
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 123, 339-365 (1987) 

Resonance Functions for 
Radial Schrbdinger Operators 

ERIK BALSLEV 

Matemutisk Insritul, 
Ny Munkegade, Aarhus Universitet. 

8000 Aarhus C, Denmark 

Submitted by G.-C. Rota 

Received September 19, 1985 

A characterization of resonance functions in terms of amplitude and phase is 
given for radial Schriidinger operators. The potential is a sum of an analytic 
background potential as, for example, the Coulomb potential and an exponentially 
decaying term. ‘1” 1987 Academic Press, 1r.c 

INTRODUCTION 

Since the work of Gamow [S] on cc-decay of nuclei, resonances have 
been associated with outgoing, exponentially growing solutions of the 
Schrodinger equation (Gamow waves). Especially in the radial case an 
extensive literature has developed on this subject, cf. Newton [6]. For a 
more detailed analysis of resonance functions it is useful to connect them 
with solutions of the analytically continued Lippman-Schwinger equation. 

Assuming V exponentially decaying, the Lippman-Schwinger operator 
V&,(R) has an analytic continuation V&(k) into a strip as a function tak- 
ing values in the space %?(A,) of compact operators on an exponentially 
weighted space h,. Resonances are identified as singular points of V&(k) 
in the 4 th quadrant, and a resonance function $ at the resonance z is given 
by + = W,(k) @, where @ is a solution in h, of the equation 
@ + V&(z) @ = 0. This suggests a generalization to pairs (H,, H, + V), 
where H, = H, + U and U is a suitable short-range potential. The key 
property to be established is, that the operator VR,(k) should have an 
analytic %?(A,)-valued continuation Vj?,(k) into the 4th quadrant. 

In Section 1 we establish this theory of resonances for radial 
“background” potentials U, using partial wave analysis. We give an explicit 
expression for K,(k) for each value of the angular momentum quantum 
number I, in terms of analytically continued generalized eigenfunctions 
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(Lemma 1.4). It is also shown that if the S-matrix of (H,, H,) has 
an analytic extension into a region 0, then these analytically continued 
eigenfunctions exist (Lemma 1 .l) and hence VR,(k) has a %‘(A,)-valued 
continuation into {k E 0 1 Im k > -u}. 

An important example of potentials U, for which the S-matrix has an 
analytic extension, is the class of dilation-analytic, short-range potentials 
[ 11. Here b is the sector S, = {Z 1 1 Arg z 1 < r~} of dilation-analyticity. As a 
consequence (Theorem 1.6) we show that the S-matrix of (H,, H, + U + V) 
has an analytic extension for U short-range, dilation-analytic and P’ 
exponentially decaying, generalizing a result of [3] in the radial case. Thus, 
U + V can also serve as a background potential. 

In Section 2 we characterize a resonance z by the existence of a regular 
solution $ (the resonance function) of the Schrodinger equation 
(H, + U + V- z’) $ = 0 which is asymptotically very close to the outgoing 
solution of the equation (H, + U - z2) u = 0. 

Writing the Schrodinger equation as a pair of differential equations for 
the amplitudef and phase cp of the solution u, we derive in Section 3 some 
basic properties off and cp, when z2 is nonreal. 

In Section 4 we further analyze the resonance function $ =feiV in terms 
of certain asymptotic conditions on f and cp (Theorem 4.1). The result is 
precise in the following sense. Given an amplitude f satisfying these con- 
ditions, there exist a unique phase function cp and potential V, such that 
* =fe@ is the resonance function of H, + U + V at the prescribed 
resonance z. Thus, for a given background potential U and a prescribed 
resonance z, we have characterized the class of all functions II/ which can 
occur as resonance function for H, + U + V for some V = o(e P2ar). An 
analogous result is proved for antibound states (Theorem 4.4). Here the 
phase ‘p is 0, but in general the antibound state has a finite number of 
nodes, whereas the resonance function is node-free. 

Finally, in Section 5 the theory is extended to the physically interesting 
case, where U is the Coulomb potential. Using the explicitly known form of 
the Coulomb wave functions, we obtain similar results on resonance 
functions and antibound states with modifications due to the logarithmic 
term in the Coulomb phase function. 

Most of the results of Section l-4 have been given without proof in [2]. 

1. RESONANCES FOR A BACKGROUND POTENTIAL 

Let lQ+ =(O, co), F = [O, co), @+= {kE@IImk>O}, p= 
{kEC\Imk~O}. F or a>0 we let C,=(kE@(Imk> -e}, ra-,= 
{kE@l -a<Imk<a}. 

Let h = L2(R +), h2 = H’(R+ ), the Sobolev space of order 2 on R+. The 
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exponentially weighted spaces h + u and the weighted Sobolev space h2, are 
defined by 

h,,= {fl Ilfll+o= Ile’“Yll~< aI7 

For any angular momentum quantum number I= 0, 1,2,..., the free 
Ilamiltonian H& is the operator in It given by 

where Hk is essentially self-adjoint on C,“(R ‘) for 13 1, while the self- 
adjoint operator fl is the closure of its restriction to 
(uEC,“(F)lu(O)=O}. 

The free resolvent R;(k) = (Hh -k2))r is defined for ke @+, and 
R;(k) E B(h, h*). We also define the operators 

R$‘(k) E B(h,, hZ,) for ke@+ by R;“(k) = R,(k)1 h,. 

It is well known, that R$‘(k) has an analytic, B(h,, h2,)-valued analytic 
continuation WA(k) from @+ to a=,. If the potential V is in %(h2,, h,), we 
have V&(k) E %?(h,) analytic in C,, and resonances of (Hh, Hi + V) in a=, 
can be defined as poles of (1 + V&(k))-*. 

This suggests the following generalization. Let U be a symmetric, HA- 
compact operator; Hi = HA + U is self-adjoint on 9d0. Let R:(k) = 
(Hi-k*)-’ for ke@+, R:(k) E B(h, h’), and let R?“(k) = R:(k)1 h, E 
B(h,, hl,). If R?“(k) has an analytic continuation W:(k) from c + across KY+ 
to a larger domain 0, and VEV(~?~, h,), then V&(k) is a %(h,)-valued, 
analytic function in 0, and resonances of (H: , Hi + V) can be defined as 
poles of (1 + Vi?,(k))- ’ in the 4th quadrant. In this section we shall dis- 
cuss under what conditions on a multiplicative potential U such con- 
tinuation exists. U will be called the background potential. 

We make use of the well-known partial wave analysis, referring to [6] 
for general background. The potential U is assumed to be a real-valued, 
measurable function on R + satisfying the following conditions: 

(i) ~,Rr2JU(r))2dr<coforallR>0, 

(ii) ly I U(r)/ dr < co, 

(iii) ess s”pRgGrcm ( U(r)( < co for some R0 > 0. 

The class of potentials satisfying (i)-(iii) will be called S-R. We note 
that UE S- R implies U HA-compact and hence Hi = Hh + U self-adjoint 
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on gHb. We construct R:(k) = (H’, -P-l for kE @+ via the Green’s 
function for the equation 

d* +l(lt 1) -_ 
dr* r2+ U(r)-k2 (1.1) 

We denote by ub(k, r) the regular solution of (1.1 ), defined for k E @ and 
r>O by ub(k,r)=r’+’ for r + 0 and recall that ub(k, Y) is entire in k* for 
every r > 0. The outgoing and incoming solutions u’,(k, r), defined for 
+kEp\{O} by u’+(k, r) = ekikr f or r -+ co, are for every r > 0 analytic in 
IC + and continuous in +p\ (03. The Jost function Y,(k) = W[uc (k, .), 
u’~ (k, )] is analytic for k E @ + and continuous for k EF\ IO}. The con- 
nection between ub, u’+ , and U’ is given for kE R\{O}, r> 0 by 

uf,(k, r) = & [&( -k) u’+(k, r) - .5(k) u’ (k, r)]. (1.2) 

The S-matrix S,(k) is a continuous function of k E R + and is given by 

4(-k) S,(k) = ein’----. 
F%(k) 

(1.3) 

We set ,A;= {zEC: \fl(z)=Oj = {iE,(A>O, -A2 is an eigenvalue of H{]. 

LEMMA 1.1. Let 6) be u domain in @\((-A”} u (0)) having nonempty 
intersection with R +. The ,following statements are equivalent: 

(1) The Jost ,function e(k) has an analytic continuation e(k) from 
@+\(O} to OnC. 

(2) The S-matrix S,(k) has a meromorphic extension S,(k) from 
0 n R+ to 0 n Cc- with poles at the zeros of&(k) and no zeros. 

(3) For every r >O, u’+(k, r) has an analytic continuation ii’+(k, r) 
from @+\{O} to Gn@- 

Proof. (1) 0 (2) is clear from (1.3). 
(l)-(3). We define ii’+(k,r) for kEOn@- by 

ii: (k, r) = 
2ik -%k) ~ z&k, r) + ~ 

<e( -k) EC-k) 
u’- (k, r). (1.4) 

By (1.2) this agrees with u’+ (k, r) for k E R + n 0 and hence for every 
r > 0, ii’+ (k, r) is an analytic continuation of ul+(k, r) to 0 n @-. 

(3) 3 (1). Fix r0 > 0 such that u’(k, rO) #O for Im k ~0. Then 
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u[(k, rO) #O except for k in a discrete set A(T,,). Define g-;O(k) for 
k$&(r,), kEOnC- by 

Let r > 0 be fixed. We have for all k > 0 

uh(k rl=& [6(-k) d+(k, r)-%(k) d(k, r)]. 

By uniqueness of analytic continuation we get for all k E 6 n C -, 

k $ Jf’(roL 

Hence g?(k) = g-;(k) for k E 0 n @ -, k $ dt’(ro) u d(r). 
For every k E dd(ro) there exists rI such that k 4 d(r, ), since otherwise 

we would have d(k, r) E 0. Then the function $;o,Q defined by 

@;o.‘l(k) = 
i 

$$o(k) for k 4 dtf(rO) 
g;l(k) for kE,d(r,) 

is analytic also at k. This shows that all points of dt’(r,) are removable 
singularities of $-;o(k), and it follows that %(k) has an analytic con- 
tinuation to 0 n @ -. 

The lemma is proved. 

DEFINITION 1.2. Let 0 be a domain in C\({ --A’“} u {0}), such that 
0 n R + # @. The potential U E S- R is said to be &analytic, if the 
equivalent conditions (l)-(3) of Lemma 4.1 are satisfied. 

To proceed further it is important to know the asymptotic behaviour of 
i;‘+ (k, r) for k E 0 n C -. We have the following result. 

LEMMA 1.3. Assume that U E S - R is U-analytic. Then 

i?+(k, r) epikr + 1 for r -+ co, 

uniformly for k in compact subsets of @ + v 0. 

Proof: We recall the following estimate (cf. [S]): 

)uh(k,r)e-ik’I <C 

valid for Im k d 0, r 2 0. 

(1.5) 

409/123/2-4 
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From (1;4), (1.5) and u\(k, r) e f ikr + 1 for r -+ co it follows that for 
every compact subset K of 0 and E > 0 there exists C(K, E) such that 

1 i-?+(k, r) cikrI 6 C(K, E) for kEK,r>c. (1.6) 

Now conclude from (1.6), since u’+ (k, r) epikr + 1 for r --t cc k E C + n 0, 
by Vitali’s convergence theorem (cf. [7]), applied to any sequence 
i?+(k, r,) e-jkrn, k E 0, such that rn + co, that 

ii’+ (k, r,) e jkrn e 1 for kE0, 

uniformly for k in compact subsets of 0. The Lemma is proved. 

Based on Lemma 1.3 we obtain the following result on analytic con- 
tinuation of R:“(k) : 

LEMMA 1.4. Assume that UE S- R is O-analytic. Then the B(h,, h2,)- 
valued function R?(k) has a meromorphic continuation a{(k) from 62 + \N 
to 0 n Y0 with poles at the zeros sf g(k), given by 

(R:‘,(k) u)(r) = -& c’+ (k r) Jo2 ub(k, t) v(t) dt 
1 

+A ii’+(k, r) Ix u! (k, t) v(t) dt 
r 

-&zL(k,r) 1% ii’+(k, t)u(t)dt. 
I 

(1.7) 

Moreover. 

I (R:(k) u)(r)1 < C(k) rz ,for r near 0. 

For every r > 0 the function (a:(k) v)(r) is meromorphic in 
kE(@+\JI;^)u(OnYO) with poles at the zeros of g(k), and for vEh,, 
E{(k) o is a solution of the equation 

(Z-f:,--, - k*) W;(k) v = v. 

Proof. R:(k) is a meromorphic B(h, h*)-valued and hence R?“(k) a 
meromorphic B(h,, h2.)-valued function on C+\Jlr. By the standard con- 
struction of the Green’s function it is easy to show that R?(k) u is given for 
kE(C+\M)nFa by 
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(R?(k) u)(r) = & u’+ (k, r) jr u:, (k, t) u(t) df 
I 0 

+&@,I) j= u’(k,t)u(t)dt 
r 

-A u’(k, r) j= u’+(k, t) u(t) dt. 
r 

(1.8) 

By the O-analyticity of U and (1.5) (1.6) we can define (&(k, U)(T) for 
k~(On~U)\{k~~(k)=O} by (1.7). 

Thus, for u E h, the function u(k, r) = (a:(k) u)(r) is given by 

u(k, r) = jim X(k, r, t) u(t) dt, kEOnFo,r>O, 

where X(k, r, t) is meromorphic in 0 n Ya with poles at the zeros of 6(k) 
for every fixed r, t > 0. By Fubini’s theorem this implies 

u(k, r)dk=O for every Jordan curve 

Tc(On9ja)\{kl&(k)=O} 

and by Morera’s theorem u(k, r) is analytic in (0 n Fo)\{k 1 R(k) = O}. 
Clearly, the zeros of g(k) are poles of u(k, r). 

Since uL(k,r)=cr-’ for r+O, by (1.4) also zi’+(k,r)=cr-’ for r-+0, 
and since u&(k, r) N r’+ ’ for r -+ 0 we obtain, using the expression for 
u(k, r) given by the analytic continuation of the first formula in (1.8) that 
I u(k, r)l ,< c(k) r* for r near 0. 

Moreover, by Fubini’s and Morera’s theorems, for every u, w E h, the 
function 

(w &(k) u>~~,,_~ = jm W(r) 4k r) dr 
0 

is meromorphic in 0 n Y0 with poles at the zeros of $(k), hence &(k) is a 
B(h,, h-,)-valued meromorphic function in @ + u (0 n To,) with poles at 
the zeros of g(k). 
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Differentiation of (1.7) yields 

u”= Uu-k2u-u= [(U-k’) R:(k)-I] u. (1.9) 

In view of (i) and (iii), the above implies that Ui?:(k) and hence by (1.8) 
the map u -+ (d2/dr2) a{(k) u is a meromorphic B(h,, hp.)-valued function 
in BnYG. It follows that j?{(k) is a B(h,, /$,)-valued function in 
C+ u (0 n YU) with poles at the zeros of g(k). Moreover, by (1.9) 

(Hi.-, - k2) R”(k) u = u 

and the lemma is proved. 
Based on Lemma 1.4 we can now define resonances of (H,, H, + V) for 

exponentially decaying potentials V. We assume that V is a real-valued, 
measurable function on KY’ satisfying (i) and 

(ii’) V(r)= W(r)e*“‘, where SF+’ 1 W(t)12dt-+0 for r+ cc. 

The class of potentials V’ satisfying (i) and (ii’) will be denoted by 4. 

THEOREM 1.5. Assume that U E S-R is G-analytic and VE 4,. Then 
V@‘(k) is a @(h,)-oalued analytic function and (1 + V&(k)) ’ a B(h,)- 
valued meromorphic function in {C’u(0n~,)}\{k~~(k)=O). The 
operator Hi = Hb + U + V = H” + V is self-adjoint on SSnl = 62?t,; with 
o,( Hi) = [0, CC). The B(h,, hZ .)-ualued function R$“(k) = (& - k2) ’ 1 h, 
has the meromorphic continuation R:(k) from @ + \-/+’ to { @ + \-4 ‘) v 
{ 6 n To } gioen by 

R:(k) = &(k)( 1 + V&(k))) (1.10) 

with the same poles as (1 + V&(k)) ‘. This set of poles is symmetric with 
respect to the imaginary axis. 

Proof VEJ, implies that VEQ?(h2u, h,), and by Lemma 1.4 ViT{(k) is a 
%‘(h,)-valued analytic function on (C + u (8 n To)}\ (k 1 &k) = 0). By the 
analytic Fredholm theorem this implies that (1 + Vi?{(k)))’ is a 
meromorphic B(h,)-valued function in the same region. It follows from the 
conditions on U and V, that Hi and Hi are self-adjoint on gdo with 
a&H:) = a,(H:) = [0, cc ). Restriction of the second resolvent identity to h, 
yields Ry(k) = R$“(k)( 1 + VRi”(k))-’ for kE {C+\N}\{UIA>O, 
- 2’ E o,,(H,)}. By analytic continuation we obtain (1.10) as an identity of 
meromorphic functions in (C + \N) u (0 n YU). Clearly &(k) and 
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(1 + j?:(k)))’ have the same poles. Let R:“‘(k) be the adjoint of R?(k) 
with respects to the duality between h, and h-, defined by 

For k~~+\{iI~lA>0, -A2 E a,(H,) we have R;(k) = Ri( -I$); this 
implies R:“*(k) = Ria( -k) and hence by analytic continuation 

iT;(k) = a;( -E), ke (C+\,l/‘}u {OnTO] 

as an identity between meromorphic functions. Hence the set of poles of 
&(k) is symmetric with respect to the imaginary axis. 

THEOREM 1.6. Assume that U E S - R is O-analytic and V E 4. Then 
U + V is &$-analytic, where 0, = (0 n Fu} \ { k 1 &(k) = O}. Denoting by 
j:(k) and g,(k) the analytic continuation of the outgoing solution and the 
Jost function of the equation 

d2 -- 
dr’ 

+w+ 1) 7+ U+ V-k’ (1.11) 

we have 

y~=(l-&(k) V)ti’+(k), 
/ 

where ii’+ (k, r) is defined by (1.4). 

Proof Let W= U+ V and define y’+(k) for kEC+, k’#o,(H,) by 

Y’+(k) = (1 -R;(k) W) wj+)(k.), 

where wj+)(kr) is the Ricatti-Hankel function of order I (cf. [6, 
PP. 3% 391). 

For k2 4 od(H1) u od(H2) we have 

Y’+(k)=(l-R;(k) V)(l-R:(k) U)wj+‘(k.) 

=(1-R:(k) V)u;(k;)=(l-R&k) V)u’+(k;). (1.12) 

By Theorem 1.5 p’+(k) has an h2,-valued meromorphic continuation 
g’+(k) to {@‘\M} u {G’nFO) given by 

y’+(k) = (1 - R;(k) V) z?+(k). (1.13) 

Since #+(k, r) E C’(rW+), this is easily seen to imply that y’+(k, r) has a 
meromorphic continuation to { @ + \M} u { 0 n Fa} for each fixed r > 0. 
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For k > 0 we have, letting yb(k) denote the regular solution of ( 1.11) 

y’+:k, r)= [(l --R;(k) W) wj+‘(k.)](r) 

# (k r) kle- Ini.2 
= ,+j + ,(kr) - + 

c%;(k) (21+ 1 )!! 

X 
s 

= y;(k, t) N’(t) wj+ ‘(k, t) dt 
0 

x v’+(k r) 
2ik I 

y!m(k, t) W(f) wj+‘(k, t) dt 
I 

+).’ (kr) x 
2ik I 

y’+(k, t) H’(t) w$+‘(k, t) dt 
r 

= w) + ‘(kr ) - ‘*(9,(k)-I) 
/ 

v’ (k r) + o(elkr) = -+ q k) +4e’k’)* 
1 / ( 

where we have used the identity [6, 12.144)] and the fact that 
\vj + ‘(kr) N eikr and y’+ (k, I) 2: erkr for r + CC. 

Thus y’+(k, Y) E cPk’/Y,(k) for r + SC, and since ,y’+(k, r) is a solution of 
(1.11) we have 

y’+(k r) 
d+ (kr) = 9(k) for k>O,r>O. 

’ / 
(1.14) 

Moreover, for k > 0, 

where 5$(k) = (k’c’“‘/*/(21+ l)!!) g:(k). 
This implies 

%7(k) = 
( - 1)’ 2ikyo(k, r) 

3(-k) y’+(k r)--’ (k r) 
(1.15) 

for all k, r > 0 such that the denominator is not zero. 
By an argument similar to the one used in proving (3) + ( 1) of 

Lemma 1.1 we conclude that 9:(k) and hence 9,(k) has an analytic con- 
tinuation to 0, with zeros at the poles of j’+(k, r), i.e., the poles of I?:(k). 
Note that the order of a zero z of g,(k) is the same as the order of z as a 
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pole of j’+(k, r). Thus U + V is &$-analytic. The analytic continuation 
j’+ (k, r) known to exist by Lemma 1.1 is also obtained from (1.14) as 
.Y+(k r) = $;(k) @,? W, r). 

COROLLARY 1.7. Suppose that U is a S--R, dilation-analytic potential 
with angle of analyticity S,= {k( 1 Arg kl <u} and VEIL,. Then U+ V is 
(S, n Y0 )-analytic. 

Proof: It is proved in [ 11, that the scattering matrix and hence, in the 
radial case, S,(k) has a meromorphic extension to S, with no zeros, so U is 
S,-analytic. Then by Theorem 1.6, U + V is (S, n @.)-analytic. 

COROLLARY 1.8. Let U, V, 0, 0, be as in Theorem 1.6. Then .for z E Co1 
the following conditions are equivalent: 

(1) @z)=O. 

(2) The S-matrix of (HA, Hk + U+ V) has a pole at z. 

(3 ) The equation 

@+ V~~(z)@=O 

has a solution @E h,, @ # 0. 

(4) The operator-valued function I?:(k) E B(h,, h!.,) has a pole at z. 

DEFINITION 1.9. Let U, V, 0, 0, be as in Theorem 1.6. We denote by Z, 
the set {zE~,I@$(z)=O}. If z=c(-$EZ, and a, /IsO, z is called a 
resonance of Hb + U + V. If a < 0, /I > 0, z is a conjugate resonance. If 
z= -ib, /?>O, z is called a virtual pole. A point z = -i/?, /I < 0, 
corresponds to a bound state, -fi’ being a discrete eigenvalue of 
HA+ U+ V. 

Note that Z,n(R\{O})=@ (cf. [6]). 

2. A CHARACTERIZATION OF RESONANCE FUNCTIONS 

THEOREM 2.1. Let U E S - R be Co-analytic, let V E go, and set 
0,= {0n~~}\{k~&k)=O}. Let z=a-iBE@,, aE[W, O<p<a. Then 
z EC, if and only if there exists a function $ E C’(DB + ) with $’ lot. a.c. on 
Iw +, satisfying the following conditions: 

(1) (-(d2/dr2)+(l(l+1)/r2)+U(r)+V(r)-z2)t/(r)=Ofor rEIW+. 

(2) $(r) N cr’+’ for r -+ 0, where c # 0. 
Zf a#O,$(r)#Ofor r>O. 

(3) $(r)=iY+(z, r)+o(e(8p2a”) for r-b co. 
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$ is uniquely determined by ( 1 )-( 3) and is given by 

lj = R;(z) @, @=-VI), (2.1) 

where 

k-J” u,(z, t) Q(t) dt = 1. (2.2) 

Proof (A) Assume that z E 6,) -a < Im z < 0, and let @ E h, satisfy 

@+ vR:(z)@=o. 

Define Ic/ by (2.1). Clearly t/j E C’( [w + ), $’ E L;,,( iw + ) and by Lemma 1.4, 
(1) holds. Also by Lemma 1.4, ( $(r)l 6 Cr2 for small r, hence $ is a mul- 
tiple of the regular solution of ( 1 ), so $(r) 2 cr’+ ’ for r -+ 0 with c # 0. 

For a proof of the fact that IJ has no positive nodes if c( ~0, see 
Theorem 3.2 and Remark 3.3. It remains to prove (3). We estimate the last 
two terms on the r.h.s. of (1.7) as follows: We have 1 ii’- (z, r)l < Ce-“’ and 
by (1.6) Iii’+(z, r)l 6Ce”’ for large r. Since @E h,, we have 
@ = e-U’X, x E L2( [w + ). Then we get by Schwarz’ inequality for large r, 

‘x e m’O+B)’ I x(t)1 dt 

and hence 

1 
2-E 

ii’+ (z, r) I 
x 

d(z, t) Q(t) dt = o(e Or) for r-+co. (2.3) I 

Similarly we get 

s x fi’+(z, t)@(t)dt=o(e-“‘) for r-+ cc. (2.4) 
I 

If j? ub(k, t) Q(t) dt = 0, by (1.7), (2.3), and (2.4) + would be a square- 
integrable solution of (4), i.e., an eigenfunction of H’ with eigenvalue z2. 
For a # 0 this is obviously impossible. For a = 0 it would imply that both 
ifi and - ifl lie in C,, which is impossible (cf. [6, p. 3601). Hence 
so” uf,(k, t) G(t) dt #O, and we can normalize II/ by (2.2). Using (2.3), (2.4), 
(u+(z,r)J<Ces’ and the condition (ii’) (V= We-2”‘, SF+’ 1 W(t)12 dt-+O 
for r + co) we obtain from (1.7): 

D(r) = - V(r) t&r) = W(r) O(ecB m20)r). (2.5) 
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Using (2.5) we get the improved estimates 

cc ul(z, t) Q(t) dt 
m 

czar I W(t)1 dt 

= C f Ire” epzur ( W(t)(dt 
n=, r+n-1 

I Wt)12 dt ec2ur dt 

= o(e 2ar). 

Hence 

d(z, t)~(~)dt=o(e’~-~“)‘). (2.6) 

Similarly we get 

ii’+ (z, t) Q(t) dr = o(e’” - 2u)r). (2.7) 

From (2.2), (2.6), and (2.7) (3) follows. 
(B) Assume now that IJ satisfies (l)-(3) and set @ = - V$. By (3) and 

(ii’), @ = O(e(B-2a)r) W(r), hence @E h,. Set +, = R{(z) @. We shall prove 
that I,G = $, . $ r satisfies the conditions 

(1’) (-(d2/dr2)+(Z(f+l)/r2)+U(r)-z2)t,b,=@, 

(2’) I$,(r)l<Cr2forrsmall. 
(3’) Ii/,(r) = cfY+(z, r) + q(r), q(r) = o(e’P-2”)‘), 

where 

1 m c=- 
I a4 O 

uo(z, t) G(t) dt. 

Here (1’) and (2’) follow from Lemma 1.4, and (3’) is proved as above 
using Q(r) = O(e(B-2a)r) W(r). 

By (1) and (1’) the function Ic/O = I/I - II/, satisfies 

d2 +Z(Z+ 1) -- 
dr2 

T+ U(r)-z2 (2.8) 
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By (2) and (2’), 1 $,,(r) 1 d Cr2 for r small, hence for some a 

$“(r) = cru,(z, r) =& [6(-z) z?+(z, r) -g,(z) d(z, r)]. (2.9) 

Finally, by (3) and (3’) 

tie(r) = (1 -c) ii$(z, r) + o(e”’ 2u’r). (2.10) 

From (2.9) and (2.10), a =O, c = 1, $“=O follows. Hence Ic/ = a’,(z) CD, 
@ = - V$ and (2.2) holds. 

If 11/, and ti2 satisfy (l)-(3), then $, -i/j2 satisfies (l), (2) and 
($1-ti2)(r)=o(e (B 2u)r) for r + co; hence Ic/, - $I = 0, so $ is uniquely 
determined by ( 1 )-( 3). 

DEFINITION 2.2. Let z = a - i/I E .E’,, 0 -C b < CC If x > 0, the function $ of 
Theorem 2.1 is called the resonance function of H’ at Z. If CY < 0, $ is called 
the conjugate resonance function of H’ at 2 (in fact, $ is the complex con- 
jugate of the resonance function at -5). If r = 0, then $ is called the 
antibound state of H’ at 2. 

Remark 2.3. The resonances and resonance functions of H’ are in fact 
independent of the decomposition of the total potential Y = U + V. In a 
standard way, resonances are zeros of the Jost function g,(k) 
(cf. Theorem 1.6), and the resonance function I++ at the resonance ; is the 
regular solution of (1) which is equal to the outgoing solution normalized 
by t/(r) = eikr for r + ~j. 

If the total potential Y = U + V’ has another decomposition Y = I/, + V, 
as in Theorem 2.1, then one obtains a new fucntion @, = - V’, $ with 
$ = R’,(Z) CD,, where R’,(k) = (Hk + U, - k2) I-. Then I(/ is characterized 
by being asymptotically very close to the outgoing solution of (2.8) with U 
replaced by U,. The interest of Theorem 2.1 lies in the fact, that certain 
splittings of Y are natural, as for example, if Y = r y + V, VE da, 1 d y < $ 
(for the case CI = 1 see Sect. 5). Also, keeping the background potential U 
fixed and letting V vary over &,, we obtain from Theorem 2.1 a complete 
characterization of the class of all resonance functions, as we shall see in 
Section 4. 

3. DIFFERENTIAL EQUATIONS FOR AMPLITUDE AND PHASE 

We consider a differential equation of the form 

--u”+ w-u-((E-il‘)u=O, (3.1) 
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where WE L,‘,,(I), I is a (finite or infinite) open interval (a, b), and E and f 
are given real numbers with T# 0. A solution u of (3.1) is a complex- 
valued function on Z, such that u and U’ are lot. a.c. on Z, i.e., absolutely 
continuous on every closed interval contained in 1, and (3.1) holds a.e. on 
I. Let f be the amplitude of U, i.e., 

u =fe, ,f= (Uu) I:*. (3.2) 

THEOREM 3.1. Let u he a solution of (3.1) on I. Then u has at most one 
node in I, i.e., there is at most one point r,, E I such that u(r”) = 0. 

If u has no node in I, f E C’(I) andf’ is lot. a.~. on I. There exists a real- 
valued phase function q E C’(Z) with cp” lot. a.c. on I, such that u =fe@. The 
pair (f; q~) satisfies the differential equations 

-,f’ + I/f’+ cp’ff- Ef = 0, (3.3) 

fq” + 2f“(p’ - rf = 0. 

The function cp’ is given in terms of ,ffor any c > 0 by 

(3.4 

cp’(r)=f -I(r) . (3.5 

Jf u has a node r0 E I, then f’ is kc. a.c. on I\ { rO}, and f’ has the limits 
f i (rO) = + 1 u’(rO) 1. There exists a phase firnction cp E C*(Z\ { rO}) with cp” 
lot. ac. on Z\ (rO} and with the limits cp + (r”) = cp (rO) + 71, ‘p’? (rO) = 0, 
cp> (rO) = r/3, such that u = fe’” on I. 

The pair (A cp) satisfies (3.3) and (3.4) on (a, rO) u (rO, b), and (3.5) holds 
for every c E I and r E I, where cp’(r,) is replaced by 0 and the r.h.s. for r = r,, 
means the limit for r + rO+ . 

Proof: First, assume that u has no node in I. Then by (3.2) SE C’(Z) 
with ,f” lot. a.c. on I. Clearly, 8 = u/f E C’(Z) with 0’ lot. a.c. on Z, and there 
exists a continuous phase fuction q~ such that 0 = I?. Since cp’ = -i&/O, 
cp’ is lot. a.c. on I. Inserting u =,fi’p . m (3.1), we obtain (3.3) and (3.4) a.e. 
on I. By (3.4) cp” can be taken to be lot. a.c. on I with (2.4) holding for all 
r E Z, and solving (3.4) for q’ we get (3.5). 

Assume now that u has at least one node rO. If r0 were an accumulation 
point of the set of nodes of U, we would have u(rO) = u’(r,) = 0, implying 
u 3 0. Hence r0 is isolated in this set. Let I, and I, be the maximal open 
intervals to the left and right of r,, such that u(r) #O for r E I, u I,. Then 
.f~c’(Z, uZ,), OtzC’(Z, ~1,). Moreover, for rEZj, i= 1, 2, 

~=(-l)‘[~~~“*~,,.~(r~),=f~~(r~). (3.6) 
0 
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Furthermore, 

u(r)I(r - ro) 
er) =f(r)/(r _ ro) -=z-+ + 

u’(r,) ___ := t3+(ro). 
- I u’(r0) I 

(3.7) 

By (3.2) for r E I, u I1 

.f’(r) = $22(r) O(r) + u’(r) B(r)]. 

From (3.6)-( 3.8) follows 

f'(r) w f I u'(rd I =.f'* (rd. 

(3.8) 

(3.9) 

By (3.7) there exists a continuous phase function cp on I, u I, such that cp 
has limits cp + (ro) at r. and 

C3(r)=erq’r) for rEI,uZ2, 0, (ro) = erqptCro). (3.10) 

Clearly, cp’ = -i&/O is lot ac. on I, u I,, and (L cp) satisfies (3.3) and 
(3.4) a.e. on I, u I,. By (3.4) cp” can be taken lot. a.c. on I, u I,. 

The solutions of (3.4) for cp’ in terms off are given on I,, i = 1, 2, by 

q’(r) = c, f 2(r) + cfm ‘(r) j’f ‘(t) dt. 
r0 

(3.11) 

By (3.11) and 1’Hospital’s rule 

j:,f ‘(A dt 
r!Ci f2(r) 

f(r) 
= , !z, 2f’( r) = O’ 

By (3.9) (3.11) and (3.12) 

(p’(r) 31 Ci (u’(r,)j -’ (r - ro)-’ for r-+rO+. - 

This contradicts the existence of q +(r,,) unless C, = C2 = 0; we obtain for 
rEZ, uZ, 

q’(r) = l-f-‘(r) j’f ‘(t) dt 
f-0 

(3.13) 

and it follows from (3.12) and (3.13) that cp’+(r,)=O. This together with 
(3.13) implies that ‘p’ E C’(Z, u I,) and that q’ extends by continuity across 
ro. Moreover, by (3.13) 

q”(r) = -2Tf’(r) ‘“;tr! dt + r 
r 

(3.14) 

and it follows from (3.14) by I’Hospital’s rule that cp:(ro) = I’/3. 
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It is now easy to prove that u has at most one node. Assume that r,, 
r,EZand 

f(r, 1 =f(r,) = 02 f(r)>0 for r,<r<rz. 

By (3.13) with r0 replaced by r, we have for r, <r<rz 

contradicting cpL (rz) = 0. 
Thus, if u has a node rO, we have I, = (a, rO), I,(r,, b), and the theorem 

is proved. It only remains to note, that (3.5) for c = r. follows from (3.4) 
and (3.13), and by (3.7) cp can be chosen such that q+(r,)=cpP(r,)+rr. 

THEOREM 3.2. Let W be a real-valued, measurable function on IW+ 
satisfying the condition 

r 1 W(r)/ dr < co for every R > 0. (*I 

Let l=O,l, 2 ,..., be fixed, and let uh be the regular solution on [w + of the 
differential equation 

-u,,+4,+ 1) 
r2 

u+ Wu-k2u=0 (3.15) 

defined by 

u;(r) - r’+ ’ ,for r -+ 0, (3.16) 

where k is fixed with k2 = E - ir, E E [w, f > 0. 
Then u; has no nodes in iw +. There exists a continuous phase function on 

[w + such that uh = feiV, and the pair (f, cp) satisfies the following conditions: 

(1) f E C’(F), f’ lot a.c. on Iw+, f(r) > 0 for r > 0, 
(2) f(r) N r’+ ’ ,f’(r)=(I+l)r’forr+O, 
(3) cp c C’(F), cp” lot. a.c. on F, 

(4) cp’+(O)=O, qP(O)=U(21+3), 

(5) v’(r) = r(J%f2(t) dth!f2(r), 
(6) -f”+ (1(1+ l)/r2)f+ Wf+ cp’2f- Ef=O, 

(7) fq”+2f’(p’--f=o. 

Proof: By Theorem 3.1, u& has at most one positive node. 
Assume that uh(ro)=O, r,>O. By Theorem 3.1, fe C’(0, ro) with 
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f’ lot. a.c. on (0, rO), and there exists cp E C’(O, rO) with q” lot. a.c. on (0, rO) 
such that r.4; =feiV. Moreover, (6) and (7) are satisfied on (0, rO). 

For 1=0, (3.16) amounts to 

uo,(O) = 0, u;‘(o) = 1. (3.17) 

For I> 1, by (3.16) 

Also, by (3.15), (3.16), and (*), 

(3.18) 

and hence 

ui(r)=zQl)-[’ ui(t)dt r+,I + U;(l)-{; u;(t)dt=u;(O)=O. (3.19) 
r 

From (3.16) (3.18) and (3.19) we get 

u;(r)= ru[(l)dt-(I+l)r’ 
1 

for r+O. (3.20) 
0 

By (3.16) and (3.20), for O< r<r,, 

d(r) .f’(r) 
m=T(ri+q’(r)=(f+l)r-’ for r + 0. (3.21) 

0 

From (3.17) it follows that (3.19) holds also for I = 0, which implies that 
for 1 = 0, 1, 2 ,..., 

and 

v’(r) r-0 + 0. (3.23) 

BY (3.16), 

f(r) 2: r’+ ’ for r-+0 (3.24) 

and hence by (3.22), 

f’(r) = (I+ 1) r’ for r-+0 (3.25) 
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proving (2). By Theorem 3.1, for 0 < r < rO, 

q’(r) = ff-2(r) Irf2(t) dt. 
'0 

From (3.24) and (3.26), 

(3.26) 

q’(r) N -l-j-rof2(t) dt.r-2’--2 for r+O, 
0 

follows, contradicting (3.23). We conclude that U; has no positive nodes 
and that (6) and (7) hold on lR+. Also, 

q’(r) = Cfe2(r) + F”-‘(r) !“‘.fZ(t) dt 
0 

is the general solution of (7) on R+. By (3.23) and (3.24) we must have 
C=O, and (5) is proved. By (5) 

By (5), q’(r) = (I’/(21 + 3)) r for r + 0 and hence, by (3.22) and (3.27), 

I+1 
q”(r) ---r - 2r--- 

r 
1+3+r=- 

21+3 
for r + 0, 

which concludes the proof of (4), and the theorem is proved. 

Remark 3.3. The fact that any nonzero solution u of (3.1) has at most 
one node can be proved by noting that if rl < r2 were two such zeros, the 
boundary value problem defined by (3.1) on (rl, r2) and u(rl)= u(r,)=O 
would have a nonreal eigenvalue. Similarly, the regular solution ui(k, r) has 
no nodes, because if ui(k, ro) = 0 then the Dirichlet problem in the ball 
(71 I rl < r. ) would have a nonreal eigenvalue. 

4. RESONANCE FUNCTIONS CHARACTERIZED BY 
AMPLITUDE AND PHASE 

Let U E S- R be an O-analytic potential and let z = U- i/I E 0, a> 0, 
0 < P =Z a, e(z) # 0. Let I?+ (z, r) be the outgoing solution, defined by (1.4), 
of the equation 

(H: - 2’) u(z, r) = 0, (4.1) 
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where 

Hi= -.$+ 1(1+ 1) 
y2 +- U(r). 

By Theorem 3.1, ii’+ (2, r) has at most one node r,, > 0, and ii, (z, r) can 
be written as 

iii (z, r) =f,(r) eMr), (4.2) 

where cp, is continuous on R +, if ii’+(z, r) has no node, and continuous on 
R+\{r,j with q~+(rd=cp,-(rd+ rc if zY+(z, rO) = 0. Moreover, since by 
Lemma 1.3 ii’+(z, r) N e”’ for r -+ co, we can choose cp, such that 
q,(r) - t(r + 0 for r -+ co. Also, f,(r) 2: e/jr for r -+ XI. 

If VE 8U and z is a resonance of H: + V with resonance function $, then 
by Theorems 2.1 and 3.2 $ can be written as 

$(r) =f(r) erv’r), (4.3) 

where cp is continuous on [0, co) and q(r) - q,(r) + 0 for r -+ og. 
In what follows it is understood, that the phase functions ‘p, and cp are 

chosen as indicated above. With the notations (4.2) and (4.3) and the 
above normalizations of the phase functions we can now formulate the 
main result of this section. 

THEOREM 4.1. Assume that 42 E S - R is 0-anal-ytic. 

(A) Let VEC$,, and assume that Z=CI-$EC is a resonance of 
(Hb, Hb + V) with resonance function $. The pair (,J cp) satisfies the follow- 
ing conditions, where z2 = E - iT: 

( 1) f e C’ (F), f’ lot. a.c. on [Wt, f(r) > 0 for r > 0, 

(2) ,f(r)-cr’+‘, f’(r)=c(I+ 1)r for r +O, 

(3) f(r) =f,(r) + o(ecam~ 20)r) for r -+ x, 

(4) f”EL:,,([W+),S:,Ir(f”(r)lf(r))-(1(1+l)lr)l2dr<co, 
(5) f”(r)=f”(r)+e’b~2”“g,(r), where 

I 

r+ 1 

I sAt)l’dr+O for r--+00, r 

(6) lkf2(t) dt +lT p,(t) dt = rP’cpj(r)f:(r)for every r >O, where 

p,(r) =f 2(r) -f Y(r), 
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(7) cp E C’(F), cp” lot. a.c. on [w+, 

(8) q'(O)=O, q"(O)= r/(21+ 3), 
(9) cp'(r)=rf~2(r)S~f2(t)dt, 

(10) q’(r) = q;(r) + o(eP2”‘)for r -+ co, 

(11) v(r) = v,(r) + r.fT (@At) [h f’(s) W:(t) f2(t)) + (St” ids) 
W} dt, 

(12) cp(r)=cp,(r)+o(eC2”‘) for r+ co, 
(13) -f”+(U+ V+(1(1+1)/r2))S+(p’zf-Ef=O, 
(14) 2f'(p'+f#-ff=O. 

(B) Let z = CI - i/l E 0, u > 0, 0 < B < a, R(z) # 0, z* = E - iT. Assume 
that f satisfies conditions (l)-(6) and define cp by (11) and V by (13). Then 
VEX,, and Y=fe@ is the resonance function of (Hi, Hi + V) at the 
resonance z. 

Proof: (A) Assume that z = c1- i/l is a resonance of (Hi, Hi + V), where 
VE 4, and let $ =fe@ be the resonance function at z. Then (l), (2), (7), 
(8) (9) (13), and (14) follow from $EC’([W+), I,VEL,‘,,,(R+) and (l), (2) 
of Theorem 2.1, and Theorem 3.2. Now (4) follows from condition (1) on 
VE 4, (l), (2), (7), and (13). From (3) of Theorem 2.1, (3) and (12) follow. 
We now turn to the proof of (6) and (10). By (9) for any c>O, 

cp’(r)=ffp2(r)[:f2(t)dt+rf m2(r)jrf2(t)dt 
‘ 

=~f;2(r)S(f2(t)dt+rf-;2(r)~rf~(t)dt 
0 c 

-CYf.r2(r)j'apdt)dt. r (4.4) 

By (3.11) and (3.13) of Theorem 3.1, z?+ (z, r) has at most one node, and 
for any c > 0, 

cpXr)=cpXc)f?(c)f;2(r)+rf;2(r)jrf%f)dt. ‘ (4.5) 

Introducing (4.5) into (4.4) and using (3) and p,(r) =f*(r)-f:(r)= 
de (2p ~ ‘+) for r + 00, we get 

409/123/2-5 
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p,(r) v’(r) = d(r) + V;*(r) + ~,f2~r~f~~r~ 

X [if2(l) dt - T...;‘(r) ix p,(t) dt 
r 

= q;(r) + Cf,m2(r) + o(eP2”‘), (4.6) 

where C = Z- j;;f”( t) dt + r j: p,(t) dt - cp;(c)f’y(c). 
Clearly (4.6) contradicts (12) unless C= 0. This yields (6). Inserting 

C= 0 in (4.6) we get (lo), and taking account again of (12), we obtain 
(11). Finally (5) follows from (3), (lo), (13) and condition (ii’) on V. 

(B) Assume now that f satisfies (l)-(6) with z= c( - ifl, a >O, 
O<fi<a, z*=E-if. Define cp by (11) and Vby (13). From (11) and (6) 
we conclude that cp’ is given by (3.21) with C=O. By (4.5) this implies that 
cp’ satisfies (9), and hence (f, cp) is a solution of (14). Since (13) is satisfied 
by definition of V, it follows that II/ =,felW satisfies (1) of Theorem 2.1. 
Properties (2) and (3) as well as (i) of VE 4 are easy consequences of the 
properties off and cp. Finally, we verify (ii’) of VE 4 as follows, using (3), 
(5), and (lo), 

v(r) =f”(r) [(I+ 1) ----viz(r)+ E 
f(r) r2 

=f;“(r) + ecp ‘“‘g,(r) l(l+ 1 ) -- 
f,(r) + o(P 2u)r) r2 

- q;‘(r) + o(e 2ur) + E 

K(r) /(I+ 1) =--- 
.fAr) r2 

where 

i 
r 

r 

since (f,, cp,) satisfies 

+’ 1 W(t)(*dt+O for r+a, 

(13) with V=O. 
It now follows from Theorem 2.1, that $ is the resonance function of 

Hi + V at z. 

COROLLARY 4.2. Assuming U E C”( R + ) we have V E C”( IR + ) if and only 
iff~C”+*(R+), ~EC”+~([W+). A ssuming U analytic in a sector S,, we have 
V analytic in S, if and only iff and cp are analytic in S,. V = o(eWbr) for all 
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b > 0 if and only iff(r) -f,(r) = o(e-b’), q(r) - q,(r) = o(ePhr)for all b > 0. 
V(r) = Ofor r > R zfand only zf”f(r) =fz(r), q(r) = q,(r), p,(r) = 0 for r > R. 

In this case, (3) (4) (lo), (12) are automatic, and (6) becomes for r 2 R 

(6~) I i.f?( t) dt = rP ‘cp;(r)fy(r). 

Note that (6,) cannot be satisfied with r = r0 iff,(r,) = 0 for some r0 > R. 
Thus, a necessary condition for the existence of a resonance at z for any 
such V’ that a’+ (z, r) has no node r0 > R. 

Remark 4.3. Theorem 2.1 also covers the case z = --CI - i/I, c1> 0, 
0 < p < a, i.e., conjugate resonances. Accordingly, Theorem 4.1 extends to 
conjugate resonance states. The conjugate resonance state at --a - ifi is 
simply IJ = fe ~ @, where !P is the resonance state at CI - ifi. 

It remains to discuss the case when LY = 0. With the usual normalization 
of phases, the function $ is real, q(r) = 0. This simplifies considerably the 
results. On the other hand the absence of nodes of the resonance function + 
is linked to the existence of a nontrivial phase function. When a = 0, II/ has 
in general nodes. 

We obtain the following results on antibound states. 

THEOREM 4.4. Assume that U E S- R is O-analytic and z = -ifl E 0, 
O<fl<a. 

(A) Let V E 8; and let z be a virtual pole of Hi + V with antibound 
state $. Then $ is a real-valued function satisfying the following conditions: 

(1) $EC’(R+), tj’l0c.a.c. on IWf, 
(2) $ has at most a finite number of nodes, 
(3) $(r)2:cr’+lfor r-+0, c#O, 

(4) t/z(r) = zi’,( -i/Iv) + o(e(B-2u)r) for r + 02, 

(5) V’EL~~,(~~), JA Ir(~“(r)l~(r))-(l(l+ l)lr’)l’dr< ~0, 

(6) ~II(r)=iil;(-iipr)+e’B-2u’rg,(r), whereJ;+’ jg,(t)l’dt+Ofor 
r + 0, 

(7) ( -(d2/dr2) + (l(1 + 1)/r*) + U(r) + V(r) + /I*) ll/(r) =0 for 
rElR+. 

(B) Assume that zj satisfies (l)-(6) with 0 < B < u and deJine V by (7). 
Then VE 4, and $ is the antibound state of Hi + V at -i/?. 
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Proof: (A) Assume that VE 4 and $I is the antibound state of H’, + V at 
-i/I. Then (l), (3), (4), (7) are satisfied by Theorem 2.1. It follows from (4) 
that I,+ has no nodes for large r, since ii’+( - ir) 2: eBr for r -+ XI. If r,, > 0 
were an accumulation point of positive nodes, we would have $(rO) = 
$‘(r,) = 0, hence $ = 0, so the positive nodes are isolated. Finally rrr +,1 0 
(r,, # rm for n #m) and $(r,,) = 0 for all y1 would contradict (3) and (2) is 
proved. From (4) (7) and &ii’), we obtain (6) and (5) follows from ( 1 ), 
(7) and 4(i). 

(B) Assume that $ satisfies (l)-(6) with 0 < fl <a and define V by (7). It 
is easy to show that VE 6, and it follows from Theorem 2.1 that II/ is an 
antibound state at -i/L 

Remark 4.5. Theorem 2.1 and hence Theorem 4.4 are valid also for 
-a < p < 0, giving a characterization of bound states of H{ + V at eigen- 
values - ifi E z,. 

The proof is identical with that for 0 < /? < u. 

5. RESONANCES WITH COULOMB POTENTIAL AS BACKGROUND 

In this section we extend the results of Section 4 to the case, where the 
short-range potential U is replaced by the Coulomb potential. The regular, 
outgoing and incoming solutions are known explicitly in terms of con- 
fluent, hypergeometric functions, and the analytically continued resolvent 
&~)EL!~(R,, LT.,) is constructed by means of these solutions. The result 
differs from the short-range case because of the asymptotically logarithmic 
term in the Coulomb phase function and the resulting difference in the 
asymptotic behaviour of the amplitude and phase of the resonance 
function. 

The unperturbed operator Hi. is given by 

H,, _ d’ I 2y + 41+ 1) 
dr2 r r2 ' 

where y = z,z,e2p, and z,e, z2e are the charges of the two particles and p 
their reduced mass. 

The regular, outgoing and incoming solutions uf,, u:,+, and u:.- of the 
equation 

(5.1) 
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are given by 

u;.(k, r) = r ‘+‘eikr@ l+ 1 +ii, 21+2, -2ikr , 

u:.+(k, r) = ( - 2kr) If 1 iei(kr~(n//Z)) eny/2k 

x Y I+ 1 +ii, 21+2,-2ikr , 
( > 

u$(k, r) = u:.+( -k, r), 

and 

W,(k) = Wuf.(k, r), ui.+(k, r)) 

= -(2k)- I e(ny/2k) + (i(nU2)) r(21+ 2) 
r(l+ 1 + i(y/k))’ (5.2) 

where 4 and II/ are the regular and irregular confluent hypergeometric 
functions (cf. [4, 63). 

The function u!.(k, r) is analytic in k for k # 0 with a simple pole at 0 and 
entire in r, whereas $(a, c; x) is a multi-valued function of x with a 
logarithmic singularity at 0. Hence for fixed r > 0 IA:.+ continues analytically 
from C + into the 4th quadrant. The asymptotic behaviour in r for fixed 
k # 0 is given (cf. [4, 61) by 

ui(k, r) 2: 2(2k)-‘- ’ e7n’2k 
r(21+ 2) 

I r(l+ 1 + i(y/k))l 

x sin kr-ilog2kr--G+q, for r+co, 

where 

q,= Arg r(l+ 1 + i(y/k)), 

u;,,(k, r) 2: ,~i(kr--(ylk)log(~Zkr)) for r-+co, 

ui.(k, r) N r’+ ’ for r -+ 0, 

uj.+(k, r) z Cr-’ for r +O. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

We have the following estimates for fixed k # 0, k = a - $3, 

I uf+(k, r)l < Ce~‘r~YI(zz+f12), 

1 ui...(k, r)l 6 Cep~rrP~l(z2+BZ). 

(5.7) 

(5.8) 
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Due to the estimate (5.7) we can continue analytically 
R>“(k) E g(&,, 42,) from C + to R+ u (kl -a<Imk<O). Explicitly, we 
have 

LEMMA 5.1. R:“(k) has an analytic continuation R:(k) from @ + to [w + u 
{kl -a<Zmk<O}, given by 

(R!.(k) v)(r) = - & ut.+(k, r) /irn ui.(k, t) v(t) dt 

+A uf+(k, r) ‘* u:.-(k, t) v(t) dt 
r 

-Au!. (k, r) Ix u:+(k, t) v(t) dt. (5.9) 
I 

Here the function W,(k), given by (5.2), has zeros at k = - iy( p + 1) ‘, 
p E N, corresponding to the bound states of the hydrogen atom if y < 0 and 
the antibound states if y > 0. Thus, R:.(k) has a logarithmic branch point at 
0 and poles at the points { - iy(p + 1) ’ 1 p E N } n C,. 

Based on Lemma 5.1 and the asymptotic expressions (5.3)-(5.6) we can 
now extend the analysis of resonance functions to the pair of operators 
(Hf., HL+ V), where VE&. 

We notice that Theorem 2.2, which is proved for short range potentials, 
also holds for (y/r) + V’ due to the asymptotic estimates (5.5), (5.6) for the 
Coulomb wave functions. 

By Lemma 5.1, for VE 4 the %‘(&,)-valued function VRf”(k) has the 
analytic continuation V&k) to lR+ u {k 1 --a < Im k < 0} with poles at the 
points {k = -iy(p + I) --’ I p E N }. It follows that (1 + Vii:.(k)) ’ has a 
meromorphic continuation to this region. The set of poles of 
(1 + V&k)))’ is denoted by C,,. It is divided as usual into resonances, 
antibound states and bound states of Hi. + V. From Lemma 5.1, (5.7), and 
(5.8) we obtain the following characterization of resonances and virtual 
poles of H: + V. We omit the proof, which is similar to the previous cases. 

THEOREM 5.2. Let z=cc-ij?, ME[W, O<j<a, zf -iy(p+I)-‘, PEN/. 
Then z EC,., if and only if there exists a function $ on [w + satisfying con- 
ditions ( 1) and (2) of Theorem 2.1 with V replaced by (2y/r) + V as well as 

(3’) $(r) = u:,+(r) + o(e’8~2u”rSric’2+82),for r--t cc. 

$ is uniquely determined by (1) (2), and (3’) and is given by 

I) = R;.(z) @, a= -VI), 
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where 

1 cxz 
-- 

f W,(z) 0 
u;(z, t) Q(t) dt = 1. 

From Lemma 5.2 we obtain the following characterization of resonance 
functions of (H:, Ht. + V). 

THEOREM 5.3. (A) Assume that VE 4, and let z= a - ij?, c1 >O, 
0 < B < CI, be a resonance of (Hi, Hf. + V) with resonance function !P=fe@, 
and set u,(.+ (zr) = f: eiqc with the usual normalization of phases. Then the pair 
(f, cp) satisfies conditions (l)-( 14) of Theorem 4.1 with (f,, cp,) replaced by 
(f i, cp:.), u replaced by 2y/r in ( 13) and eCB - 2u” replaced by eCp - 2u)rrfiy’(z2 + D*) 
in (3) and (5). 

(B) Assume that f satisfies (l)-(6) of Theorem 3.3 with this 
mod$‘cation, where CI > 0, 0 < /? < a. Define cp by (11) and V by 

v_f” l(l+l) 3 (p’2+E -___ 
fr’r ’ 

Then V E c$,, and z = a - ip is a resonance of (Hi., Hi. + V) with resonance 
function * = fe’“. 

The characterization of antibound states and bound states is obtained as 
before. Thus, Theorem 4.4 holds with Hi replaced by Hf. for /? # y(p + 1) ~ ’ 
if y >O, zY+ replaced by ui.+, u by (2y/r) in (7) and eCDPzo)’ by 
e(b 2fl)ryB’/(x2+gZ) in (4) and (6). 

Remark 4.5 extends in the same way for -a<B<O, /?#y(p+ 1))’ if 
y < 0. 
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