CORE

JOURNAL OF COMBINATORIAL THEORY, Series B 30, 136-143 (1981)

X^k-Digraphs

W. G. BRIDGES AND R. A. MENA

The University of Wyoming, Laramie, Wyoming 82071 Communicated by the Editors Received November 25, 1978

Let G be a directed graph on n vertices (single loops allowed) such that there are λ directed paths of length k from P to Q for any distinct pair of vertices (P, Q). We prove that if n > 2 and k > 2. G is regular. The regular case is also discussed.

1. INTRODUCTION

A polynomial digraph is a directed graph (loops allowed) whose (0, 1) adjacency matrix Z satisfies

$$f(Z) = D + \lambda J \tag{1.1}$$

for some real polynomial f(x), where D is diagonal, $\lambda \neq 0$, and J is the matrix all of whose entries are 1. This concept, definitively introduced in [2] based on Ryser's investigation [11] of the case $f(x) = x^2$, may be seen as a generalization of Hoffman's notion of the polynomial of a graph [4] and the subsequent extension to regular digraphs by Hoffman and MacAndrew [5]. We refer to the underlying digraph associated with (1.1) as an f(x)-graph and call Z the carrying matrix. We further agree to normalize by taking f(x) monic and f(0) = 0. If H is a digraph, then by the (looped) cone over H we mean the digraph obtained by adjoining a single new (looped) vertex joined both to and from all the vertices of H. We call a digraph regular if it is both in and out regular (ZJ = JZ). Ryser [11] exhibits all the non-regular x^2 -graphs. They are all cones, namely, (1) the looped cone over a graph with no edges; (2) the unlooped cone over a disjoint set of double directed edges (this is an ordinary graph, the pinwheel) and the unlooped cone over the graph H of Fig. 1.1.

In [2] the first author exhibits all non-regular f(x)-graphs where f(x) is a quadratic polynomial. (While there are infinitely many such graphs only one is not a cone.) It is further proven in [3] that x^3 -graphs on more than 2-vertices are regular and this extends to x^{2h+1} -graphs. We prove in Section 3

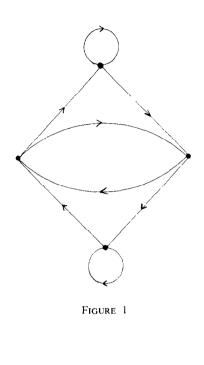


FIGURE 2

without restriction that x^k -graphs are regular for k > 2 excepting only the xgraph (Fig. 1.2) which is a non-regular x^k -graph for all k.

Regular x^k -graphs are themselves rather interesting and have received considerable attention [6–9, 10]. In Section 4 we discuss these and point out a brief proof of Lam's result [9] that there are no non-trivial regular x^2 graphs with circulant adjacency matrix. The next section contains background information on polynomial digraphs needed for the proof of the main theorem.

BRIDGES AND MENA

2. BACKGROUND ON POLYNOMIAL DIGRAPHS

Let $A_1,...,A_t$ be (0, 1) matrices of orders $n_i \times n_i$, i = 1,...,t. By the complementary direct sum [2] of the A_i we mean the $(0, 1) \sum n_i \times \sum n_i$ matrix

$$c \cdot d \cdot s \cdot (A_i)_1^t = J - \sum_{i=1}^t \bigoplus (J - A_i), \qquad (2.1)$$

where $\Sigma \oplus$ is the usual direct sum. The following theorem appears in [2]:

THEOREM 2.1. Let Z carry an f(x)-graph. Then to within permutation similarity Z is a complementary direct sum of t regular f(x)-graph adjacency matrices where $t \leq \text{degree}(f(x))$.

In this theorem if $Z = c \cdot d \cdot s \cdot (Z_i)$, we have $f(Z_i) = d_i I + \lambda_i J$, say, but possibly $\lambda_i = 0$. We refer to the Z_i , or the associated subgraphs, as the regular constituents of Z. For $f(x) = x^k$ the above theorem would say at most k constituents, but this is refined in |2| to:

THEOREM 2.2. A non-regular x^k -graph has two valences.

(Notice for f(x)-graphs the in degree of every vertex is the same as the out degree.) We then have the following structure to consider:

LEMMA 2.3. Let Z carry a non-regular x^k -graph. Then essentially

$$Z = \begin{pmatrix} Z_1 & J \\ J & Z_2 \end{pmatrix}.$$
 (2.2)

where Z_i is $n_i \times n_i$ (i = 1, 2) and

$$Z_i J = J Z_i = k_i J, \qquad Z_i^k = d_i I + \mu_i J.$$
 (2.3)

If $Z^k = D + \lambda J$, then

$$D = \text{diag}(\underbrace{d_1, ..., d_1}_{n_1}, \underbrace{d_2, ..., d_2}_{n_2})$$

and with

$$R = \begin{pmatrix} k_1 & n_2 \\ n_1 & k_2 \end{pmatrix}$$
(2.4)

we have

$$R^{k} = \begin{pmatrix} d_{1} + \lambda n_{1} & \lambda n_{2} \\ \lambda n_{1} & d_{2} + \lambda n_{2} \end{pmatrix}.$$
 (2.5)

The final remark may be obtained by restricting $Z^k = D + \lambda J$ to the subspace $\{(x_1, ..., x_n) | x_1 = \cdots = x_{n_1}; x_{n_1+1} = \cdots = x_n\}$.

3. x^k -Graphs Are Regular

In this section we prove

THEOREM 3.1. Let n and k be positive integers both at least 3. An x^{k} -graph on n-vertices is regular.

Proof. We continue in the notation of Lemma 2.3. We define λ_i and β_i by

$$R^{i} = \lambda_{i}R + \beta_{i}I, \qquad i = 0, 1, 2, ...,$$
 (3.1)

and set

$$\gamma_i = n_i - k_i \ge 0, \qquad i = 1, 2.$$
 (3.2)

We then have

$$(\lambda_0, \beta_0) = (0, 1), (\lambda_1, \beta_1) = (1, 0), (\lambda_2, \beta_2) = (k_1 + k_2, k_1 \gamma_2 + k_2 \gamma_1 + \gamma_1 \gamma_2),$$
(3.3)

$$\lambda_{i+1} = \lambda_i \lambda_2 + \beta_i, \qquad \beta_{i+1} = \lambda_i \beta_2, \qquad i \ge 1.$$
(3.4)

Now since $Z_i^k = d_i I + \mu_i J$ and Z_i has line sums k_i easily by induction,

$$0 \leqslant d_i + \mu_i \leqslant k_i^{k-1}, \tag{3.5}$$

as no entry of Z_i^k exceeds this bound. Moreover if $n_i \ge 2$ we must have

$$k_i^{k-1} \geqslant \mu_i \geqslant 0. \tag{3.6}$$

Now we have also from Lemma 2.3

$$k_i^k = d_i + \mu_i n_i, \qquad i = 1, 2.$$
 (3.7)

We define for $i \ge 0$

$$e_{i} = \beta_{i} - \gamma_{1}\lambda_{i},$$

$$f_{i} = \beta_{i} - \gamma_{2}\lambda_{i},$$

$$\tau_{i} = \frac{1}{n_{1}}(k_{1}^{i} - e_{i}),$$

$$\phi_{i} = \frac{1}{n_{2}}(k_{2}^{i} - f_{i}).$$
(3.8)

And note:

$$d_{1} = e_{k}, \quad d_{2} = f_{k}, \quad \mu_{1} = \tau_{k}, \quad \mu_{2} = \phi_{k}.$$

$$e_{i+1} = k_{1}e_{i} - n_{1}f_{i}; \quad f_{i+1} = k_{2}f_{i} - n_{2}e_{i}.$$
(3.9)

Direct calculation gives

$$e_{4} = (k_{1}^{3} + 2k_{1}^{2}k_{2} + k_{1}k_{2}^{2} + k_{1}^{2}\gamma_{2} + 2k_{1}\gamma_{1}\gamma_{2} + k_{2}^{2}\gamma_{1} + 2k_{1}k_{2}\gamma_{1})(\gamma_{2} - \gamma_{1}) + \gamma_{1}^{2}\gamma_{2}^{2},$$

$$f_{4} = (k_{2}^{3} + 2k_{1}^{2}k_{2} + k_{1}k_{2}^{2} + k_{2}^{2}\gamma_{1} + 2k_{2}\gamma_{1}\gamma_{2} + k_{1}^{2}\gamma_{2} + 2k_{1}k_{2}\gamma_{2})(\gamma_{1} - \gamma_{2}) + \gamma_{1}^{2}\gamma_{2}^{2}.$$
(3.10)

The theorem for k = 3 is established in [3] but we note it is available here by the observation that $e_3 + \tau_3 < 0$ and if k = 3, $e_3 + \tau_3 = d_1 + \mu_1 \ge 0$ using (3.9) and (3.5). We assume now $k \ne 3$.

LEMMA 3.2. For $i \ge 4$

$$e_i = p_i(\gamma_2 - \gamma_1) + (-1)^i s_i \tag{3.11}$$

and

$$f_i = q_i(\gamma_1 - \gamma_2) + (-1)^i t_i$$
(3.12)

for suitable $p_i > k_1^{i-1}, q_i > k_2^{i-1}$, and $s_i = t_i = (\gamma_1 \gamma_2)^{i/2}$ if *i* is even and $\gamma_2 s_i = \gamma_1 t_i = (\gamma_1 \gamma_2)^{1(i+1)/2}$ if *i* is odd.

Proof. We proceed by induction on *i* citing (3.10) for i = 4 and establish the claim for e_i as the case for f_i follows by the symmetric role of Z_1 and Z_2 . Now the recursion (3.9) gives

$$e_{i+1} = k_1 e_i - n_1 f_i = k_1 p_i (\gamma_2 - \gamma_1) + (-1)^i k_1 s_i - n_1 q_i (\gamma_1 - \gamma_2) - (-1)^i n_1 t_i$$

$$= (\gamma_2 - \gamma_1) (k_1 p_i + n_1 q_i) + (-1)^i (k_1 s_i - n_1 t_i)$$
(3.13)

140

and

 $k_1 p_i + n_1 q_i > k_1^i$ by induction.

As to s_{i+1} suppose *i* is even so $s_i = (\gamma_1 \gamma_2)^{i/2} = t_i$. Then

$$(-1)^{i} (k_{1}s_{i} - n_{1}t_{i}) = (\gamma_{1}\gamma_{2})^{i/2} (k_{1} - n_{1})$$
$$= (-1)^{i+1} (\gamma_{1}\gamma_{2})^{i/2} \gamma_{1}$$

so $s_{i+1} = (\gamma_1 \gamma_2)^{i/2} \gamma_1$ as required. If *i* is odd, $s_i = (\gamma_1 \gamma_2)^{(i-1)/2} \gamma_1$ and $t_i = (\gamma_1 \gamma_2)^{(i-1)/2} \gamma_2$ and then

$$(-1)^{i} (k_{1}s_{i} - n_{1}t_{i}) = (-1)^{i} (\gamma_{1}\gamma_{2})^{(i-1)/2} (k_{1}\gamma_{1} - n_{1}\gamma_{2})$$

= $(-1)^{i} (\gamma_{1}\gamma_{2})^{(i-1)/2} (k_{1}\gamma_{1} - k_{1}\gamma_{2} - \gamma_{1}\gamma_{2})$
= $(\gamma_{2} - \gamma_{1})(k_{1}(\gamma_{1}\gamma_{2})^{(i-1)/2}) + (-1)^{i+1} (\gamma_{1}\gamma_{2})^{(i+1)/2}.$

So here $p_{i+1} = k_1 p_i + n_1 q_i + k_1 (\gamma_1 \gamma_2)^{(i-1)/2}$ and $s_{i+1} = (\gamma_1 \gamma_2)^{(i+1)/2}$ so the lemma is established.

LEMMA 3.3. If $n_1 > 1$ and $n_2 > 1$, $k \leq 2$.

Proof. We assume $\gamma_2 > \gamma_1$ (note $\gamma_1 = \gamma_2$ is regularity). Suppose $k \ge 4$. If k is odd by Lemma 3.2 and (3.9) $d_2 = f_k < -k_2^{k-1}$ and from (3.6) and (3.9) $\phi_k = \mu_2 \le k_2^{k-1}$ whence $d_2 + \mu_2 < 0$ in conflict with (3.5). If k is even, we have $e_k > k_1^{k-1}$ and since $\mu_1 \ge 0$, $d_1 + \mu_1 = e_k + \mu_1 > k_1^{k-1}$ in conflict with (3.5) completing the proof.

This leaves us with the case that $n_1 = 1$ say, the graph is a cone. Suppose $\gamma_2 > \gamma_1 \ge 0$. If $\gamma_1 = 1$, then $k_1 = 0$ and we have from (3.9) that $e_{i+1} = -f_i$ and $f_{i+1} = k_2 f_i + n_2 f_{i-1}$ for $i \ge 1$. Now from (3.8)

$$\phi_{i+1} = \frac{1}{n_2} (k_2^{i+1} - f_{i+1}) = k_2 \phi_i - f_{i-1}$$

so that

$$f_{i+1} + \phi_{i+1} = k_2(f_i + \phi_i) + (n_2 - 1)f_{i-1}.$$
(3.14)

Now one can check that $f_2 \leq 0$ and $f_3 < 0$ directly so that $f_i < 0$ for $i \geq 3$ and also one may compute

$$f_3 + \phi_3 = k_2^2(2 - \gamma_2) - 2k_2 - \gamma_2 - \gamma_2^2 - k_2\gamma_2(k_2 - 1) < 0$$

in this case. Then (3.14) gives $f_i + \phi_i < 0$ for $i \ge 3$ contrary to $d_2 + \mu_2 = f_k + \phi_k \ge 0$.

Now if $\gamma_1 = 0$, $k_1 = 1$ and, from Lemma 3.2, $d_2 = f_k < -k_2^{k-1}$ and with

(3.6), $d_2 + \mu_2 < 0$ and again (3.5) is violated. This leaves only the case $\gamma_2 = 0$, i.e., $Z_2 = J$ so that $\gamma_1 = 1$ and $k_1 = 0$. Direct calculation reveals that the (1, 2) entry of Z^i is less than the (2, 3) entry for every *i* in this case so that unless n = 2 (the graph of Fig. 2) $Z^i \neq D + \lambda J$. This completes the proof of Theorem 3.1.

4. THE REGULAR CASE

We begin with the following easy observation.

THEOREM 4.1. Let \mathscr{A} be an algebra of $n \times n$ real symmetric matrices containing I. If A is normal and $A^m \in \mathscr{A}$, then $AA^t \in \mathscr{A}$.

Proof. Since \mathscr{A} contains only symmetric matrices we have $(A^m)^t = (A^t)^m = A^m \in \mathscr{A}$. Since A is normal, $A^m (A^t)^m = (AA^t)^m \in \mathscr{A}$. Now $(AA^t)^m = X \in \mathscr{A}$ say and X is positive semi-definite evidently. Thus X has a unique positive semi-definite mth root which, being a polynomial in X, lies in \mathscr{A} [12]. But this root is AA^t .

COROLLARY 4.2. Let A carry a regular x^m -graph. Suppose A is normal. Then A is the incidence matrix of a (v, k, λ) -configuration.

Proof. Apply the theorem to $\mathscr{A} = \{aI + bJ | a, b \in \mathbb{R}\}.$

COROLLARY 4.3. The carrying matrix of a regular x^2 -graph is normal if and only if it is symmetric.

Proof. If A is nonsingular, since A sends A, A^t , J into the twodimensional algebra \mathscr{A} above, these matrices must be linearly dependent. If A is singular, we have $A^2 = \mu J$, $AA^t = kJ$ easily, then $\mu = k$ and in any event $A = A^t$.

COROLLARY 4.4 (Lam [9]). There are no non-trivial circulant (0, 1) matrices A satisfying $A^2 = dI + \lambda J$.

Proof. By Corollary 4.3, A would be symmetric and thus correspond to a cyclic difference set with -1 as a multiplier which is known to be impossible |1|.

COROLLARY 4.5. A symmetric matrix A carrying an x^{2m} -graph actually carries an x^2 -graph.

We conclude by noting that a circulant $n \times n$ matrix carrying an x^2 -graph would correspond to a "addition set," Y, in the cyclic group Z_n , i.e., every non-zero residue appears λ times among the sums x + y, $y \in Y$. While

X^k-digraphs

these provide only trivial x^2 -graphs we note that the set $\{\alpha, \beta, \alpha\beta\}$ is an "addition set" in the dihedral group $D_4 = \langle \alpha, \beta | \alpha^4 = \beta^2 = e; \beta\alpha\beta = \alpha^3 \rangle$ giving rise to

								~	
<i>A</i> =	0	1	1	1	0	0	0	0	
	1	0	1	1	0	0	0	0	
	1	0	0	0	1	0	0	1	
	0	1	0	0	0	1	1	0	
	1	0	1	0	0	0	0	1	
	0	1	0	1	0	0	1	0	
	0	0	0	0	1	1	0	1	
	lo	0	0	0	1	1	1	0	ļ

satisfying $A^2 = I + J$. This solution, of trace zero, is non-isomorphic to Ryser's solution [11] with these parameters.

REFERENCES

- L. D. BAUMERT, "Cyclic Difference Sets," Lecture Notes in Mathematics No. 182, Springer-Verlag, Berlin/Heidelberg/New York, 1971.
- 2. W. G. BRIDGES, The polynomial of a non-regular digraph, Pacific J. Math. 38 (1971), 325-342.
- 3. W. G. BRIDGES. The regularity of x³-graphs, J. Combinatorial Theory 12 (1972). 174–176.
- 4. A. J. HOFFMAN, On the polynomial of a graph, Amer. Math. Monthly 70 (1963), 30-36.
- 5. A. J. HOFFMAN AND M. H. MCANDREW, On the polynomial of a directed graph. Proc. Amer. Math. Soc. 10 (1965), 303-309.
- W. H. LAM, A generalization of cyclic difference sets, I, J. Combinatorial Theory Ser. A 19 (1975), 51-65.
- 7. C. W. H. LAM, A generalization of cyclic difference sets, II, J. Combinatorial Theory Ser. A 19 (1975), 177-191.
- 8. C. W. H. LAM, On some solutions of $A^k = dI + \lambda J$, J. Combinatorial Theory Ser. A 23 (1977), 140–147.
- 9. C. W. H. LAM, "Rational g-Circulants Satisfying the Matrix Equation $A^2 = dI + \lambda J$," Ph. D thesis. California Institute of Technology, 1974.
- C. W. H. LAM AND J. H. VANLINT, Directed graphs with unique paths of fixed length, J. Combinatorial Theory Ser. B 24 (1978), 331-337.
- 11. H. J. RYSER, A generalization of the matrix equation $A^2 = J$, Linear Algebra and Appl. 3 (1970), 451-460.
- 12. H. WIELANDT, "Topics in the Analytic Theory of Matrices," Lecture Notes, Department of Mathematics, University of Wisconsin, Madison, 1967.