disease management program, significantly lower costs were noted during Year 1 which continued and expanded through Year 2 relative to matched comparators. Beyond claims analyses, however, incremental cost-effectiveness of disease management programs must also consider program-specific expenditures and clinical outcome measures.

PHYSICIAN PRACTICE SPECIALTY AND TYPES OF ANTI-DIABETIC TREATMENTS FOR PATIENTS WITH TYPE 2 DIABETES: ARE THEY ASSOCIATED?—A LARGE NATIONAL OBSERVATIONAL STUDY IN A MANAGED CARE SETTING

Sun P
Kaiser Research Group, Indianapolis, IN, USA

OBJECTIVE: To examine whether physicians' practice specialties are associated with the types of anti-diabetic treatments for patients with type 2 diabetes (T2D). METHODS: A retrospective study design was used. All T2D patients’ (N = 1,819,323) medication histories in a 12 month period were examined and classified into 9 treatment types (no anti-diabetic medication, oral anti-diabetic medication (OAD), basal insulin only, prandial insulin only, basal insulin with OAD, prandial insulin with OAD, basal/prandial insulin, basal/prandial insulin(including premixed insulins) with OAD, other insulin regimens). Physicians practice specialties were classified into five categories (family medicine, internal medicine, other primary care specialists, endocrinologists, other specialties). A two-way contingency table was created with Chi-square test and Fisher’s exact test to examine the possible association between physicians’ practice specialty and the types of anti-diabetic treatments they prescribed. RESULTS: Both the Chi-square test and the Fisher’s exact test had p < 0.0001, indicating that physicians’ practice specialty and their patients’ anti-diabetic treatment choices were statistically significantly associated. The contingency table suggests that the percent of patients receiving no anti-diabetic medications varied across specialties from 36.0% in patients who visited an endocrinologist to 49% and 52% in patients who visited a family medicine physician or internist, respectively. The percent of patients receiving OAD only varied across specialties from 33.1% in patients who visited an endocrinologist to 46.8% in patients who saw a family medicine physician, and 43.6% in patients under the care of an internist. And the percent of patients receiving insulin as part of their regimen varied across specialties from 4.12% in patients who visited a family medicine physician to 12.3% in patients who visited an endocrinologist. CONCLUSION: Physicians’ practice specialty is strongly associated with anti-diabetic medications prescribed for patients with T2D. Further research to examine outcomes differences across physician specialties is needed.

HEALTH CARE UTILISATION AND EXPENDITURES ASSOCIATED WITH TREATMENTS OF DIABETES MELLITUS WITHIN THE SLOVAK REPUBLIC

Tesár T1, Foltan V1, Ilavska A2
1Comenius University, Bratislava, Slovak Republic, 2Railway Hospital, Bratislava, Slovak Republic

OBJECTIVE: The aim of this study was to collect comparable and reliable data about consumption of drugs for treatment of diabetes mellitus in Slovakia during the period 1996–2006. METHODS: Data of wholesalers (following ATC/DDD), who are legally obliged provide this information to the Slovak Institute for Drug Control, was used for the analysis. The results were expressed in the numbers of the packages, finance units (€) and defined daily doses per 1000 inhabitants per day (DID).

RESULTS: The collected data shows a moderate increases in the antidiabetic’s consumption from 1996 to 2006 in term of DID (in 1996 (27.03), in 2001 (32.62) and in 2006 (37.90). A slight increase in A10AB group (Insulins and analogues, fast-acting) in 1996 (1.88), in 2001 (2.79) and in 2006 (4.64), a slight decrease in A10AC group (Insulins and analogues, intermediate-acting) in 1996 (4.25), in 2001 (3.74) and in 2006 (3.35), a moderate increase in A10AD group (Insulins and analogues, intermediate-acting) in 1996 (4.25), in 2001 (3.74) and in 2006 (3.35), a moderate increase in A10AC group (Insulins and analogues, intermediate-acting) in 1996 (0.51), in 2001 (2.36) and in 2006 (3.25), a steady increase in A10AE (Insulins and analogues, long-acting) in 2001 (0.03) and in 2006 (0.89), a dramatic increase in A10BA (Biguanides) in 1996 (4.45), in 2001 (5.75) and in 2006 (9.46), relatively stable consumption in A10BB (Sulfonylamides, urea derivatives) in 1996 (15.33), in 2001 (17.19) and in 2006 (14.76).