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Reactive oxygen species (ROS) and reactive oxygen intermediates (ROI) play crucial roles in physiological pro-
cesses.While excessive ROS damages cells, smallfluctuations in ROS levels represent physiological signals impor-
tant for vital functions. Despite the physiological importance of ROS, many fundamental questions remain
unanswered, such aswhich types of ROS occur in cells, how they distribute inside cells, and how long they remain
in an active form. The current study presents a ratiometric sensor of intracellular ROS levels based on genetically
engineered voltage-gated sodium channels (roNaV). roNaV can be used for detecting oxidative modification that
occurs near the plasma membrane with a sensitivity similar to existing fluorescence-based ROS sensors. More-
over, roNaV has several advantages over traditional sensors because it does not need excitation light for sensing,
and thus, can be used to detect phototoxic cellular modifications. In addition, the ROS dynamic range of roNaV is
easilymanipulated in real time bymeans of the endogenous channel inactivationmechanism.Measurements on
ROS liberated from intracellular Lucifer Yellow and genetically encoded KillerRed have revealed an assessment of
ROS lifetime in individual mammalian cells. Flashlight-induced ROS concentration decayed with twomajor time
constants of about 10 and 1000 ms.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Reactive species (RS), such as reactive oxygen species (ROS) and re-
active oxygen intermediates (ROI), comprise a family of mostly small
molecules capable of oxidatively modifying biomolecules such as
nucleic acids, proteins, and lipids. Typical ROS are singlet oxygen
(1O2), superoxide (O•2−), hydroxyl (OH•), peroxyl (RO2•), alkoxyl (RO•)
radicals, and hydrogen peroxide (H2O2). Themajor ROS sources endog-
enous to cells are the mitochondrial respiratory chain and the NADPH
oxidases (NOXs). In addition, exogenous sources such as ionizing radia-
tion, UV light, and cigarette smoke contribute to cellular RS exposure.
The long-term effects of RS in organisms are often associated with del-
eterious symptoms such as degenerative diseases and molecular modi-
fications implicated in aging [1,2]. However, RS also serve beneficial
roles in the immune system [3] and are now increasingly considered
important signaling molecules [4,5].
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Given the relevance of RS for numerous physiological and patho-
physiological processes, it is essential to understand the molecular
mechanisms of their generation, distribution, and function. This, how-
ever, requires the precise real-time assessment of their concentrations
and/or activities. For this purpose a number of fluorescent dyes have
been developed in the past to report on intracellular oxidation events
by changing fluorescent properties (for review see [6]). A prominent
example is H2DCF (dihydrodichlorofluorescein), a non-fluorescent
low-molecular weight compound that is oxidized to the fluorescent
DCF (dichlorofluorescein) when exposed to select reactive species.
However, DCF cannot be targeted to specific cellular compartments,
and its modification requires a Fenton reaction involving transition
metals or an enzymatically driven process [7]. Therefore, genetically
encoded RS-sensitive dyes have become very important tools. For ex-
ample, mutants of the green fluorescent protein (GFP), in which the for-
mation and breakage of a disulfide bridge result in spectral changes
(e.g., roGFP2 [8]), bear many advantages such as potentially high sensi-
tivity towards changes in the redoxmilieu and the option for subcellular
targeting. Moreover, owing to two absorption maxima, roGFP2 yields a
ratiometric fluorescent signal providing an optical readout that is inde-
pendent of the concentration of the fluorescent probe itself. The sensi-
tivity and dynamics of roGFP2 have been increased further by fusing it
to glutaredoxin-1 allowing real-time imaging of the intracellular redox
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potential [9]. Fusion of the bacterial protein OxyR with yellow fluores-
cent protein has led to the hydrogen peroxide-sensitive fluorescent
probe HyPer [10].

Despite these advances, there is still a great need for RS sensors with
optimized or specialized features. In thefirst place, all RS sensors named
so far rely on the excitationwith light to read-out the fluorescence; cells
will be exposed to photons potentially generating RS and, hence, leading
to phototoxicity. Intensity-dependent light-induced DNA damage can
activate repair, or even apoptotic, pathways that fundamentally alter
the cellular context in which an experiment is being performed. During
experiments, repeated exposure to even low levels of UV light can affect
the cellular system under investigation. Even visible (blue) light can
exert deleterious effects as excitation of endogenous flavins may pro-
duce RSwith adverse consequences [11].Moreover, evenwhen targeted
to the plasma membrane, detection of RS-related processes directly at
the membrane is technically very challenging. Currently available mo-
lecular RS sensors are not suited for single-molecule measurements
and, last but not least, conventional RS sensors are always active, i.e.
they cannot easily be employed for complex kinetic analyses.

The present work introduces an RS sensor based on a voltage-gated
sodium (NaV) channel that overcomes some of the limitations listed
above. NaV channels are large membrane proteins that conduct Na+

upon membrane depolarization, primarily to initiate action potentials
in neurons and muscle cells. Voltage-dependent activation (channel
opening) occurs in about 100 μs upon membrane depolarization; it is
followed by spontaneous closure of the channel within about 1 ms, a
process referred to as inactivation. Both processes together yield a tran-
sient Na+ inward current, in which the degree of inactivation after a
certain time can be experimentally assessed with electrophysiological
methods.

The NaV channel protein consists of about 2000 amino-acid residues,
organized in four homologous domains, each of which has six trans-
membrane segments (S1–S6) (Fig. 1a). Every domain harbors a pore/
gate domain (S5–S6) and a voltage-sensing domain (S1–S4). The
cytosolic linker between domains III and IV mediates rapid channel
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Fig. 1. Properties of point mutants. a) Transmembrane topology of a sodium channel
α-subunit highlighting the inactivation motif “IFM”. Numbers refer to rat NaV1.4. b) Nor-
malized current responses of NaV1.4wild type (IFM) and the indicatedmutants expressed
in HEK 293 cells in response to depolarizations to −20 mV from a holding voltage of
−120 mV. c) The residual current at the end of the 20-ms depolarizing pulse relative to
the peak current for the indicated mutants. Mean ± SEM (n is shown in parentheses).
inactivation, where the conserved inactivation motif IFM (isoleucine–
phenylalanine–methionine) is of prime importance [12]. Although the
structural details are not yet understood, voltage-dependent transloca-
tion of the voltage-sensor domains is followed by a conformational
change of theDIII–DIV linkerwith the effect that the IFMmotif obstructs
the permeation pathway and, hence, terminates Na+ flow [13–15].
Oxidative modification of the methionine within the IFM motif
(e.g., formation of methionine sulfoxide) results in a marked loss of
inactivation that can be monitored in real time and with high precision
by repeatedly recording currents mediated by NaV channels using
whole-cell patch-clamp technology [16]. Introduction of cysteine resi-
dues in this motif strongly enhances the sensitivity towards chemical
modification [17,18].

Based on these properties, principally allowing for non-photonic
ratiometric determination of oxidative reactions right at the plasma
membrane, we equipped NaV channels with cysteine residues in the in-
activation motif to yield membrane-based RS sensors. The engineered
NaV channel most suitable as a cellular RS sensor with the mutated
motif IFC (roNaV) is characterized in detail, functionally compared
with roGFP2, and used to determine dynamics and lifetime of RS in sin-
gle living cells.

2. Materials and methods

2.1. Expression plasmids and mutagenesis

The wild-type Na+ channel construct used in this study was based
on rat NaV1.4 (SCN4A, P15390 [19]) in the plasmid vector pcDNA3. Mu-
tants thereof were generated by site-directed mutagenesis and verified
by DNA sequencing (also see [16]). Point mutants were introduced into
the inactivation motif 1303IFM (Fig. 1a) and thus mutants are termed
by this motif only, e.g. “IFC” for mutant M1305C. In addition, all NaV
channel constructs carried mutation M1316L to remove the potentially
oxidation sensitivemethionine in the inactivation linker. roGFP2 [8] and
CD8were on pcDNA3 plasmids. The genetically encoded photosensitiz-
er KillerRed was from Evrogen (Moscow, Russia).

2.2. Cell culture

HEK 293 cells (CAMR, Porton Down, Salisbury, UK)weremaintained
in Dulbecco's Modified Eagle's Medium (DMEM)mixed 1:1 with Ham's
F12 medium and supplemented with 10% fetal calf serum in a 5% CO2

incubator. Cells were trypsinized, diluted with culture medium, and
grown in 35-mm dishes. Electrophysiological experiments were
performed 1–5 days after plating. HEK 293 cells were transfected with
the respective plasmids using the Rotifect® transfection reagent
(Roth, Karlsruhe, Germany) following the instructions of the supplier.
Cells not expressing roGFP2 were cotransfected with CD8 to identify
transfected cells by means of anti-CD8-coated beads (Deutsche Dynal
GmbH, Hamburg, Germany).

2.3. Electrophysiological measurements

Whole-cell voltage-clamp experiments were performed as de-
scribed previously [20]. Briefly, patch pipettes with resistances of 0.7–
1.5 MΩ were used. The series resistance was compensated for by
more than 70% in order to minimize voltage errors. Perforated-patch
clamp recordings were performed by adding escin at 1–10 μM [21] to
the patch pipette solution yielding a series resistance between 3 and
20 MΩ after about 15 min in the on-cell configuration.

A patch-clamp amplifier EPC9 was operated by PatchMaster soft-
ware (both HEKA Elektronik, Lambrecht, Germany). Holding potential
was−120 mV. Leak and capacitive currents were corrected with a p/4
method with a leak holding voltage of −120 mV. Currents were low-
pass filtered at 5 kHz and sampled at a rate of 25 kHz. All experiments
were performed at a constant temperature of 19–21 °C.
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The patch pipettes contained (mM): 35 NaCl, 105 CsF, 10 EGTA, and
10 HEPES (pH 7.4 with CsOH). The bath solution contained (mM): 150
NaCl, 2 KCl, 1.5 CaCl2, 1 MgCl2, and 10 HEPES (pH 7.4 with NaOH).

2.4. RS generation

Chloramine-T (ChT) was diluted in the respective bath solution im-
mediately before application. The oxidantwas applied extracellularly by
exchanging the entire bath volume. Alternatively, cells were loaded
with the fluorescent dye Lucifer Yellow (LY) (1 mM; Sigma) via the
patch pipette; after recording control currents, cells were illuminated
with 436-nm light from a PolyChrome-1 light source (XBO lamp, TILL
Photonics, Gräfelfing, Germany) using a 40× dry objective. In some ex-
periments, RSwere generated solely by epifluorescence excitation light.
Thiswas achievedwith light fromamonochromator (see above) using a
63×/1.25 oil objective. Alternatively, excitation light of a mercury arc
lamp (100-W) was passed through an epifluorescence filter set: GFP,
BP 450–490, FT 510 (LP 515); KillerRed, BP 510–560, FT 580 (LP 590),
in both cases using a 20×/0.30 dry objective. Rapid RS production was
achieved by Xe-lamp flash stimulation (UV-flash, TILL Photonics).

2.5. ROS detection with roGFP2

Fluorescence of individual cells expressing roGFP2 was measured
with a photodiode (TILL Photonics). Excitation light of 400 and
475 nm or 465 nm (width about 10 nm) from a PolyChrome-1 light
source (TILL Photonics) was applied for 20 ms each. Fluorescence ratio
(F400/F475) was formed based on the mean fluorescence values of
the trailing 10-ms intervals. Filter set: 492/SP, FT 495, and HC 520/35
(AHF Analysentechnik, Tübingen, Germany).

2.6. Current–voltage relationships

From a holding potential of −120 mV, cells were depolarized to
−80 through 60mV in steps of 10mV for 40ms every 3 s. The peak cur-
rent–voltage relationships were fit according to a Hodgkin–Huxley for-
malism withm = 3 activation gates and a single-channel conductance
according to the Goldman–Hodgkin–Katz equation.

I Vð Þ ¼ ΓV
1‐e‐ V‐Erevð Þ=25mV

1‐e‐V=25mV

1

1þ e‐ V‐Vmð Þ=km� �3 ð1Þ

Vm is the voltage of half-maximal gate activation and km is the corre-
sponding slope factor. Γ is the maximal conductance of all channels
and Erev is the reversal potential.

2.7. Voltage dependence of fast inactivation

From a holding potential of −120 mV, cells were conditioned for
500ms at voltages ranging from−140 to 0mV in steps of 5 mV. Subse-
quently, peak current was determined at−10 mV and normalized to a
control peak current measured before conditioning. The repetition in-
terval was 3 s. The normalized peak current plotted versus the condi-
tioning voltage was described with a Boltzmann function:

I Vð Þ
Icontr

¼ 1
1þ e‐ V‐Vhð Þ=kh

ð2Þ

with the half-maximal inactivation voltage, Vh, and the corresponding
slope factor, kh, which indicates the voltage dependence of inactivation.

2.8. Time course of inactivation removal

The time course of oxidation-induced loss of inactivation was mon-
itored by measuring the ratio of current at 5 ms (I5) or 10 ms (I10) after
the depolarization onset and the peak current (Ip) elicited by pulses to
−20 mV (r). The inactivation index, 1-r(t), was plotted as a function
of time (t) and fit with the following function:

1−r tð Þ ¼ 1−r0‐ r∞‐r0ð Þ 1−e− t−t0ð Þ=τ� �n ð3Þ

with the ratio before oxidation, r0, the time of oxidation start, t0, the
time constant, τ, and an exponent, n. r∞ is the ratio after infinite
oxidation.

2.9. Data analysis and statistics

Data were analyzed with FitMaster (HEKA Elektronik) and IgorPro
(WaveMetrics, Lake Oswego, OR, USA) software. Averaged data are pre-
sented as mean ± SEM (n = number of independent measurements).
Groups of datawere comparedwith a two-sided Student's t-test follow-
ed by a post hoc Bonferroni correction when appropriate.

3. Results

3.1. Selection of a ROS-sensitive sodium channel mutant

The rapid inactivation of voltage-gated sodium channels is mainly
mediated by the inactivation motif “IFM” (Ile-Phe-Met), located in the
intracellular linker between domains III and IV (Fig. 1a) [12]. In a previ-
ous study [16] we showed that exposure of NaV channels to the oxidant
chloramine T (ChT) efficiently removes rapid inactivation, mainly via
chemical modification of the methionine residue in the inactivation
motif (Met1305 for rat NaV1.4). Thus, we hypothesized that introduc-
tion of either additional Met residues or Cys residues in the inactivation
motif might make the inactivation even more susceptible to oxidative
modification. Hence, several single- or double-site mutants with either
Met or Cys were generated. Such mutants were expressed in HEK 293
cells and their function was evaluated by means of the whole-cell
patch-clamp method. As illustrated in SFig. 1, such mutants exhibited
only marginal alterations with respect to their voltage dependence of
activation (SFig. 1a). Voltage dependence of inactivation was most
strongly affected in mutants ICL und CFC (SFig. 1b). For an application
of one of thesemutants as an RS sensor, a voltage dependence of activa-
tion and inactivation close to the wild type would be desirable; in addi-
tion, rapid inactivation should be nearly complete as to avoidNa+ influx
into cells under sustained depolarization. We thus analyzed the time
course of inactivation at −20 mV and the fraction of steady-state cur-
rent at that potential. As shown in Fig. 1b and c, all mutants with addi-
tional Met or Cys residues exhibit a greater steady-state current than
the wild type (IFM). Among them, the inactivation time courses of
mutants MFM and IFC weremost similar to that of the wild type. Appli-
cation of the reducing agent DTT did not decrease the fractional steady-
state current in IFC further, indicating that incomplete inactivation is
not caused by oxidation of the introduced cysteine residue under con-
trol conditions. Recovery from inactivation was similar or even faster
than the wild type for all mutants tested (SFig. 1c).

All of the mutants with additional Cys residues were then subjected
to 50 μM ChT, and those with an altered number of Met residues were
exposed to 500 μMChT. All mutants carrying a Cys residue lost inactiva-
tion on ChT exposurewith single-exponential time course characterized
by time constants of 50–70 s, while the wild type showed a very small
response only (Fig. 2a, b, d). ChT at ten-times higher concentration re-
moved inactivation of the wild type with a time constant of about 300
s, while an increasing number of Met residues accelerated that process
(MFM, about 60 s; MMM, about 30 s); mutant IFL served as a negative
control (Fig. 2c, e).

These results indicate that a Cys residue at any position within the
IFM motif results in channels with strongly RS-sensitive inactivation.
Since a mutant with the least steady-state current under control
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conditions (Fig. 1b, c) was most desirable, we selected mutant IFC for
further analysis. If Met-directed modifications were to be studied, mu-
tants MFM and MMM are both suited.

3.2. Characterization of mutant IFC

The potential usefulness of mutant IFC as a sensor for ChT-induced
modification is shown in Fig. 3. The kinetics of inactivation loss upon
ChT application to transiently transfected HEK 293 cells was estimated
with single-exponential functions for various ChT concentrations.
The inverse of the time constant, i.e. “kon + c koff” assuming a first-
order reaction, is plotted in Fig. 3a. The superimposed fit is a result as-
suming koff=0, i.e., an irreversible reaction, yielding a forward rate con-
stant of 382 ± 21 s−1 M−1, suggesting that IFC can be used to detect
ChT-induced chemical modifications down to about 500 nM. The as-
sumption of koff = 0 is reasonable because the loss of inactivation
exerted by short exposure to ChT remained stable when ChT was
washed away (Fig. 3b). The process studied so far is of physiological rel-
evance because the reaction is reversible provided there are reducing
conditions. As shown in Fig. 3c, inactivation of mutant IFC was partially
removed by short exposure to 5 μM ChT. Subsequently, the bath was
washedwith extracellular saline containing 1mMDTT; DTT completely
restored inactivation with a time constant of about 1000 s. To further
confirm that ChT mediates its effect via a redox process, we measured
the kinetics of inactivation loss induced with 3 μM ChT under control
conditions and with the non-specific ROS scavenger ascorbic acid
(2 mM) supplemented to the patch pipette solution. As shown in
Fig. 3d, in the presence of intracellular ascorbic acid the effect of extra-
cellularly applied ChTwas about 10-timesweaker (linear slope changed
by a factor of 0.110 ± 0.007).

3.3. Comparison of mutant IFC with roGFP2

Changes in the intracellular redox milieu are often inferred using
variants of the green fluorescence protein (GFP) in which extra cysteine
residues are introduced (roGFP2 [8]). The ROS sensitivities of roGFP2
and mutant IFC were compared by coexpressing both in HEK 293 cells
and measuring Na+ currents in the whole-cell configuration in parallel
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to recording fluorescence of the same cell. Channels were activated
every second with a 20-ms depolarization to−20 mV. Simultaneously,
excitation light of 400 and 475 nm (20 ms each) was applied (Fig. 4a).
Inactivation of mutant IFC was judged by the ratio I10/Ip while the
state of roGFP2 wasmeasured as F400/F475. The time course of the sig-
nals in a representative cell is shown in Fig. 4b, illustrating three differ-
ences between the IFC signal and the roGFP signal: (1) while I10/Ip was
stable before ChT application, F400/F475 slightly increased; (2) the
overall dynamic range of the ratiometric signals was about 0.8 for
I10/Ip, while that of F400/F475was only about 0.2; (3) the channel signal
increased much more quickly than the roGFP2 signal upon stimulation.
The latter was estimated by a linear fit of the initial 20 s upon stimula-
tion with 50 μM ChT yielding slopes in the ratios of 0.0177 ± 0026 for
the channel and 0.0016 ± 0.0003 for roGFP2 (n = 6, P = 0.0015).
Thus, the ratiometric RS-related signal derived from mutant IFC re-
sponds about 10-times faster to ChT application than roGFP2. Both sig-
nals saturate after about 100–200 s. Given its useful properties, the
modified sodium channel NaV1.4 with an IFC motif in the inactivation
domain is hereafter referred to as roNaV.

3.4. Detection of light-induced RS with roNaV

Although the use of roGFP2 or other related genetically encoded or
synthetic optical reporters is convenient, their application is limited to
situations where the excitation light itself is not a confounding factor.
However, if light is an integral part of an experiment, light-independent
detection of RS in single cells may be desirable. We thus assayed the use-
fulness of roNaV to detect photodamage induced by excitation light in an
epifluorescence setting.Wild-type and roNaV channelswere expressed in
HEK 293 cells and currents were recorded in the whole-cell configura-
tion. Cellswere placed into the focus of a 20×dry objective of an inverted
microscope with a 100-W mercury lamp for epifluorescence excitation.
After several control recordings in the dark, light was turned on and the
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loss of inactivation was monitored. Excitation through a filter set com-
monly used for GFP detection (BP 450–490, FT 510), i.e. stimulating
with blue light, resulted in rapid progressive loss of roNaV inactivation,
while the effect in the wild type was much smaller (Fig. 5a, b). Even ex-
citation with green light (BP 510–560, FT 580) noticeably removed inac-
tivation in roNaV with only marginal effects on the wild type (Fig. 5c, d).
Thus, roNaV is a useful tool for detecting RS generated by cell exposure to
light. The sensitivity is high enough to even monitor functional changes
induced by RS originating from green light (510–560 nm). Under similar
conditions, RS-sensitive fluorescent dyes may bleach. Moreover, the use
of roGFP to measure RS is not feasible without the generation of RS by
the required excitation light.

3.5. Gated RS sensitivity of roNaV

To infer about the dynamics of RS distribution and lifetime, a sensor
that responds to RS in a reversible manner is required. Sensors relying
on the formation of disulfide bridges to report on the redox state (like
roGFP2) may not be suited because, depending on the reactive species,
cysteines will be modified in an irreversible manner, for example to
sulfinic or sulfonic acid, thus disabling the sensor. One solution to this
problem would be to develop an RS sensor that can be turned on and
off at will to take snapshots of intracellular RS activity (or concentra-
tion). Ion channels are molecular switches par excellence, in particular
voltage-gated sodium channels that open and close in response to
changes in membrane voltage in the millisecond range. Since the RS-
sensitive element in roNaV is the cysteine in the inactivation motif, we
hypothesized that the motif is protected from RS attack when it is in
the inactivated state, i.e. forming a firm contact with the channel pro-
tein. At resting conditions, the IFC motif is expected to be readily
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accessible to the cytosolic solution and susceptible to RS-induced
modification.

Experimental protocols were devised to test for a “state dependence”
of roNaV's RS sensitivity. If the sensor is completely protected from RS in
the inactivated state, one would expect a slowing down of the RS-
induced loss of inactivation proportional to the time spent in the
inactivated state. In the experiment shown in Fig. 6a, b, loss of inactiva-
tion in response to 10 μM ChT application was measured under control
conditions, i.e. holding voltage of −120 mV and test pulses every
15.6 s. Using this protocol, loss of inactivation proceededwith a time con-
stant of 230 s. In the protocol that contained 10-s episodes at−50mV to
inactivate most of the channels, the time constant increased to 486 s.
Assuming an irreversible first-order reaction, this yields reaction
rates of 4.35/ms and 2.02/ms, respectively. If we further assume that
the channels are totally insensitive when they are in the inactivated
state, a lower limit for the reaction rate for the second protocol is
4.35/ms ⁎ (15.6–10.0)/15.6 = 1.56/ms. Thus, the measured rate of
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Fig. 6. State dependence of roNaV modification. a) Pulse protocols used to test for a state
dependence of RS-induced loss of inactivation. In the left condition (Ctrl), 20-ms depolar-
izations to−20mVwere elicited every 15 s with a constant holding voltage of−120mV.
In the protocol on the right (Inact), the first 10 s of the holding period was at−50 mV to
inactivate the channels, followed by a 5-s period at−120mV to ensure full recovery from
inactivation before the test pulse to−20 mVwas elicited. b) Time courses of loss of inac-
tivation upon application of 10 μM ChT for the control protocol (Ctrl) and the inactivation
protocol (Inact). Error bars denote SEMvalues of n=5 cells each. Also indicated is the sta-
tistical evaluation (asterisks, two-sided t-test with unequal variances) of the differences
between both groups as a function of time. Superimposed to the mean data are single-
exponential fits with a limiting ratio of 0.9 to estimate the initial slope of inactivation
loss. Ctrl: τ = 232 ± 5.8 s; Inact: τ = 496 ± 25 s. The blue curve is a prediction of the
time course of modification assuming full protection of the IFC motif during the period
of channel inactivation. c) Loss of roNaV inactivation (bottom) and roGFP2 signal (top) in
response to illuminating a cell with 400-nm light (blue bar). In the episode indicated by
the red bar the holding potential was set to−20 mV in order to inactivate the NaV chan-
nels. Superimposed curves indicate mono-exponential time courses of the RS effect; for
roNaV, data are describedwell assuming that no light-inducedmodification has happened
during the inactivation episode.
2.02/ms comes close to this limit arguing for an almost perfect protec-
tion of the IFC motif in the inactivated state.

A likely explanation for the effect described could be a limited access
of ChT to the site of action rather than a restricted access of RS. There-
fore, three other means of RS generation were tested, all triggered by
light. In addition, it was desirable to use repetitively the same electro-
physiological pulse protocol in order to avoid any confounding impact
of slow channel inactivation. In a first example, cells expressing
roGFP2 and roNaV were subjected to 400-nm light and assayed for the
ratiometric ROS-related signal every 5 s. While the resting holding po-
tential was−120mV, light resulted in a progressive loss of inactivation
and a ROS-signal detected by roGFP2. During an episode with a holding
potential of −20 mV, roNaV was inactivated and unavailable for mea-
surements while roGFP2 proceeded to become modified. Resuming a
holding potential of −120 mV indicated that, upon a phase necessary
to recover from inactivation, roNaVwas effectively protected frommod-
ification during the −20-mV episode (Fig. 6c). Similar assays with
equivalent results were performed in the perforated-patch configura-
tion thus preserving the cytosol and supporting the usefulness of
roNaV (SFig. 2).

In a second example we loaded the cell via the patch pipette with
Lucifer Yellow, a commonly used fluorescent dye that produces ROS
upon irradiation [16,22] and stimulated with blue light (SFig. 3a–c). In
a third example we expressed the genetically encoded photosensitizer
KillerRed [23] together with roNaV in HEK 293 cells and stimulated RS
production with green light (SFig. 3d). In both cases we assayed the in-
cremental loss of roNaV inactivation depending on whether the light
pulse was given during the resting state (−120 mV) or during an inac-
tivation episode (−50 mV) and also confirmed for these RS sources
that roNaV exhibits properties of a gateable RS-sensitive sensor that
can be protected from RS reactions by switching the channel into an
inactivated state.

3.6. Dynamics of intracellular RS monitored with roNaV

If strong RS sources are to be evaluated, the lifetime of RS can be
measured by directly observing the reaction kinetics with roNaV. Since
roNaV inactivates in about 5 ms and a period of about 10 ms is required
to fully recover roNaV from fast inactivation, one should be able to
monitor the state of roNaV with a sample interval of about 15 ms. If a
singular RS-production event is considered, the time resolution can be
even higher by tuning the delay between RS production and roNaV-
mediated readout. We therefore selected Lucifer Yellow as a source for
rapid RS production and illuminated the cells with brief light flashes
with a half-width of about 600 μs. As illustrated in Fig. 7, a single flash
event causes a substantial loss of inactivation in the immediately follow-
ing pulse. Analysis of the time course of roNaV signals revealed the exis-
tence of at least two time constants. Using 5-ms depolarizations at an
interval of 25 ms (Fig. 7c), an upper limit of the fast component of
about 10 ms was determined. In this fast component about 1/3 of the
total modification process occurred; the remaining fraction developed
within a process on the order of seconds. This result shows that roNaV
is suited to monitor the lifetime of different light-induced reactive spe-
cies components acting at the plasma membrane.

4. Discussion

Reactive oxygen species and reactive oxygen intermediates are im-
portant signalingmolecules in many physiological and pathophysiolog-
ical processes (e.g. [2,24,25]) and constitute an important factor in
cellular aging [1,26]. Therefore, the investigation of RS-associated bio-
logical functions and/or deleterious effects on cells and whole organ-
isms requires tools for their monitoring and quantification. However,
reactive species present some characteristics that make them difficult
to detect, namely their short lifetime and their interactionwith a variety
of antioxidants existing in vivo capable of capturing these reactive
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species [6]. Fluorescent ROS reporters [6] and in particular genetically
encoded proteins such as ROS-sensitive green fluorescence protein
(roGFP) and variants thereof (e.g. [8,27]) are undoubtedly very useful
tools for studying RS signaling in living cells. However, depending on
the application, such systems may suffer from various limitations thus
requiring the search of alternative methods of cellular RS detection.
Here we introduced roNaV, a voltage-gated sodium channel with a cys-
teine residue in its inactivation motif (IFC instead of IFM) as a plausible
alternative to fluorescent dyes. The degree of RS-mediated channel
modification is measured as a ratiometric signal from its degree of inac-
tivation, thus yielding a concentration-independent parameter allowing
for absolute calibration.

Mutation IFCwas selected among several others harboring a cysteine
residue inside the inactivation motif “IFM” because of its small residual
non-inactivating current under reducing conditions. This means that re-
placement of cysteine for methionine in the IFM motif only has a minor
impact on the stability of the inactivation domain at its receptor site.

The strongest argument for its use comes from the potential photo-
toxicity of blue light needed to elicit roGFP signals. Light in the wave-
length range of 400 to 500 nm, which is required to detect roGFP
signals, can be absorbed by endogenous chromophores such as flavins
to produce ROS [11,28], thus strongly impeding the process of ROS de-
tection. Moreover, the effects on cell membrane components induced
by seemingly non-destructive short-time exposure to visible light are
not fully explored.

Because measurements using roNaV do not require light, it can be
used to study such phototoxic effects. As illustrated in Fig. 5, even
light of moderate intensity (20× objective) and long wavelength
(≥510 nm) substantially affects the redox state. Therefore, every ROS
measurement involving GFP excitation will inherently suffer from the
light-induced disturbance of the cell. Moreover, the light independence
of roNaV is an advantageous featurewhenever excitation lightwould in-
terfere with other light-sensitive components. An example of this is the
measurement of RS produced by KillerRed (SFig. 3d).

Quantitative comparison of roNaV with roGFP signals recorded from
the same cell and stimulatingwith various RS sources yielded similar re-
sults. roNaV displays a greater dynamic range but the calculated
ratiometric signal is noisier than that for roGFP because peak Na+

current is part of the measurement and, hence, the signal cannot be av-
eraged as much as, for example, fluorescence episodes of 20 ms. More-
over, the roNaV signal is formed by approximately 1000–10,000 channel
proteins only and, thus, is subject to greater statistical fluctuations
(non-stationary channel noise).

A very important advantage of roNaV is that the recorded signal al-
ways represents a chemical process occurring right at the plasmamem-
brane. This is an important aspect if membrane-delimited processes are
to be studied. In comparison, even membrane-targeted variants of
roGFP will not provide a “clean” membrane-delimited signal because
of limited spatial resolution of a microscope and typical strong back-
ground fluorescence from roGFP molecules elsewhere in the cytosol.

Importantly, we showed that roNaV can be sent into a “hibernating”
state by depolarizing the membrane. Under this condition the channels
enter an inactivated state in which the relevant cysteine residue in the
IFC motif apparently becomes protected from RS attacks. This was not
only true for chloramine-T challenge but also for RS generated via
light, light-excited Lucifer Yellow, and via excitation of the genetically
encoded ROS-producing protein KillerRed. By designing of tailored
pulse protocols one can thus read-out roNaV only at specific intervals
and protect it from RS-mediated destruction otherwise.

The roNaVmethod does have some disadvantages:most importantly,
the requirement of performing patch-clamp experiments on single cells.
This involves a low throughput and full electrophysiological equipment.
In addition, the process of “patching” a cell, i.e. establishing a tight
contact between the glass pipette and the cell by itself, and by applica-
tion of pulse protocols necessary to read-out roNaV, may have an impact
on the cellular ROS signaling. In addition, one should be aware that in
typical whole-cell recordings the cytosol will progressively lose its re-
ducing power because the cellular components will inevitably leave
the cell in long recording sessions. An alternative can be the application
of the perforated patch method (“slow whole-cell mode”) as illustrated
in SFig. 2.

Given the fast response time of roNaV and its independence on light,
it can be quite useful in studying distribution and lifetime of reactive spe-
cies triggered by lightpulses. To demonstrate this option,we liberatedRS
from cell-loaded Lucifer Yellow with brief (600 μs) light flashes. Follow-
ing this lightflash, the time course of roNaVmodification can be followed
at a time resolution of a few milliseconds. In our example we showed
that RS originating from Lucifer Yellow “decay” in living HEK 293 cells
under voltage-clamp control with two time constants: one about
10 ms and the other on the order of seconds. This indicates that at least
twomajor species of reactive componentswith the respectivemean life-
times are released when Lucifer Yellow is excited with blue light.

The genetically engineered, gateable, ratiometric, light independent,
and membrane-based ROS biosensor (roNaV) might be a potential
tool for investigating phototoxicity and various biological functions
of reactive species, in particular those occurring close to the plasma
membrane.
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