINITION 1. For a given compact subset 12 E R M, the Voronoi tessellation II(y) = (II(y)i, 
i -- 1 , . . . ,  N) associated with a family of vectors y l , . . .  ,YN is a partition off~ given by 

1-I(y)~ = {x,[[yi-  x[[ <_ ][yj - x[[,j ¢ i},  i =  l , . . . , N .  

Let us define a function g which is the leading term of the supermartingale difference given in 
the proof of Theorem 2. 

g (Yl, Y2,. . . ,  YN; Wl, w2, . . . ,  WN) = ~ (y~ -- Wi)" h(k, i)(z - y~)f(x) dx . 
i----1 (Y)k 

g depends on the vectors w = (Wl,W2,... ,WN), y = (Yl,Y2,... ,YN) E ~ M x N .  f is the density 
of the distribution P with support on a compact region ~ of RM, H(y) = (Yi(y)i, i = 1 , . . . ,  N) 
is the Voronoi tessellation associated with y = (y , , . . . ,  YN). 

We define also: 

O := {the set of all Voronoi tessellations associated with { w l ( n ) , . . . ,  wN(n)}, for all n}. 

For Yl , . . - ,  YN E R M, we use the convention that  y = ( y l , . . - ,  YN) E O implies tha t  there exists 
a Voronoi tessellation II(y) such that  {II(y)i, i = 1 , . . .  N} E O. 

Now we state the main theorem of this section. 

THEOREM 2. /~ there exists a unique point (ZOl, w2 , . . . ,  WN) e R MxN, such that  

g(Yl , . . . ,YN; Wl, . . . ,WN) ~_ O, Vy E e ,  (3) 
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where the equality holds, i f  and only i f  yi = wi, i = 1, . . .  ,N ,  and 

E ~(n) =oo,  
7'1, 

n 

then we almost surely have 

(4) 

for 

such that  

Z l  <: Z2 < " ' "  < Z N ,  

N 

(w(n)) = E E  / n  A(k,i)IIx - w i (n) l l2 f (x )dx  gl 
i = 1  k ( w ( n ) ~ )  

and w(n)  = (wl(n), w2(n) , . . . ,  w(n)).  Since 91(w(n)) is uniformly bounded by a constant A the 
inequality (5) thus, becomes 

N 

E [ E  ([[wi(n + 1) -wi[[  2 [ I n )  - Hwi(n) -wi[[ 2] 
i = 1  

< ~(~)g (~(~), ~) + v(n)~A (6) 

<_ ~(n)g (w(n),w) + ~(n)2A 1 + ~ IIw~(n) - w~ll ~ • 
i = l  

In terms of [14, Theorem 7.1, p. 43] together with Theorem 5 of the present paper, we arrive 
at the desired conclusions. | 

Let us say a few words concerning condition (2). The fulfillment of condition (2) ensures that  
the learning algorithm moves downhill in the energy landscape, and so the uniqueness of the limit 
of the learning algorithm is true under condition (2). In Section 3, we will give a new family of 
learning rate parameters when condition (2) is violated, which is certainly the more interesting 
c a s e .  

For a one-dimensional input signal, i.e., M = 1, without loss of generality, we can assume that  
a < Wl(0) < w2(0) < ..- < wg(O) <_ b with fl = [a,b]. In this setting, we are able to simplify 
condition (2) in Theorem 2 due to the fact that  the simple competitive learning does not change 
the order of weights a < wl (n)  < w2(n) < . . .  < w g ( n )  <_ b, n > 1. 

LEMMA 3. H M  = 1, then Yl . . . .  ,YN e (9 / / 'and only ira < Yl < "'" < YN ~ b. 

PROOF. "==~." First note that  if wl(0) < w2(0) < . . .  < wg(O), in the simple competitive 
learning, we still have wl(n)  < w2(n) < . . .  < WN(n), for n > 0. Suppose that  there is a Voronoi 
tessellation I I e  (9, then there exist 

i = 1 , . . . , N ,  

here (z0 + z l ) /2  = a and (ZN+l + z g ) / 2  = b. So y 6 e implies that  a < Yl < Y2 < "'" < YN <-- b. 
" ~ . "  Trivial. | 

By combining Lemma 3 and Theorem 2, we have the following corollary. Three examples which 
explain the application of the next corollary are presented in Section 2.2. 

lim w~(n) = w~, i = 1 , . . . , N .  
~ ---}CX) 

PROOF. We need to introduce some more notation. Let .7" n be the sigma algebra generated by 
~(k), k <_ n, E(~ I ~-~) is the conditional expectation for the random variable ~ with respect to 
the sigma algebra ~-n. In terms of the proof of Theorem 5, below we see that  

N 

y ~  [E (llw~(n + 1) - w~ll 2 I Y . )  - IIw~(n) - w, II ~] < ,l(n)g (w(n), w) + r/(n)2gl (w(n)), (5) 
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COROLLARY 4. I f  there exists a unique point ( w l , . . . ,  WN) C R N, such that the inequality 

w l , .  w N )  (yl  - . . ,  = h(k, 1) (x - Yl) f ( z )  dx 
k J (  ( Y k - l - k y k ) / 2  

N -  1 /" (Yk+ 1Tyk ) / 2  

+ ~ (Yi - wi) ~ / c  A(k, i) (x - yi) f ( z )  dx 
i=2 k (~k_l+y~)/2 

)_:~ /(yk+~+yk)/2 
A(k, N)  (x - YN) f ( x )  dx -k (YN -- WN) k J(y~_l+yk)/2 

< 0 ,  

holds for a <_ Yl < "'" < YN <-- b, except for yi = wi, i = 1 , . . .  ,N ,  and 

~(n) = co, ~ ~72(n) < co, 
n n 

then we almost surely have 

lim w/(n) = wi, i = 1 , . . . , N .  
n -'-* O0 

In the next theorem, we consider the convergence rate of the simple competitive learning. We 
prove that,  under the conditions in Theorem 2, the algorithm will achieve the given accuracy 
within a finite number of updates. 

We define 
T(e) = inf{n, llwi(n) -- will <_ e, i = 1 , . . . , g }  

as the first time that  the training error is less than e. 

THEOREM 5. In the circumstances of Theorem 2, there exists a constant 

> o, 

such that we have almost surely 
T(e) < B(e). 

PROOF. We find a negative bound for the difference: 

N 

[Z (Hwi(n + 1) - will 2 I I n )  - Ilwi(n) - will2], 
i=1  

and from it we get that  E(llw/(n + 1) - w/ll 2) is a supermartingale. According to the definition 
of the algorithm, we have 

÷ Will 2 E 

= E (llwi(n + 1)1] 2 I 9rn) - 2wi. E (wi(n + 1) I I n )  + Ilwill 2 - IIw/(n) - w / l l  2 

= 2r/(n) (wi(n) - wi ) .  E ((~(n + 1) - wi(n)) I (wi(n), ~(n + 1)) ] ~'n) 

+ 772(n)E ([l~(n + 1) - w/(n)[[ 2 1 (w/(n),~(n + 1)) [ ~-n). 

Since wi(n) and ~(n + 1) are in the set 

{ll~(n + 1) - wi(n)l I < II~(n + 1) - wj(n)lI, j # i } ,  
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if and only if 

~(n + 1) 6 n(w(n))~,  

for w(n) = (w~(n), i = 1, . . . ,  N), wi(n) and ~(n + 1) are independent, we yield that 

~(n) (wi(n) - w,) . E ((~(n + 1) - wi(n))I  (wi(n),~(n + 1)) I $'~) 

= ~(n) (wi(n) - wi). E [ h(k, i) (x - wi(n)) f (x)  dx 
k dII(w(n))k 

(7) 

and 

~(n)2E (ll~(n + 1) - ~,(~)112 ~ (~,(~), ~(~ + 1)) l y e )  

: ~?2(n) E f 
k JII(w(n))k 

A(k,i) IIx - wi(n)H 2 f (x)dx .  (8) 

Furthermore, if we replace the time n in equality (7) and (8) by the stopping time an := T(e) A 
n = min(n, T(e)) all equalities hold. From the definition of the stopping time and condition (2) 
in Theorem 2, we see that 

g ( W l ( O ' n ) , . . . , W N ( a n ) ;  Wl , . . . ,WN)  
N P 

= Z (W(an)i - wi)" Z / h(k, i) (x - w(O'n)i ) f (x)  dx 
i=l k dn(w(a~))k 

<_ -h(e)  < 0, 

(9) 

for a number h(e) depending only on e. By condition (3) of Theorem 2, for n large enough, the 
sign of the term 

N 

?~(n) Ei=I (W(an)i-- Wi) '~k-  fri(w(~.))k A(k, i ) ( x - w ( a n ) i ) f ( x ) d x  

N 
+ r/2(n) E E / n  h(k, i)]Ix - -  w(crnliH 2 f (x)  dx 

i=l k (wC~))k 

is determined by the sign of the following term 

g (wl(an), . . .  ,WN(O,); Wl, . . .  ,WN) 
N P 

= ~ (~(~,-), - ~ )  ~ l A(k, ~) (~ - ~(a ,O,) / (~)  az 
i = l  k dH(w(a,))k 

and so is negative, and we denote it -h i ( e )  < 0. This explains the reason why we introduce the 
function g in Section 2. Without loss of generality, we assume that (9) is true for n > 1. We 
consider again the term 

N an -- i 

II~,(a~) - ~,112 + ~ hl(~l~(k). 
i=1 k=l  

After repeating the same argument as before, we conclude that it is still a nonnegative super- 
martingale and so is 

N a,~-I 
IIw,(a.) - w, II 2 + ~ hl(~ln(k). 

i= i  k---I 
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and 

By the convergence of the supermartingale, the limit of 

are both finite almost surely. 
Thus, 

N a~-I 

t1~(o . )  - ~11 ~ + ~ h~(~l~(k) 
i=1  k = l  

N 

i=1  

lim an = lim T(e) A n  < B, 
n'-~OO ?l--* OO 

almost surely for an integer B satisfying 

B N 

~_~l(k)hl(e)  > N max Hx - yll 2 > ~ Ilwi(n) - w~ll 2, 
x,yEl~ 

k-~l i=1 

which implies 

k/n, 

~(~) < B 

almost surely. Note that  the random time T(e) is bounded by a deterministic quantity B. | 

Although that  wi(n),  i = 1 , . . . ,  N is a stochastic process, Theorem 5 asserts tha t  within a 
finite and a deterministic time B(e) wi(n), i = 1 , . . . ,  N will reach a given accuracy e. 

2.2. E x a m p l e s  

In this section, in order to show the applications of the theorems of the previous section, we 
consider three typical examples, in the sense that  the first example takes into account the case 
when the input data  set is discrete, the second and the third example consider the case when the 
input data  set is continuously distributed according to the uniform distribution and the normal 
distribution, respectively. We consider only the case of simple competitive learning. 

EXAMPLE i.  Suppose that  f ( x )  = ~-~N=I cdfw, (x), w i t h  ~-'~N=I C i = 1 for wi E [a, b] C R 1, c~ > 0, 
i = 1 , . . . , N ,  and wl < w2 < . . .  < WN. Then we have that  

g ( Y l , .  • • ,  YN; Wl,. . . ,  WN) = --Cl (Yl --  W l )  2 I[,~,(v1+~2)/21 ( W l )  

N - 1  

-- ~ Ci (Yi -- Wi) 2 I[(y ,_,+y,) /2 ,(y ,+y,+l) /2  ] (Wi) 
i-~2 

-- CN ( Y N  -- W N )  2 I [ (yN+YN+I) /2 ,b](WN).  

From the theorems of the previous section, we can conclude that  

= ( ~ I , . . . , ~ N )  

is the unique attracting point of the dynamics (1). The proof of Theorem 2 shows that  the 
function g is the main contribution to the derivative of a Liapunov function. In fact, the quantity 

N 

[E ( i lw,(n  + 1) - w, l121 ~=n)] 
i = l  

introduced in the proof can be considered to be the Liapunov function of the system. The 
difference appearing in the submartingale condition: 

N 

÷ i  ,ll 
i----1 



52 J F FENO AND B TIROZZI 

can be considered as a discretized derivative and is the sum of two terms. The one different from g 
vanishes. The points ( Y z , . . . ,  YN) which make the function g equal to zero can be interpreted as 
the minima of this Liapunov function. Using this terminology one may say that  the dynamics (1) 
will converge to the global minima Yl = w l , . . . ,  YN -~ w g  if the hypothesis of the Theorem 2 
is satisfied. If there are many points for which the equality g =- 0 is verified, then they may be 
seen as local minima which can trap the dynamics. The condition ensuring that  there is a unique 
solution (Yl , . . . ,  YN) of the equation 

g ( Y z , . . . ,  yN; w l , . . . ,  WN) : 0 

is quite restrictive. In general, there are (infinitely) many solutions of it. Hence, the development 

of an algorithm to avoid the metastable states is of general importance, which is the content of 
the next section. 

EXAMPLE 2. Suppose that  ~(n) is uniformly distributed over the interval [0, 1]. We are going to 

prove that  wl = 1/4, w~ = 3/4, and g(y, w)  is negative except for Yl = wz and Y2 -- w2. 
First note, that  in this situation we have 

f ( Y z +  y2)/2 / 1  
g(y, w)  = (Yz -- w l )  (x - Yl)dx + (Y2 - w2) (x - Y2)dz. 

JO (~,+v2)/2 

Therefore, 

g(y, w)  = (Yl - Wl) ~- I x - Yl) dx + (Y2 - w2) + (x - Y2) dz  
J y l  / 1 - } - y 2 ) / 2  2 

( 2  X(yl  y2) 2 ) ( X ( y z - - y 2 ) 2 + l ( 1 _ y 2 ) 2 )  
---- ( Y l  - -  W l )  - -  y 2  + 2 4 -{- ( Y 2  - -  W 2 )  2 4 2 ' 

It is easy to check numerically (Figure 1) that  Wl = 1/4, w2 = 3/4 is the unique point for 
g(y, w)  = O. Therefore, from Corollary 4 and Theorem 5 of the previous section, we have 

1 3 
lim w2(n) lim wz(n)  = "~, n~oo = 4 '  

n ---~OO 

and ~'~ > 0, 3B(~) > 0, 
< 

(Yl "0"25)*('O'5"yl'y 1 +0"1-~'5-:1Y 1"y2)"2)+ly2"0"75)'(IO" 125" (Y 1"y2)"2+O-S'(1-y2)"20 ) 

........... . . . .  : . :  ...... :!i ::!i: . . . . . . . . .  : . : :  ........ 

0 "" " : "  . . . . .  "*" . . . . .  ~'": " : "  . . . . . .  "°" " ' : ~ : " :  "'" " . . . . .  ~"" "; . . . .  . . . o  " : ,~ . . . .  oo . . . . .  ~ :  .~ ' - - . . .w . . "  --~.,... .* - . . . .  o 
~- . . .o  .- .*~ . . . . .  .-  - - . . .  °- . - - . . .  ¢ ,oo"  "-*~:.o oO - -  . . . . . .  ":,.. . . . . . .  . .  - . . . . .  , , : :  . :  . . . . . .  .*- - - : , .  

- 0 . 1  - " . . . . .  - "  : ' "  . . . . .  - . . . . .  ~ : .  . - ~  . . . . . . .  " • . o o . . o  * - r , . . .  oo " - . - ~ :  o 
- - . . . .  o - "  - . . . ~ : o .  oO • . . . . .  . o  

-0.2. " "  "--"" " ' : ' :  . . . .  " 
-0.3 

-0.4 

-0.5 

-0.6 

1 

0 0.5 

! 0 

Figure 1. The function g defined in Example 2 of Section 2. 
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EXAMPLE 3. Suppose tha t  ~(n) is distributed with density function 

l e x p ( X ' ~ ) I [ - K , K ] ( X ) ,  
f ( z )  = c 

the restriction of the normal distribution with mean 0 and variance 1 to I - K ,  K], where K = 2 

and c = f_K Ke -(x:/2)dx.  I t  is natural  to expect that  wi = - 1 / 2 c ( 1  - e  -K~/2) = 0.18 and 

w~ = 1/2c(1 - e-K~/~). 

Let 

g ( y ~  W)  (Yl  ? / 2 1 ) f ( y 1 - F y 2 ) / 2  - ( z  - Y l )  e - x ' / 2  d x  + (Y2 - w 2 )  fK _ - -  (X y2)e -x~/2 dx 
J - K  J(yiTy~)/2 

_ _ f ( , ~ + ~ ) / 2  ---- - - ( Y l  - -  W l )  1 e -(y~+y~)~/s (Yl  w l ) Y l  J - K  e -x2 /2  dx  

1 
+ ~ e -K:/2 (y~ - y: - Wl + W2) -~- (Y2 - -  W 2 ) ~  e -(yl+y~)2/8 

/: - (y~ - w ~ ) y ~  e - ~ / ~  d x .  
l + y ~ ) / 2  

I t  is easy to check numerically (see Figure 2) that  the condition of Corollary 4 on the function g 

is not true, i.e., there are several points (yl, y~), y~ < Y2 such that  g(yz, Y2; Wl, w~) -- 0. 

o..-. ' . .  . o O ~ - - °  ° ° ° ~ .  
. .~::  . . . . . .  : ...... :~:::. ::: ....... ~. 

., . . . . . .  ,-~." F¢',~...~ .~.-~ • ~,.,~-.~-:" ~:.. . . . . . .  .,°- . . . . .  :,,: . . . .  ..~ . . . . . .  o -°  ° - - . ° ~  . * ~ . .  • - ~ o °  * - .  ° --w. 
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F i g u r e  2. T h e  f u n c t i o n  g de f ined  in E x a m p l e  3 of  Sec t ion  2. N o t e  t h a t  t h e r e  a re  
seve ra l  p o i n t s  (yz,  y2) w i t h  t h e  p r o p e r t y  g(yz, y2; wz, w2) = O. 

3. A N E W  F A M I L Y  OF V L R P S  

In Section 2, we developed a condition for the convergence of simple competit ive learning 
with VLRPs.  However, it is readily seen from our examples that ,  except for some special case 
(Example 2), the convergence of the algorithm will fail in general. On the other hand, all the 
algorithms similar to the simple competit ive learning with VLRPs are in danger of getting caught 
in some local useless minima [4]. Hence, the problem of getting out of local minima is of general 
importance for the learning algorithms with VLRPs. 

Essentially, a learning algorithm as we considered in Section 2 with VLRPs,  can be written as 

dXt = ~(t) (b(Xt) dt + ~(t) dBt) , (10) 
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for xt C ]~M×N, b(.) a measurable function on R M×N, t E R +, and ~/(t), the VLRPs with 7(0) _> 0, 
~(t) < rl(s) if t _> s, f~(t) > 0. Note that  the discretized equation corresponding to (10) is 

Xn+l = Xn + hrl(n)b(X,~) + ~(n)vfhWn, (11) 

where h is the step-size, W~ is normally distributed with zero mean, and covariance equal to 
the unit matrix I. For the purpose of finding a family of appropriate VLRPs in self-organizing 
Kohonen algorithm, equation (10) has been discussed in [15] from the Fokker-Planck equation 
point of view. In fact, in the field of neural networks, there are many learning algorithms 
developed with VLRPs and they are special cases of (10), for example, the network with Oja's 
rule [3], self-organizing Kohonen algorithm, the algorithm proposed in [18, p. 64], the dynamic 
link network [21,22], etc. 

In this section, we first consider how to choose r/(t) and fl(t) so that  Xt converges to the global 
minima of U if b = -g rad  U. It is proved in Theorem 6 below, that  under the usual restriction (I) 
of Section 1 on ~(t),/3(t) should take the form (see Theorem 6) 

~ 

~/~/(t) log fo ~(u) du 

Note, that  as ~;(t) = c a constant independent of time, Theorem 6 reduces to the well-known 
results of simulated annealing [16]. 

Second, if the signal is not separable from the noise, this means that  in the equation (10) we 
require f~(t) -- 1,Vt. It is shown in Theorem 7 below, that  if the family of VLRPs ~;(t) satisfies 
an ODE, the solution of which is between 1/log t and 1 / v / I ~ ,  then Xt  will converge to the 
global minima with probability one. It is worthwhile to point out that  this family of VLRPs 
already does not satisfy the restriction (II) of Section 1. We believe that  the discovery of this 
section is of general importance, also for some well-known statistical algorithms such as Robbis- 
Monro procedure and Kiefer-Wolfowitz procedure, which have been intensively studied in the 
statistics (see [10,11,13,14]) and take the form of (10). For the neural network applications of 
these algorithms we refer the reader to [23, Chapter 2]. 

3.1. T h e  G e n e r a l  Case  

In this section, we consider equation (10): 

dXt = ~?(t) (b(Xt) dt + ~(t) dBt) . 

In order to develop a new learning rate for ensuring the convergence of the algorithm to the 
global minima, we apply the results of simulated annealing to our case [16]. However, simu- 
lated annealing corresponds to the case in which the dynamics without noise is homogeneous, 
namely ~(t) is a constant independent of time t, and the noise goes to zero as the system evolves. 
This requires that  in (10), the coefficient in front of b should be independent of t, while there 
is still a vanishing rate before the Brownian motion Bt. Fortunately, after taking another time 
scaling, we are able to remove the vanishing term in front of the drift term b, and keep the second 
term of the noise as a standard Brownian motion because of the self-similarity property of the 
Brownian motion. Furthermore, there is still a vanishing rate multiplying the Brownian motion. 

Before going to more general cases, we show here first an example, in order to explain our 
general ideas above. 

EXAMPLE 4. Take ~(t) = 1/t, ~(t) = 1, M = N = 1 in equation (10). Note that  in this setting, 
the conditions (I) and (II) of Section 1 are fulfilled for the choice of r/(t). Now the dynamics (10) 
reads 

1 
dZt = ~ (b(Zt) dt + dBt) .  
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In order to change the time scaling of the above dynamics, let us make an change of the time 
scale: 

f s = log t = ~(u) du, (12) 

or 

t = exp(s), 

and gs = Xe.. 
Then 

dXe. = dY~ = __1 b(Y~)e ~ ds + _1 dBe.. 
e s e s 

From the self-similarity property of the Brownian motion, we know that  

(13) 

e - s / 2  dBes .- N(O, ds). 

So we introduce a new time scaling s and write d/38 = e-8/2dBe~, [3s is again a standard 
Brownian motion. Now (3) can be rewritten as 

dYs = b(Ys) ds + e -s/2 dBs.  (14) 

The relation (12) between the time t and s tells us that  if s goes to infinity, then t goes to infinity 
also, and vice versa. So if we know the limit behavior of Ys, we know the limit behavior of Xt 
as well. From the general results of simulated annealing [16,24,25], we know that  in the case 
of equation (14), Ys will have positive probability to stay at any local minimum since the noise 
vanishes too fast, at a rate of exp ( - s / 2 ) .  In order to ensure that  Xt is not t rapped in some local 
minima, we should slow down the decreasing rate of the noise. For this example, a correct choice 
is (see Theorem 6) 

[ ~ dBt I , (15) dZt = ~?(t) b(Zt)dt + X/fl(t) loglogt  

for a constant 7, which as in simulated annealing is problem dependent. 
In [13,14], under the restriction of 

f0 V(u) du = c~, ~?(u)2/3(u) 2 du < c~, (16) 

for the stochastic differential equation (I) and (II) of Section 1 is a special case of (16), 

dXt = ~(t)b(Xt) dt + ~(t)fl(t) dBt, 

the convergence of the solution to the set of attractors (no global minima!) of the above dynamics 
is proved. However, we note that  in equation (15), the VLRPs ~?(t) = l / t ,  j3(t)~?(t) = 1]~/t log log t 
with 

•(u) du = c~, ~?(u)213(u) 2 du : u log log u du = c~, 

already violate the usual restriction (16) found in stochastic approximation theory. 

In general, we have the following result for b(x) = - g r a d  U(x) for a function U defined on fl 
(see Remark 2). 

THEOREM 6. Suppose that 

-Jot = (l W) 



56 J.F. FENG AND B. TIROZZl 

and 
F ,1 

dZt = 77(t) [b(Zt) dt + 3" dBt[  (18) [ log J 
where Zt E ~t, a compact  subset o f R  M×N, b is a measurable function on C1(~), and Bt is the 

M × N-dimensional  Brownian motion. Then there exists a constant  3'0, and a set A C ~ such 

that  as 3" > 3"0, we have 
lira P ( Z t E A ) = I ,  

t---*O0 

where A is the set of  global min ima of  U. 

PROOF. Let 

i' s -- s ( t )  = , ( u )  e ~  (19) 

denote its inverse function as t = t(s).  Define 

Y~ = Zt = Zt(~). 

Then the equation (18) becomes 

dYs = b(Ys) ds + 3"v/-~--~ dBt.  (20) 

In terms of the self-similarity property of the Brownian motion and rl(t)dt = ds, we derive that  

d/~s := ~ dBt(s) ~ N(0, ds .  I ) ,  

where I is the (M x N) x (M x N) unit matrix. H e n c e , / ~  is still a standard Brownian motion 
on ~M×N.  Now (18) becomes 

~/ d/~s. dYs = b(Ys) ds + (21) 

From the condition of the present theorem, we see that  

s(t)  --, oo, as t -~ oo, 

and 

Therefore, we have 

t (s )  ~ o o ,  ~ s ~ .  

lim P ( Z t e F ) =  lim P( ]IseF) ,  
t ----~OO 8----*00 

for any measurable subset F of R M. 
By theorems of [16], we deduce that  there is a positive constant 3'o such that  as 3' > 3'o, 

lim P ( Z t  E A) = lim P(Ys E A),  
t---~OO 8---~OO 

where A is the set of the minima of U as b(x) = - g r a d  U(x).  

REMARK 1. In Theorem 6, 3"0 could be (roughly) chosen to equal to 

~ 2 ( s u p U ( x ) -  inf U(x)~.  
\xEfl zE~2 ,/ 
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REMARK 2. If there is no energy function U for the dynamics, the action functional defined by 

{ 1/0  A(x,y) = i~f S0,T(¢);S0,T(¢) = ~ I1¢~ -b (¢ t )H 2 dt, 

¢ E C[0,T ] (RM),  ¢0 ---~ z, Cr ---~ Y, VT ~ 0 ~ ,  
J 

could be used to replace U and 

V0- -4 /2  sup A(x,y) .  
V x,yE~ 

Similar results as in the above theorem are still true, see [16,24]. 

REMARK 3. Our approach also yields a conclusion which is already noted in [15, p. 259]. When 
b(x) = - x  in equation (10), it is pointed out in [15, p. 259], that  the second condition (II) of 

Section 1, i.e., 

f0 °° r/2(u) du < OO 

can be replaced by a much weaker condition 

lim r/(t) = 0, $ ---*CX) 

and the conditions 

fo °° rl(u)du --- c~, lim ~(t) = 0, ~----*OO 

are necessary and sufficient for Xt  to converge to O. In fact, our approach also rigorously yields 
this result. Consider the equation of Xt  

dXt = ~?(t) [b(Xt) dt + dBt] . 

After taking the new time scaling s (see the proof of Theorem 6), we yield that  

dye = b(Ys)ds + v/~-(s) d/)s,  

if ~(t) = ~?(t(s)) --* 0 and U(z) only one minimum, say x0 (the case considered in [15] x0 = 0), 
we know that  Xt --* z0, a.s. This proves the sufficiency. The necessary condition is obvious since 
if ~(t) does not go to zero, Ys will certainly not stay at x0 at all. 

REMARK 4. We can of course choose a family of VRLPs decreasing more slowly, and at the same 
time ensure that  the conclusions of Theorem 6 axe still true. For example, if we set 

~(t) = 
I r / ( t )  log log fo ~(u)du'  

then we still have the conclusions of Theorem 6. 

3.2. A Special  Case 

In some situations, it is not possible to separate the drift term b from the Brownian motion Bt. 
And sometimes the data  sent as an input to the network is noise-contaminated also. This is 
equivalent to asking if there exists a family of r/(t) such that  Xt converges to the global minima 
of U, where Xt is the solution of 

dXt = ~(t) (b(Xt) dt + dBt) .  
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From Theorem 6, we know that  above requirement is equivalent to say that  for t _> 1 

~(t) log v(u) du = .y2 

or 

fot @ log V(u) du = ,(t---~" 

Differentiating on both sides of the equation above, we have 

~(t) ~'(t)~ ~ 

f ~ ( ~ ) d ~  = ~(t)~ 

or 

(22) 

r/3(t) 
~ ' ( t ) =  2 ~ (23) 

If we are able to solve the above equation and prove that  its solution satisfies the conditions of 
Theorem 6, we obtain a family of new VLRPs r/(t), r/(t) could be easily computed numerically 
(Figure 3) and we have the following estimate. 
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Figure 3. Tile function ~?(t) with 0' = 1 defined in Theorem 7. of Section 3. 

In terms of the nonincreasing property of y(t), we have 

v2(t) < ~'(t) < ~3(t) 
9,2t -- r/(1)o,2t ' 

for t _> 1, which implies that  

~(i) ~(i) 
< ~(t) < 

~ ( 1 ) l o g t + ~  - - ~ /~2(1) logt  + ~ 2 '  

for 3, >_ 0'0. This also proves that  the condition (17) in Theorem 6, for ~?(t) is fulfilled. 
By combining Theorem 6 and all conclusions above, we now come to the main theorem of the 

present paper. We say that  a family of VLRPs is optimal if it guarantees the learning algorithm 
to converge to the global minima of the energy function. 
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THEOREM 7. Let us consider the stochastic differential equation 

dXt = 7(t) (b(Xt) dt + dBt) . 

A family of optimal VLRPs  in the learning algorithm with VLRPs  is the unique solution of 
the equation 

r/'(t) = 73(t) t > 1, (24) 
72 du l oT(U)  ' 

with 7(1) = 72/log f17(u)  du (see Figure 3). 7(t) is bounded from below and above: 

7%0) 770) 
r/(1) log t + 7 2 < 7(t) < X/7(1) 2 log t + 7 2' t >_ 1, 

for some positive constants 7 -> 7o, where 70 is defined as in Theorem 6. 

PROOF. It suffices for us to prove the uniqueness of the solution equation (22) and the dif- 
ferentiability of the solution. We use the contraction mapping theorem. For this purpose we 
write 

S[1 + ( n -  1)6, 1 + n6] = {7 E C[1 + ( n -  1)6, 1 +n6] and 7(t) >_ 0}, (25) 

which is a closed subset of C[1 + (n - 1)6, 1 + n6] and 6 will be specified later. Set 

72 
(26) 

T0(7) = log(f~ 7(u) du + cl) '  

a mapping from S[1, 1 + 6] onto itself with Cl = f~ 7(u) du > 0. For 71,7/2 E S[1, 1 + 6] with 
71(u) = 75(u) = 7(u), 0 < u < 1 we have 

7 2 ,7 2 
IkT0(71)  - T0( 5)11 = m a x  

max 72(u) du + cl - log rh(u ) du + cl 
<- (lOgCl) 2 te[1,1+~] 

( l°ge0 2 tE[lln, la~8] _1 + f : 7 1 ( u ) d u + c l  / 

From the basic inequality log(1 + x) < x for x > 0, we deduce that  

7 2 1171 - 7511du 
(28) IITo(71) - T0(72)11 _< ( l o g c l ) 2  cl  

Hence, as 6 < (c1(logcl)2)/72 the mapping To is a contraction mapping, and so on the space 
S[1, 1 + 6] there exists a unique ~ such that  it satisfies (22). 

Next, we use induction for the proof of the existence and uniqueness of 7 on the time interval 
[1 +n6, 1 + (n+  1)6]. Assume that,  we have proved there exists a unique solution 7 on time interval 
[1, 1 + n6] denoting it as (~(t))l<_t<l+n6. Define a mapping Tn(7) for 7 E S[1 + n6, 1 + (n + 1)6] 
by 

75 
T,~(7)(t) = ( f ~ 7 ( u ) d u  ~ ' 

( 2 9 )  
log \ - -  + cl) 

where 7(u) = ~(u) for 0 < u < n6. By repeating the above arguments for n = 0, we conclude 
that  Tn is again a contraction mapping in the complete space S[1 + n6, 1 + (n + 1)6]. We assert 
the existence and uniqueness of the solution of equation (22) writing it as 7. 
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Now, we prove that  ~7(t) fulfills (24). In fact, from equation (22) we see tha t  r/(t) > 0 and r/(t) 
is differentiable with ~?'(t) < 0Vt > 1. Differentiating on both sides of (22) with respect to t we 
yield equation (24). | 

Next, we present numerical simulations for a simple model. The reason for us to consider this 
simple model here is tha t  we can find 3'0 exactly. 

EXAMPLE 5. Let U(x) = x a + x 3 - 4x 2 + x (see Figure 4). We have a numerical comparison of 

the following three kinds of dynamics. 

x 
-12 -i1 

- 6  

- 1 0  

F i g u r e  4. T h e  p o t e n t i a l  f u n c t i o n  U(x) = x 4 + x 3 - 4x  2 + x.  T h e r e  a re  t w o  m i n i m a ,  

one  is a t  x = 1 (a  loca l  m i n i m u m )  and,  a n o t h e r  is a t  x = ( - 7  - x/-6"5)/8 = - 1 . 8 1  

(g loba l  m i n i m u m ) .  

Thus, we consider the algorithm with the VLRPs of Theorem 7, 

dut = -Tl(t) (U'(xt) dt + dBt) (30) 

the algorithm of simulated annealing 

dr(t)  = - U ' ( v t )  dt + 3̀  
x/log(t + 2) 

dBt, (31) 

and the algorithm with VLRPs of 1/t 

1 
dwt = - -[  (U'(wt) dt + dBt) .  (32) 

We discretized them with time step h = 0.01 (see equation (11)) and with initial s tate u~ j) = 

V(o j) = w~ j) = 0.1j - 1, where j = 0 , . . . ,  20 namely we carry out 21 simulations with initial s tate 
from [-1 ,  1] for dynamics ut, vt, and wt. For each given j after 50000 iterations we get a solution 
u(j) ,  v(j) ,  and w(j )  corresponding to dynamics (30),(31), and (32), respectively. 

Finally, we have 

21 21 21 
E j----1 E ~ = I  u(j)  E.~=I v(j)  w( j )  

u = = -1.76,  v = = -1.88,  w = = -0 .36,  
21 21 21 
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Table 1. Numerical results of three algorithms (alg.) for initial states from -1. to 1. 
Note, that only starting from 0.6 the algorithm u(j) fails to arrive to the global 
minima. 

Initial state -1.00 

hlg. lu(j) -1.87 

Alg. 2v(j) -1.87 

Alg. 3w(j) --1.80 

Initial state -0.30 

hlg. lu(j) -1.81 

Alg. 2v(j) -1.78 

Alg. 3w(j) -1.27 

Initial state 0.40 

hlg. lu(j) -1.90 

hlg. 2v(j) -1.82 

Alg. 3w(j) 0.68 

-0.90 

- 1 . 8 8  

-1.79 

-1.73 

-0.20 

-2.14 

-2.12 

-1.42 

0.50 

-1.83 

-1.90 

0.60 

-0.80 -0.70 

-2.00 -1.95 

-2.00 - 1.90 

-1.78 -1.58 

-0.10 0.00 

-1.85 -1.93 

-1.87 -1.85 

-0.50 -0.02 

0.60 0.70 

0.97* -1.97 

-1.92 -1.92 

0.84 0.97 

--0.60 -0.50 -0.40 

-1.73 -1.91 --1.83 

-1.83 -1.85 --1.77 

--1.55 - -1 .58  --1.02 

0.10 0.20 0.30 

-1.91 -1.88 --1.77 

-1.93 -1.88 -1.74 

0.21 0.21 0.25 

0.80 0.90 1.00 

-1.97 -1.92 -1.82 

-1.95 -1.87 -1.84 

1.03 0.97 1.02 

mean value 

-1.76 

-1.88 

--0.36 
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the average of dynamics (30), (31), and (32) over 21 different initial states. Note that  the exact 

global minima is at x = -1.81. The parameter 7 is set to 2 (we refer the reader to [16] for an 

explanation of the choice of this value, 70 in Remark 1 is a rather rough choice). 

As we expected, the dynamics (32) will stay at the local minima with highest probability 

among dynamics (30), (31), and (32). Dynamics (30) and (31) are more likely to go to the global 

minima. For the dynamics (18) all 21 simulations are successful in finding the global minima. 

For dynamics (17) 20 simulations are successful in finding the global minima but one fails. Our 

numerical results here confirm our theoretical approach. 

Finally, a comment should be made about the practical use of the theory presented in this sec- 

tion. Typically, there are two ways to associate the dynamics (10) with a learning algorithm such 

as self-organizing Kohonen algorithm, Hebb-type learning, etc. One is to consider the learning 
algorithm: 

dxt 
d~ = ~(t)b(xt).  (33) 

If we suppose that  some stochastic noises are contained in the model, the simplest assumption 

of it is that  now the dynamics (33) takes the form (10). Note that our Theorems 6 and 7, are 

proved without any restriction on b except that  b E C1(~) (see Remark 2 and [16]), and so it 

is general enough to cover learning algorithms developed in neural networks 1. In this situation, 
for avoiding local minima, our approach suggests that  it is more reasonable to use the family 

of vanishing learning rate parameters in Theorem 4 than the one of order 1/t  ~, 1/2 < a < 1. 

Another way is that  the term ~?(t)Bt might be added artificially, following the usual logic of the 
"annealing" scheme, in order to force the dynamics to jump around until it eventually "settles" 

near a global minimum. For example, for the simple competitive learning defined by equation (1) 
let b(x) = (ET_(x, ~ ( n + l ) ) ( ~ j ( n + l ) - x ~ j ) ,  i = 1 , . . . ,  g , j  = 1 . . . .  , M) ,  where Z is the expectation 

with respect to ~, by adding a noise term ~(t)Bt  to the learning algorithm, we assert that  the 

algorithm will reach a global minimum. 

4.  C O N C L U S I O N S  

Basically, we consider two questions in the present paper. First, a convergence theorem for 

Kohonen self-organizing map is presented. The same result for the simple competitive learning 
follows as corollary. Secondly, we rigorously derive a new family of vanishing learning rate 
parameters for a useful class of learning algorithm. 

1 [5] It is proved that there is no function U for self-organizing Kohonen algorithm with the property b = -grad U. 



62 J ,  F.  FENG AND B. TIROZZ! 

Global optimization of learning in neural networks is currently an important subject. How can 
one be sure that  the learning network reaches the optimal state, i.e., the global minimum of some 
error criterion, and does not get stuck in a local minimum? A well known strategy to find the 
global minimum and not just a local minimum is simulated annealing [16], a noise parameter, 
say temperature, is cooled down slowly. More specifically, we consider the following stochastic 
differential equation (or Langevin equation) 

dXt  = -g rad  U(X t )  dt + a( t )  dBt ,  (34) 

and when 

we have 

- 7 
 /log(t + 2) '  (35) 

lim P(XtEA)=I, 
t ---~OO 

where A is the set of global minima of U, and 7 is a constant depending on U. 
Learning in neural networks such as self-organizing Kohonen algorithm, Hebb learning, etc., 

are also a stochastic process. At each learning step, a training pattern is drawn at random 
from the environment (the total set of training patterns) and presented to the network. A large 
learning parameter leads to large fluctuations in the synaptic weight of the network. So, in a way, 
the learning parameter can be viewed as a noise parameter akin to the temperature in simulated 
annealing. A typical case of such learning algorithms (see, final chapter, of previous section) is 

dYt = rl(t) (b(Yt) dt + l~(t) dBt )  , (36) 

a dynamics studied in stochastic approximation theory for many years. Note that  when b = 
-g rad  U, rl(t) = 1, and c~(t) = j3(t) we have Xt = Yt, and thus, the case for simulated annealing 
is just a special case of (36). 

In the present paper, we derive a family of vanishing learning rate parameters based upon a 
rigorous analysis on (36) and our previous results of simulated annealing in [16]. The new family 
of vanishing learning rate parameters satisfy the following condition 

o ~ ~(u) du = c~, 

7 

~(t)  = t) fo rl(U) du 

(37) 

which in general violates the condition (10) found in stochastic approximation theory. Again we 
want to point out here that  when r/(u) = 1, the rate (22) found in simulated annealing algorithm 
defined by (34) is exactly a special case of our results here. 

Finally, we like to comment on further possible developments of our results here. Obviously a 
case to case and systematic numerical simulations for algorithms developed in neural networks 
with VLRPs in Theorem 6 and Theorem 7, are quite interesting and is one of our further topics. 
Theoretically simulated annealing of form (34) has been well studied [16] and on the other hand 
stochastic approximation theory taking into account the dynamics (36) has developed into a 
mature field already. In particular, many estimates on convergence rate (in neural networks, 
convergence rate is called learning error and generalization error) for both algorithms have been 
established already. We believe that  the method developed in this paper serves as a bridge 
between these two fields and will help us to understand more deeply the behavior of learning 
algorithms in neural networks and may provide a theoretical basis for the design of practical 
algorithms that  lead to global optimization of learning in neural networks. 
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