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Let G be a directed graph on n vertices (single loops allowed) such that there are
4 directed paths of length & from P to Q for any distinct pair of vertices (P. Q). We
prove that it n> 2 and & > 2. G is regular. The regular case is also discussed.

1. INTRODUCTION

A polynomial digraph is a directed graph (loops allowed) whose (0. 1)
adjacency matrix Z satisfies

fZ)=D+iJ (1.1)

for some real polynomial f(x), where D is diagonal, A0, and J is the
matrix all of whose entries are 1. This concept, definitively introduced in [2]
based on Ryser's investigation [11] of the case f(x) = x?, may be seen as a
generalization of Hoffman’s notion of the polynomial of a graph [4] and the
subsequent extension to regular digraphs by Hoffman and MacAndrew [5].
We refer to the underlying digraph associated with (1.1) as an f(x)-graph
and call Z the carrying matrix. We further agree to normalize by taking f(x)
monic and f(0)= 0. If H is a digraph, then by the (looped) cone over H we
mean the digraph obtained by adjoining a single new (looped) vertex joined
both to and from all the vertices of H. We call a digraph regular if it is both
in and out regular (ZJ=JZ). Ryser [11]| exhibits all the non-regular x*-
graphs. They are all cones, namely, (1) the looped cone over a graph with no
edges: (2) the unlooped cone over a disjoint set of double directed edges (this
is an ordinary graph. the pinwheel) and the unlooped cone over the graph H
of Fig. 1.1.

In |2] the first author exhibits all non-regular f(x)-graphs where f(x) is a
quadratic polynomial. (While there are infinitely many such graphs only one
is not a cone.) It is further proven in {3] that x'-graphs on more than 2-
vertices are regular and this extends to x*"*'-graphs. We prove in Section 3
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FIGURE 1

FIGURE 2

without restriction that x*-graphs are regular for k > 2 excepting only the x-
graph (Fig. 1.2) which is a non-regular x*-graph for all .

Regular x*-graphs are themselves rather interesting and have received
considerable attention [6-9, 10]. In Section 4 we discuss these and point out
a brief proof of Lam’s result [9] that there are no non-trivial regular x*-
graphs with circulant adjacency matrix. The next section contains
background information on polynomial digraphs needed for the proof of the
main theorem.
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2. BACKGROUND ON PoOLYNOMIAL DIGRAPHS

Let A4,...4, be (0,1) matrices of orders n,x n;, i=1,.,t By the
complementary direct sum (2] of the A4, we mean the (0,1) 3 n,x Y n,
matrix

!
c-d-s-(A)=J= Y @4, (2.1)

i

where > @ is the usual direct sum. The following theorem appears in [2]:

THEOREM 2.1. Let Z carry an f(x)-graph. Then to within permutation
similarity Z is a complementary direct sum of | regular f(x)-graph adjacency
matrices where t < degree( f(x)).

In this theorem if Z=c.d-s-(Z;), we have f(Z,)=d,;I + A,J., say. but
possibly 4, =0. We refer to the Z,, or the associated subgraphs. as the
regular constituents of Z. For f(x)=x* the above theorem would say at
most k constituents. but this is refined in [2] to:

THEOREM 2.2. A non-regular x*-graph has two valences.

{Notice for f(x)-graphs the in degree of every vertex is the same as the out
degree.) We then have the following structure to consider:

LemMmA 2.3. Let Z carry a non-regular x*-graph. Then essentially

zZ, J
- , 2.2
d <J z) (2.2)

where Z; is n; X ny{i=1,2) and
ZJ=JZ,=kJ., Z¥=d+ulJ. (2.3)

If Z=D + AJ. then

D = diag(d, v, dy s d)

and with
R:(h m) (2.4)
n, k
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we have

R¥— <d1+/ln, An, >

i, dy+An, 23)

The final remark may be obtained by restricting Z¥=D + AJ to the
subspace {{X,,., X )X, == =X, 31X, = =X,}.

1> g

3. x*GRAPHS ARE REGULAR

In this section we prove

THEOREM 3.1. Let n and k be positive integers both at least 3. An x*-
graph on n-vertices is regular.

Proof.  We continue in the notation of Lemma 2.3. We define 4, and §; by

Ri=ALR+81, i=0,1,2,.. (3.1)

and set
vi=ni—k; >0,  i=12 (3.2)
We then have

(Ag» Bo) = (0, 1), (A,,8,) = (1,0), (A, B,) = (ky + Ky Ky y2 + kyyy + 71 72)s
(3.3)

Aici =44, + B, Bisi=1iba, i21 (3.4)
Now since Zf =d,I + u,;J and Z, has line sums k; easily by induction,
0<d;+u <K, (3.5)

as no entry of Z¥ exceeds this bound. Moreover if n; > 2 we must have

k;'(‘_]>;ui>0' (3.6)

Now we have also from Lemma 2.3

k:.‘:dl.+luinl., i=1,2. (3.7)
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We define for i >0

e, =B — 7ihis
Ji=Bi— .
1 )
1 =— (ki —e) (3:8)
ny
Lo
¢ =— (ki —f).
ny
And note:
d,= e, dy =fi- =T Uy =0y,
) (3.9)
e, =kye;—nfis Ji =k fi—nye;.
Direct calculation gives
ey = (ki + 2kiky + k k3 + kiy, + 2k 7,
+k§}'1+2k1k271)(.'}’2*}’|)+}'%y§~ (3.10)

Si= (ké + 2kfk2 + k1k§ +k§}’1 + 2k, v 71
thiyy + 2k kyp)( — 72) + v

The theorem for k = 3 is established in |3 | but we note it is available here by
the observation that e, + 7, <0 and if k=3, e;+1,=d, +u, >0 using
(3.9) and (3.5). We assume now k # 3.

LEMMA 3.2. Fori> 4

e;=piy;— 1)+ (=) (3.11)
and
fi=aly — v+ (1) (3.12)

for suitable p;>Ki"' q;> ki, and s;=1t;=(y,y)"* if i is even and
Vs =ik =Gy i s odd.

Proof. We proceed by induction on i citing (3.10) for /= 4 and establish
the claim for e; as the case for f; follows by the symmetric role of Z, and Z,.
Now the recursion (3.9) gives

eifl:klei_nl-f;:klpi(yzhyl)+ (_l)iklsi—nlCIi(yl — )
7(_1)inlti (313)
== vk p )+ (_l)i (kys; —nt;)



X*-DIGRAPHS 141

and

kyp;+n.q;> ki by induction.
As to s;,, suppose i is even so ;= (y,7,)"* =t,. Then

(1) (kys; —nyt) = (7, 7,)" (ky — )
== (59" v,

s0 8;,,=(y 7))y, as required. If i is odd, s,=(y, y.) "2y, and
t;=(7,7)"""?y, and then

(1) (kys;i—n ;)= (_l)i n Vz)(ih”/z (kyyy—nyy,)
= (_l)i " Vz)”_l)/z kyyi —kiya—7172)
V2 — 7’1)(1‘1(}"172)”-1)/2) + (_I)HI (yl}’z)(iﬂw-

So here p;,, =k, p;+n,q,+ k,(y, Vz)(i_”/2 and s;,,= (Vl}’z)(iH)/z so the
lemma is established.

LemMmA 3.3, Ifni>landn,> 1, kg2

Proof. We assume y, > y, (note y, =y, is regularity). Suppose k > 4. If k
is odd by Lemma 3.2 and (3.9) d,=f, < — k%" and from (3.6) and (3.9)
¢, =u, < k5! whence d, +p, <0 in conflict with (3.5). If k is even, we
have e, > k{~' and since 4, >0, d, +u,=e, +u, > k="' in conflict with
(3.5) completing the proof.

This leaves us with the case that n, = 1 say, the graph is a cone. Suppose
72> 7,2 0. If y, =1, then k, = 0 and we have from (3.9) that ¢;, , = - f; and
Sini=kyfi+n,f;_, for i > 1. Now from (3.8)

1 )
Gii1 :;1_(I(lz+1 “fi+1): ky 9, —fi
2

so that

it b =k(fi+0)+ (= 1)fi_,. (3.14)
Now one can check that f, <0 and f; < O directly so that f; < 0 for i > 3 and
also one may compute

fa+¢3=k§(2_72)_2k2_Vz—}’%_kzyz(kz_1)<0

in this case. Then (3.14) gives f; + ¢, <0 for i >3 contrary to d, + u, =

Jit+ 6,20
Now if y, =0, k&, =1 and, from Lemma 3.2, d,=f, < — k%! and with
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(3.6), d,+u, <0 and again (3.5) is violated. This leaves only the case
y,=0, i.e.,, Z,=J so that y, =1 and k, = 0. Direct calculation reveals that
the (1, 2) entry of Z' is less than the (2. 3) entry for every i in this case so
that unless n = 2 (the graph of Fig. 2) Z' # D + AJ. This completes the proof
of Theorem 3.1.

4. THE REGULAR CASE
We begin with the following easy observation.

THEOREM 4.1. Let & be an algebra of n X n real symmetric matrices
containing 1. If A is normal and A™ € 7, then A4'€ .« .

Proof. Since .« contains only symmetric matrices we have (4™) =
(A" =A™ € .. Since 4 is normal, A™(4")" = (A4 Y" € /. Now (44")" =
X € & say and X is positive semi-definite evidently. Thus X has a unique
positive semi-definite mth root which, being a polynomial in X, lies in
. |12]. But this root is 44",

COROLLARY 4.2. Let A carry a regular x™-graph. Suppose A is normal.
Then A is the incidence matrix of a (v, k, A)-configuration.

Proof. Apply the theorem to .« = {af + bJ|a. b€ K}

COROLLARY 4.3. The carrving matrix of a regular x*-graph is normal if
and only if it is symmetric.

Proof. 1f A is nonsingular, since 4 sends A4, A'.J into the two-
dimensional algebra .« above, these matrices must be linearly dependent. If
A is singular, we have A* =/, AA" = kJ easily, then u = k and in any event
A=A"

CoroLLARY 4.4 (Lam [9|). There are no non-trivial circulant (0, 1)
matrices A satisfying A>=dl + AJ.

Proof. By Corollary 4.3, A would be symmetric and thus correspond to
a cyclic difference set with —1 as a multiplier which is known to be
impossible [1].

COROLLARY 4.5. A symmetric matrix A carrying an x*™-graph actually
carries an x*-graph.

We conclude by noting that a circulant 7 X n matrix carrying an x*-graph
would correspond to a “addition set,” Y. in the cyclic group Z,, i.e.. every
non-zero residue appears A times among the sums x + ) x, p€ Y. While
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these provide only trivial x*-graphs we note that the set {a, f, aff} is an
““addition set” in the dihedral group D, = (@, f|a* = f* = e; Baf = a’) giving
rise to

(0111000 0)
1 0110000
1 0001001
010001 10
i oi10000 1
01010010
00001101
00001 1 1 0]

satisfying A?=17+J. This solution, of trace zero, is non-isomorphic to
Ryser's solution [11]| with these parameters.
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