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Abstract

In this paper we define the analytic torsion for a complete oriented hyperbolic manifold of finite volume.
It depends on a representation of the fundamental group. For manifolds of odd dimension, we study the
asymptotic behavior of the analytic torsion with respect to certain sequences of representations obtained by
restriction of irreducible representations of the group of isometries of the hyperbolic space to the funda-
mental group.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be an oriented hyperbolic manifold of dimension d . Let G = SO0(d,1), K = SO(d).
Then there exists a discrete, torsion free subgroup Γ ⊂ G such that X = Γ \Hd , where Hd ∼=
G/K is the d-dimensional hyperbolic space. First assume that X is compact. Let τ be an irre-
ducible finite-dimensional representation of G. Restrict τ to Γ and let Eτ be the associated flat
vector bundle over X. By [26] one can equip Eτ with a canonical metric, called admissible met-
ric, which is unique up to scaling. Let TX(τ) be the Ray–Singer analytic torsion with respect to
the hyperbolic metric of X and the admissible metric in Eτ (see [37,32]). It was proved in [34],
that for d even, TX(τ) = 1 for all representations τ as above.
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Now let d be odd, say d = 2n + 1. In [34] we introduced special sequences τ(m), m ∈ N, of
irreducible representations of G and we studied the asymptotic behavior of TX(τ(m)) as m → ∞.
The representations τ(m) are defined as follows. Fix natural numbers τ1 � τ2 � · · · � τn+1. For
m ∈ N let τ(m) be the finite-dimensional irreducible representation of G with highest weight
(τ1 + m, . . . , τn+1 + m) (see [12, p. 365]). By Weyl’s dimension formula there exists a constant
C > 0 such that

dim
(
τ(m)

) = Cm
n(n+1)

2 +O
(
m

n(n+1)
2 −1), m → ∞. (1.1)

One of the main results of [34] is the following asymptotic formula: There exists a constant
C(n) �= 0, which depends only on n, such that

logTX

(
τ(m)

) = C(n)vol(X)m · dim
(
τ(m)

) +O
(
m

n(n+1)
2

)
(1.2)

as m → ∞. The 3-dimensional case was first treated in [33]. This result has been used in [25] to
study the growth of torsion in the cohomology of arithmetic hyperbolic 3-manifolds.

The main goal of the present paper is to extend the results of [34] to complete oriented hy-
perbolic manifolds of finite volume. Let Γ \Hd be such a manifold. To simplify some of the
considerations we will assume that Γ satisfies the following condition: For every Γ -cuspidal
parabolic subgroup P = MPAPNP of G we have

Γ ∩ P = Γ ∩NP . (1.3)

We note that this condition is satisfied, if Γ is “neat”, which means that the group generated by
the eigenvalues of any γ ∈ Γ contains no roots of unity �= 1. We need (1.3) to eliminate some
technical difficulties related to the Selberg trace formula.

The first problem is to define the analytic torsion for noncompact hyperbolic manifolds of
finite volume. The Laplace operator �p(τ) on Eτ -valued p-forms has then a continuous spec-
trum and therefore, the heat operator exp(−t�p(τ)) is not trace class. So the usual zeta function
regularization cannot be used to define the analytic torsion in this case. To overcome this prob-
lem we use a regularization of the trace of the heat operator which is similar to the b-trace of
Melrose [27]. This kind of regularization was also used by Park [36] in the case of unitary repre-
sentations of Γ .

The regularization of the trace of the heat operator is defined as follows. Chopping off the
cusps at sufficiently high level Y > Y0, we get a compact submanifold X(Y) ⊂ X with boundary
∂X(Y ). Let Kp,τ (t, x, y) be the kernel of the heat operator exp(−t�p(τ)). Then it follows that
there exists α(t) ∈ R such that

∫
X(Y)

trKp,τ (x, x, t) dx −α(t) logY has a limit as Y → ∞. Then
we put

Trreg
(
e−t�p(τ)

) := lim
Y→∞

( ∫
X(Y)

trKp,τ (t, x, x) dx − α(t) logY

)
. (1.4)

We note that one can also use relative traces as in [32] to regularize the trace of the heat operator.
The methods are closely related.

It turns out that the right-hand side of (1.4) equals the spectral side of the Selberg trace formula
applied to the heat operator exp(−t�p(τ)). Using the Selberg trace formula, it follows that
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Trreg(e
−t�p(τ)) has asymptotic expansions as t → +0 and as t → ∞. This permits to define the

spectral zeta function. Let (τ1, . . . , τn+1) be the highest weight of τ . If τn+1 �= 0, then it follows
that Trreg(e

−t�p(τ)) is exponentially decreasing as t → ∞. In this case the definition of the zeta
function is simplified. It is given by

ζp(s; τ) := 1

Γ (s)

∞∫
0

t s−1 Trreg
(
e−t�p(τ)

)
dt. (1.5)

The integral converges absolutely and uniformly on compact subsets of the half-plane Re(s) >
d/2 and admits a meromorphic continuation to C which is regular at s = 0. In analogy to the
compact case we now define the analytic torsion TX(τ) ∈R+ with respect to Eτ by

TX(τ) := exp

(
1

2

d∑
p=1

(−1)pp
d

ds
ζp(s; τ)|s=0

)
. (1.6)

Again, the analytic torsion behaves quite differently in even and odd dimensions. We first con-
sider the odd-dimensional case. The main result of this paper is the following theorem.

Theorem 1.1. Let X = Γ \H2n+1 be a (2n + 1)-dimensional, complete, oriented, hyperbolic
manifold of finite volume. Assume that Γ satisfies (1.3). There exists a constant C(n) �= 0 which
depends only on n, such that we have

logTX
(
τ(m)

) = C(n)vol(X)m · dim
(
τ(m)

) +O
(
m

n(n+1)
2 logm

)
as m → ∞.

This result generalizes (1.2) to the finite volume case. The constant C(n) in Theorem 1.1
equals the constant C(n) occurring in (1.2) and can be computed explicitly from the Plancherel
polynomials. It equals

C(n) = (−1)n
π

vol(Sd)
, (1.7)

where vol(Sd) is the Euclidean volume of the d-dimensional unit sphere, see [34, (2.24), (5.22)].
We also consider the L2-torsion T

(2)
X (τ ). Although X is noncompact, it can be defined as in the

compact case [23]. It can be computed using the results of [34]. First of all, we show that there
exists a polynomial Pτ (m) of degree n(n+ 1)/2 + 1 such that

logT
(2)
X

(
τ(m)

) = vol(X)Pτ (m). (1.8)

The polynomial is obtained from the Plancherel polynomials. Its leading term can be determined
as in [34] and we obtain

logT
(2)
X

(
τ(m)

) = C(n)vol(X)m · dim
(
τ(m)

) +O
(
m

n(n+1)
2

)
, (1.9)

as m → ∞. Compared with Theorem 1.1 we obtain the following theorem.
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Theorem 1.2. Let X = Γ \H2n+1 be a (2n+1)-dimensional complete, oriented, hyperbolic man-
ifold of finite volume. Assume that Γ satisfies (1.3). Then we have

logTX
(
τ(m)

) = logT
(2)
X

(
τ(m)

) +O
(
m

n(n+1)
2 logm

)
as m → ∞.

Remark 1.3. If X has a spin structure, then Γ ⊂ SO0(d,1) has a lift to Spin(d,1). In this case we
may also assume that τ1, . . . , τn+1 and m are in 1

2N. Then both Theorems 1.1 and 1.2 continue
to hold.

Next we turn to the even-dimensional case. First recall that for a compact manifold of even
dimension, the analytic torsion is always equal to 1 (see [37], [34, Proposition 1.7]). This is not
true anymore in the noncompact case. Park [36, Theorem 1.4] has computed the analytic torsion
of a unitary representation of Γ in even dimensions. His formula shows that in the noncompact
case, the analytic torsion in even dimensions is not trivial in general. Nevertheless, the torsion
has still a rather simple behavior as shown by the next proposition. For a hyperbolic manifold
of finite volume X, denote by κ(X) the number of cusps of X. Let h be the standard Cartan
subalgebra of g and let Λ(G) ⊂ h∗

C
be the highest weight lattice. For λ ∈ Λ(G) let τλ be the

corresponding irreducible representation of G.

Proposition 1.4. There exists a function Φ : Λ(G) → R such that for every even-dimensional
complete oriented hyperbolic manifold X of finite volume one has

logTX(τλ) = κ(X)Φ(λ), λ ∈ Λ(G).

The function Φ can be described as follows. There is a distribution J which appears on the
geometric side of the trace formula. It is of the form J = κ(X) · J̃ , where J̃ is defined in terms
of weighted characters of principal series representations of G (see (6.13)). Let kτt ∈ C(G) be
the function (1.10). There is c > 0 such that J̃ (kτt ) = O(e−ct ) as t → ∞. Moreover J̃ (kτt ) has
an asymptotic expansion as t → 0. Thus the Mellin transform MJ̃ (s; τ) of J̃ (kτt ) is defined for
Re(s) 
 0 and admits a meromorphic extension to C which is regular at s = 0. Then we have

Φ(λ) =MJ̃ (0; τλ)
for all highest weights λ = (k1, . . . , kn+1).

Next recall that for a compact manifold X, the analytic torsion equals the Reidemeister torsion
(see [31]). This is the basis for the applications of the results of [33] to the cohomology of
arithmetic hyperbolic 3-manifolds in [25]. Currently it is not known if there is an extension of
the equality of analytic and Reidemeister torsion to the noncompact setting. This is an interesting
problem and the present paper is a first step in this direction.

We shall now outline our method for the proof of our main result. For notational simplicity
we will assume that X admits a spin structure. Then we take G = Spin(d,1), K = Spin(d) and
Γ ⊂ G. Let d = 2n+ 1. We assume that the highest weight of τ satisfies τn+1 �= 0. Let

K(t, τ ) :=
2n+1∑

(−1)ppTrreg
(
e−t�p(τ)

)
.

p=0
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By (1.5) and (1.6) we need to compute the finite part of the Mellin transform of K(t, τ ) at 0.
Let Ẽτ be the homogeneous vector bundle over X̃ = G/K associated to τ and let �̃p(τ ) be the

Laplacian on Ẽτ -valued p-forms on X̃. The heat operator e−t�̃p(τ ) is a convolution operator with

kernel H
νp(τ)
t : G → End(Λpp∗ ⊗ Vτ ). Let h

νp(τ)
t (g) = trH

νp(τ)
t (g), g ∈ G, and put

kτt =
d∑

p=1

(−1)pph
νp(τ)
t . (1.10)

Let RΓ be the right regular representation of G on L2(Γ \G). There exists an orthogonal
RΓ -invariant decomposition L2(Γ \G) = L2

d(Γ \G) ⊕ L2
c(Γ \G). The restriction Rd

Γ of RΓ to
L2

d(Γ \G) decomposes into the orthogonal direct sum of irreducible unitary representations, each
of which occurs with finite multiplicity. On the other hand, by the theory of Eisenstein series, the
restriction Rc

Γ of RΓ to L2
c(Γ \G) is isomorphic to the direct integral over all tempered principal

series representations of G. For φ ∈ L2
d(Γ \G) let

(
Rd

Γ

(
kτt

)
φ
)
(x) :=

∫
G

kτt (g)φ(xg)dg.

Then Rd
Γ (kτt ) is a trace class operator and the Selberg trace formula computes its trace. The

right-hand side of the trace formula is the sum of terms associated to the continuous spectrum
and orbital integrals associated to the various conjugacy classes of Γ . If we move the spectral
terms to the left-hand side of the trace formula we end up with the spectral side Jspec(k

τ
t ) of the

trace formula. The key fact is now that

K(t, τ ) = Jspec
(
kτt

)
.

By the Selberg trace formula, the spectral side equals the geometric side, that is, the sum of the
orbital integrals. This leads to the following fundamental equality:

K(t, τ ) = I (t; τ)+H(t; τ)+ T (t; τ)+ I(t; τ)+ J (t; τ), (1.11)

where I (t; τ) is the contribution of the identity conjugacy class of Γ and H(t; τ) is the con-
tribution of the hyperbolic conjugacy classes of Γ . Moreover, T (t; τ), I(t; τ) and J (t; τ) are
tempered distributions applied to kτt which are constructed out of the parabolic conjugacy classes
of Γ . Now we evaluate the Mellin transform of each term separately. Here an important simpli-
fication is obtained using a theorem of Kostant on Lie algebra cohomology.

Let MI (τ ) be the Mellin transform of I (t; τ) evaluated at 0. Then we show that

logT
(2)
X (τ ) = 1

2
MI (τ ).

Now consider the representations τ(m), m ∈N. Using the results of [34] we compute MI (τ (m))

and prove (1.8) and (1.9). Thus in order to prove our main result, we need to show that the
Mellin transforms at 0 of all other terms are of lower order. It is easy to treat the hyperbolic term
and the terms T (t; τ(m)). The distribution I(t; τ(m)) is invariant and its Fourier transform was
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computed explicitly by Hoffmann [16]. Using his results we can estimate the Mellin transform of
I(t; τ(m)) at 0. Finally, the distribution J (t; τ(m)) is non-invariant. However it is described in
terms of Knapp–Stein intertwining operators which are understood completely in our case. With
this information its Mellin transform at 0 can also be estimated.

In [34] we have used a different method which does not rely on the trace formula. It would be
interesting to generalize this method to the finite volume case. Especially the Fourier transform,
which we use to deal with I(t; τ(m)), is a very heavy machinery and is not available in the higher
rank case. Part of the arguments used in [34] go through in the finite volume case as well. The
difficult part is to deal with the contribution of the parabolic terms.

This paper is organized as follows. In Section 2 we fix notations and collect some basic facts.
In Section 3 we review some properties of the right regular representation of G on L2(Γ \G). In
Section 4 we introduce the locally invariant differential operators which act on locally homoge-
neous vector bundles over X. Section 5 is devoted to the regularized trace which we introduce
there and relate it to the spectral side of the Selberg trace formula. In Section 6 we apply the
Selberg trace formula which leads to (1.11). Furthermore, we study the Fourier transform of the
distribution I . Finally we derive an asymptotic expansion as t → 0 for the regularized trace of
the heat operator of a Bochner–Laplace operator. In 7 we introduce the analytic torsion. In Sec-
tion 8 we express the test function kτt as a combination of functions defined by the heat kernels
of certain Bochner–Laplace operators. The results of this section are needed to deal with the
Mellin transforms of the various terms on the right-hand side of (1.11). In Section 9 we study the
L2-torsion. In the final Section 10 we prove the main results.

This paper arose from the PhD thesis of the second author under the supervision of the first
author.

2. Preliminaries

In this section we will establish some notation and recall some basic facts about representa-
tions of the involved Lie groups. As mentioned in the introduction, for simplicity we will assume
that X admits a spin structure. For d ∈ N, d > 1 let G := Spin(d,1). Recall that G is the uni-
versal covering group of SO0(d,1). Let K := Spin(d). Then K is a maximal compact subgroup
of G. Put X̃ := G/K . Let

G = NAK

be the standard Iwasawa decomposition of G and let M be the centralizer of A in G. Then
M = Spin(d − 1). The Lie algebras of G, K , A, M and N will be denoted by g, k, a, m and n,
respectively. Define the standard Cartan involution θ : g → g by

θ(Y ) = −Y t , Y ∈ g.

The lift of θ to G will be denoted by the same letter θ . Let

g = k⊕ p

be the Cartan decomposition of g with respect to θ . Let x0 = eK ∈ X̃. Then we have a canonical
isomorphism

Tx X̃ ∼= p. (2.1)
0
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Define the symmetric bilinear form 〈·,·〉 on g by

〈Y1, Y2〉 := 1

2(d − 1)
B(Y1, Y2), Y1, Y2 ∈ g. (2.2)

By (2.1) the restriction of 〈·,·〉 to p defines an inner product on Tx0X̃ and therefore an invari-
ant metric on X̃. This metric has constant curvature −1. Then X̃, equipped with this metric, is
isometric to the hyperbolic space Hd .

2.1. Fix a Cartan subalgebra b of m. Then

h := a⊕ b

is a Cartan subalgebra of g. We can identify gC
∼= so(d + 1,C). Let e1 ∈ a∗ be the positive re-

stricted root defining n. Then for d = 2n + 1, or d = 2n + 2, we fix e2, . . . , en+1 ∈ ib∗ such
that the positive roots �+(gC,hC) are chosen as in [18, pp. 684–685] for the root system Dn+1
resp. Bn+1. We let �+(gC,aC) be the set of roots of �+(gC,hC) which do not vanish on aC.
The positive roots �+(mC,bC) are chosen such that they are restrictions of elements from
�+(gC,hC). For i = 1, . . . , n + 1 we let Hi ∈ hC be such that ej (Hi) = δi,j , j = 1, . . . , n + 1.
For α ∈ �+(gC,hC) there exists a unique H ′

α ∈ hC such that B(H,H ′
α) = α(H) for all H ∈ hC.

One has α(H ′
α) �= 0. We let

Hα := 2

α(H ′
α)

H ′
α.

One easily sees that

H±ei±ej = ±Hi ±Hj . (2.3)

For j = 1, . . . , n+ 1 let

ρj :=
{
n+ 1 − j, G = Spin(2n+ 1,1);
n+ 3/2 − j, G = Spin(2n+ 2,1).

(2.4)

Then the half-sums of positive roots ρG and ρM , respectively, are given by

ρG := 1

2

∑
α∈�+(gC,hC)

α =
n+1∑
j=1

ρj ej (2.5)

and

ρM := 1

2

∑
α∈�+(mC,bC)

α =
n+1∑
j=2

ρj ej . (2.6)

Let WG be the Weyl-group of �(gC,hC).
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2.2. Let Z[ 1
2 ]j be the set of all (k1, . . . , kj ) ∈ Qj such that either all ki are integers or all

ki are half-integers. Then the finite-dimensional irreducible representations τ ∈ Ĝ of G are
parametrized by their highest weights

Λ(τ) = k1(τ )e1 + · · · + kn+1(τ )en+1; k1(τ ) � k2(τ ) � · · · � kn(τ ) �
∣∣kn+1(τ )

∣∣, (2.7)

if G = Spin(2n+ 1,1) resp.

Λ(τ) = k1(τ )e1 + · · · + kn+1(τ )en+1; k1(τ ) � k2(τ ) � · · · � kn(τ ) � kn+1(τ ) � 0, (2.8)

if G = Spin(2n+ 2,1), where (k1(τ ), . . . , kn+1(τ )) ∈ Z[ 1
2 ]n+1

.

Moreover, the finite-dimensional irreducible representations ν ∈ K̂ of K are parametrized by
their highest weights

Λ(ν) = k2(ν)e2 + · · · + kn+1(ν)en+1; k2(ν) � k3(ν) � · · · � kn(ν) � kn+1(ν) � 0, (2.9)

if G = Spin(2n+ 1,1) resp.

Λ(ν) = k1(ν)e1 + · · · + kn+1(ν)en+1; k1(ν) � k2(ν) � · · · � kn(ν) �
∣∣kn+1(ν)

∣∣, (2.10)

if G = Spin(2n+ 2,1), where (k2(ν), . . . , kn+1(ν)), (k1(ν), . . . , kn+1(ν)) ∈ Z[ 1
2 ]n,n+1

.

Finally, the finite-dimensional irreducible representations σ ∈ M̂ of M are parametrized by
their highest weights

Λ(σ) = k2(σ )e2 + · · · + kn+1(σ )en+1; k2(σ ) � k3(σ ) � · · · � kn(σ ) �
∣∣kn+1(σ )

∣∣, (2.11)

if G = Spin(2n+ 1,1) resp.

Λ(σ) = k2(σ )e1 + · · · + kn+1(σ )en+1; k2(σ ) � · · · � kn(σ ) � kn+1(σ ) � 0, (2.12)

if G = Spin(2n+ 2,1), where (k2(σ ), . . . , kn+1(σ )) ∈ Z[ 1
2 ]n.

2.3. Let d = 2n+ 1. For τ ∈ Ĝ let τθ := τ ◦ θ . Let Λ(τ) denote the highest weight of τ as in
(2.7). Then the highest weight Λ(τθ ) of τθ is given by

Λ(τθ ) = k1(τ )e1 + · · · + kn(τ )en − kn+1(τ )en+1. (2.13)

Let σ ∈ M̂ with highest weight Λ(σ) ∈ b∗
C

as in (2.11). By the Weyl dimension formula
[17, Theorem 4.48] we have

dim(σ ) =
∏

α∈�+(mC,bC)

〈Λ(σ)+ ρM,α〉
〈ρM,α〉

=
n∏

i=2

n+1∏
j=i+1

(ki(σ )+ ρi)
2 − (kj (σ )+ ρj )

2

ρ2
i − ρ2

j

. (2.14)
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2.4. Let M ′ be the normalizer of A in K and let W(A) = M ′/M be the restricted Weyl-
group. It has order two and it acts on the finite-dimensional representations of M as follows. Let
w0 ∈ W(A) be the non-trivial element and let m0 ∈ M ′ be a representative of w0. Given σ ∈ M̂ ,
the representation w0σ ∈ M̂ is defined by

w0σ(m) = σ
(
m0mm−1

0

)
, m ∈ M.

If d = 2n+2 one has w0σ ∼= σ for every σ ∈ M̂ . Assume that d = 2n+1. Let Λ(σ) = k2(σ )e2 +
· · · + kn+1(σ )en+1 be the highest weight of σ as in (2.11). Then the highest weight Λ(w0σ) of
w0σ is given by

Λ(w0σ) = k2(σ )e2 + · · · + kn(σ )en − kn+1(σ )en+1. (2.15)

2.5. Let d = 2n + 1. Let R(K) and R(M) be the representation rings of K and M . Let
ι : M → K be the inclusion and let ι∗ : R(K) → R(M) be the induced map. If R(M)W(A) is the
subring of W(A)-invariant elements of R(M), then clearly ι∗ maps R(K) into R(M)W(A). The
first part of the following proposition is due to Miatello and Vargas [29, Proposition 1]. The more
precise statement is due to Bunke and Olbrich [3, Proposition 1.1].

Proposition 2.1. The map ι is an isomorphism from R(K) onto R(M)W(A). Explicitly, let σ ∈ M̂

be of highest weight Λ(σ) as in (2.11) and assume that kn+1(σ ) � 0. Then if ν(σ ) ∈ R(K) is
such that

ι∗ν(σ ) =
{σ, σ = w0σ,

σ +w0σ, σ �= w0σ

one has

ν(σ ) =
∑

μ∈{0,1}n
(−1)c(μ)ν

(
Λ(σ)−μ

)
, (2.16)

where the sum runs over all μ ∈ {0,1}n such that Λ(σ)−μ is the highest weight of an irreducible
representation ν(Λ(σ)−μ) of K and c(μ) := #{1 ∈ μ}.

Let σ ∈ M̂ and assume that σ �= w0σ . Then by Proposition 2.1 there exist unique integers
mν(σ) ∈ {−1,0,1}, which are zero except for finitely many ν ∈ K̂ , such that

σ +w0σ =
∑
ν∈K̂

mν(σ )i
∗(ν). (2.17)

2.6. Measures are normalized as follows. Every a ∈ A can be written as a = exp loga, where
loga ∈ a is unique. For t ∈R, we let a(t) := exp(tH1). If g ∈ G, we define n(g) ∈ N , H(g) ∈R

and κ(g) ∈ K by

g = n(g) exp
(
H(g)e1

)
κ(g).
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Normalize the Haar measure on K such that K has volume 1. We let

〈X,Y 〉θ := − 1

2(d − 1)
B

(
X,θ(Y )

)
. (2.18)

We fix an isometric identification of Rd−1 with n with respect to the inner product 〈·,·〉θ . We
give n the measure induced from the Lebesgue measure under this identification. Moreover, we
identify n and N by the exponential map and we will denote by dn the Haar measure on N

induced from the measure on n under this identification. We normalize the Haar measure on G

by setting ∫
G

f (g)dg =
∫
N

∫
R

∫
K

e−(d−1)t f
(
na(t)k

)
dk dt dn. (2.19)

The spaces X̃ and Γ \G, Γ a discrete subgroup, will be equipped with the induced quotient-
measure.

2.7. We parametrize the principal series as follows. Given σ ∈ M̂ with (σ,Vσ ) ∈ σ , let Hσ

denote the space of measurable functions f : K → Vσ satisfying

f (mk) = σ(m)f (k), ∀k ∈ K, ∀m ∈ M, and
∫
K

∥∥f (k)
∥∥2

dk = ‖f ‖2 < ∞.

Then for λ ∈ C and f ∈Hσ let

πσ,λ(g)f (k) := e(iλ+(d−1)/2)H(kg)f
(
κ(kg)

)
.

Recall that the representations πσ,λ are unitary iff λ ∈ R. Moreover, for λ ∈ R− {0} and σ ∈ M̂

the representations πσ,λ are irreducible and πσ,λ and πσ ′,λ′ , λ,λ′ ∈ C are equivalent iff either
σ = σ ′, λ = λ′ or σ ′ = w0σ , λ′ = −λ. The restriction of πσ,λ to K coincides with the induced
representation IndK

M(σ). Hence by Frobenius reciprocity [17, p. 208] for every ν ∈ K̂ one has

[πσ,λ : ν] = [ν : σ ]. (2.20)

2.8. Assume that d = 2n + 1. For σ ∈ M̂ and λ ∈ R let μσ (λ) be the Plancherel measure
associated to πσ,λ. Then, since rk(G) > rk(K), μσ (λ) is a polynomial in λ of degree 2n. Let
〈·,·〉 be the bilinear form defined by (2.2). Let Λ(σ) ∈ b∗

C
be the highest weight of σ as in (2.11).

Then by Theorem 13.2 in [17] there exists a constant c(n) �= 0 such that

μσ (λ) = c(n)
∏

α∈�+(gC,hC)

〈iλe1 +Λ(σ)+ ρM,α〉
〈ρG,α〉 .

For z ∈ C let

Pσ (z) = c(n)
∏

+

〈ze1 +Λ(σ)+ ρM,α〉
〈ρG,α〉 . (2.21)
α∈� (gC,hC)
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One easily sees that

Pσ (z) = Pw0σ (z). (2.22)

3. The decomposition of the right regular representation

Let Γ be a discrete, torsion free subgroup of G with vol(Γ \G) < ∞. Let P be a fixed set of
representatives of Γ -nonequivalent proper cuspidal parabolic subgroups of G. Then P is finite.
Let κ := #P. Without loss of generality we will assume that P0 := MAN ∈ P. For every P ∈ P,
there exists a kP ∈ K such that

P = NPAPMP

with NP = kPNk−1
P , AP = kPAk−1

P , and MP = kPMk−1
P . We let kP0 = 1. We will assume that

for each P ∈ P one has

Γ ∩ P = Γ ∩NP . (3.1)

Since NP is abelian, we have Γ ∩ NP \NP
∼= T d−1, where T d−1 is the flat (d − 1)-torus. For

P ∈P let aP (t) := kP a(t)k
−1
P . If g ∈ G, we define nP (g) ∈ NP , HP (g) ∈ R and κP (g) ∈ K by

g = nP (g)aP
(
HP (g)

)
κP (g). (3.2)

For each P ∈ P define

ιP : R+ → AP

by ιP (t) := aP (log(t)). For Y > 0, let

A0
P [Y ] := ιP (Y,∞).

Then there exists Y0 > 0 and, for every Y � Y0, a compact connected subset C(Y ) of G such that
in the sense of a disjoint union one has

G = Γ ·C(Y ) �
⊔
P∈P

Γ ·NPA
0
P [Y ]K (3.3)

and such that

γ ·NPA
0
P [Y ]K ∩NPA

0
P [Y ]K �= ∅ ⇔ γ ∈ Γ ∩NP . (3.4)

If for Y � Y0 one lets

FP,Y := AP [Y ] × Γ ∩NP \NP
∼= [Y,∞)× Γ ∩NP \NP , (3.5)
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it follows from (3.3) and (3.4) that there exists a compact manifold X(Y) with smooth boundary
such that X has a decomposition as

X = X(Y)∪
⊔
P∈P

FP,Y (3.6)

with X(Y)∩ FP,Y = ∂X(Y ) = ∂FP,Y and FP,Y ∩ FP ′,Y = ∅ if P �= P ′.
Let RΓ be the right regular representation of G on L2(Γ \G). We shall now describe some

basic properties of RΓ . The main references are [22,14,42]. There exists an orthogonal decom-
position

L2(Γ \G) = L2
d(Γ \G)⊕L2

c(Γ \G) (3.7)

of L2(Γ \G) into closed RΓ -invariant subspaces. The restriction of RΓ to L2
d(Γ \G) decomposes

into the orthogonal direct sum of irreducible unitary representations of G and the multiplicity of
each irreducible unitary representation of G in this decomposition is finite. On the other hand, by
the theory of Eisenstein series, the restriction Rc

Γ of RΓ to L2
c(Γ \G) is isomorphic to the direct

integral over all unitary principal series representations of G.
Next we recall the definition and some of the basic properties of the Eisenstein series. For

P = MPApNP ∈ P let EP be the space of all functions on G which are measurable and left-
invariant under (Γ ∩ P)NPAP and whose restriction to K is square-integrable. We turn EP into
a Hilbert space using the inner product

〈Φ,Ψ 〉 := vol(Γ ∩NP \NP )

∫
K

Φ(k)Ψ (k) dk.

For each λ ∈ C there is a representation πP,λ of G on EP , defined by

(
πP,λ(y)Φ

)
(x) = e(λ+(d−1)/2)(HP (xy))e−(λ+(d−1)/2)(HP (x))Φ(xy).

Given Φ ∈ EP and λ ∈C, put

Φλ(x) = e(λ+(d−1)/2)HP (x)Φ(x).

The action of the representation πP,λ is then given by

(
πP,λ(y)Φ

)
λ
(x) = Φλ(xy),

and πP,λ is unitary for λ ∈ iR. Let E0
P be the subspace of EP consisting of all right K-finite and

left ZM -finite functions, where ZM denotes the center of the universal enveloping algebra of mC.
For Φ ∈ E0

P and λ ∈C the Eisenstein series E(P,Φ,λ, x) is defined by

E(P,Φ,λ, x) =
∑

Φλ(γ x).
γ∈Γ ∩P \Γ
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It converges absolutely and uniformly on compact subsets of {λ ∈ C: Re(λ) > (d − 1)/2} × G,
and it has a meromorphic extension to C. Let P ′ ∈ P. The constant term EP ′(P,Φ,λ) of
E(P,Φ,λ) along P ′ is defined by

EP ′(P,Φ,λ, x) := 1

vol(Γ ∩NP ′ \NP ′)

∫
Γ ∩NP ′ \NP ′

E
(
P,Φ,λ,n′x

)
dn′. (3.8)

Let W(AP ,AP ′) be the set of all bijections w : AP → AP ′ for which there exists x ∈ G such
that w(a) = xax−1, a ∈ AP . Then one can identify W(AP ,AP ′) with kP ′W(A)k−1

P . Thus
W(AP ,AP ′) has order 2. We let W(AP ,AP ′) act on C as follows. For w = kP ′k−1

P and λ ∈ C

we put wλ := λ. Let w0 be the non-trivial element of W(A). Then for w = kP ′w0k
−1
P and λ ∈ C

we put wλ := −λ. Then one has

EP ′(P,Φ,λ, x) =
∑

w∈W(AP ,AP ′ )
e(wλ+(d−1)/2)(HP ′ (x))(cP ′|P (w : λ)Φ)

(x), (3.9)

where

cP ′|P (w : λ) : EP → EP ′

are linear maps which are meromorphic functions of λ ∈C. Put

E =
⊕
P∈P

EP , πλ =
⊕
P∈P

πP,λ.

Then πλ acts on E as an induced representation. For Φ = (ΦP ) ∈ E and λ ∈C put

E(Φ, λ, x) =
∑
P∈P

E(P,ΦP ,λ, x).

Let E0 = ⊕
P∈P E0

P . Let w0 be the non-trivial element of W(A). Then the operators

cP ′|P (k′
Pw0k

−1
P : λ) can be combined into a linear operator

C(λ) : E0 → E0,

which is a meromorphic function of λ.
The space E0 decomposes into the direct sum of finite-dimensional subspaces as follows.

Let P = MPAPNP be a Γ -cuspidal proper parabolic subgroup. For σP ∈ M̂P and ν ∈ K̂ let
E(σP , ν) be the space of all continuous functions Φ : (Γ ∩ P)APNP \G → C such that for all
x ∈ G the function m ∈ MP �→ Φ(mx) belongs to the σP -isotypical subspace of the right regular
representation of M and for all x ∈ G the function k ∈ K �→ Φ(xk) belongs to the ν-isotypical
subspace of the right regular representation of K . For σ ∈ M̂ set

E(σ, ν) :=
⊕

E(σP , ν),

P∈P
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where σP ∈ M̂P is obtained from σ by conjugation. Each E(σ, ν) is finite-dimensional. Further-
more, let

E(σ ) :=
⊕
ν∈K̂

E(σ, ν).

Then E(σ ) is invariant under πλ and the restriction of πλ to E(σ ) will be denoted by πσ,λ. Now
consider an orbit ϑ ∈ W(A)\M̂ . Let ϑ = {σ,wσ }. Put

E(ϑ, ν) :=
{
E(σ, ν), wσ = σ,

E(σ, ν)⊕ E(wσ, ν), wσ �= σ.

Then it follows that

E0 =
⊕
ϑ,ν

E(ϑ, ν), (3.10)

where ϑ runs over W(A)\M̂ and ν over K̂ . The operator C(λ) preserves this decomposition. For
ϑ ∈ W(A)\M̂ , ν ∈ K̂ and λ ∈C let

C(ϑ, ν,λ) : E(ϑ, ν) → E(ϑ, ν) (3.11)

be the restriction of C(λ). We note that for ϑ = {σ,wσ }, C(ϑ, ν,λ) maps E(σ, ν) into E(wσ, ν).
We denote the corresponding operator by

C(σ, ν,λ) : E(σ, ν) → E(wσ, ν). (3.12)

Taking the direct sum with respect to ν ∈ K̂ , we get operators

C(σ,λ) : E(σ ) → E(wσ). (3.13)

Next we recall the functional equations satisfied by E and C. For Φ ∈ E0 and λ ∈ C we have

E(Φ, λ) = E
(
C(λ)Φ,−λ

)
, (3.14)

and

C(λ)C(−λ) = Id. (3.15)

Furthermore, let f ∈ C∞
c (G) be right K-finite. Then πλ(f ) acts on E0 and we have

C(λ)πλ(f ) = π−λ(f )C(λ), λ ∈ C. (3.16)

Thus C(λ) is an intertwining operator for the induced representation πλ.
Now we come to the relation with the spectral resolution of Rc

Γ . For P = MPAPNP ∈ P

let RMP
denote the right regular representation of MP on L2(MP ). Since MP is compact, it

decomposes discretely as
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RMP
=

⊕
σP ∈M̂P

d(σP )σP , (3.17)

where d(σP ) = dim(σP ). For λ ∈ C let ξλ : AP → C be the quasi-character given by
ξλ(aP (t)) := etλ. Let IndG

P (RMP
,λ) be the representation of G induced from RMP

⊗ ξλ+(d−1)/2.
Then we have

πP,λ
∼= IndG

P (RMP
,λ). (3.18)

The theory of Eisenstein series implies that

Rc
Γ

∼=
⊕
P∈P

∫
R

πP,iλ dλ =
∫
R

π iλ dλ.

Using the decomposition (3.17), the induced representation decomposes correspondingly into
the direct sum of principal series representations πσ,λ. This gives the spectral resolution of Rc

Γ

(see [42, Section 3]).
Now let α be a K-finite Schwarz function. Define an operator RΓ (α) on L2(Γ \G) by

RΓ (α)φ(x) :=
∫
G

α(g)φ(xg)dg, φ ∈ L2(Γ \G). (3.19)

Then RΓ (α) is an integral operator with smooth kernel Kα(x, y). Moreover, the decomposition
of RΓ in (3.7) induces a decomposition of the operator RΓ (α) as

RΓ (α) = Rd
Γ (α) ⊕Rc

Γ (α).

It turns out that Rc
Γ (α) is again an integral operator with smooth kernel which can be computed

explicitly in terms of Eisenstein series as follows. Let {en: n ∈ I } be an orthonormal basis of E
which is adapted to the decomposition (3.10), i.e., each en belongs to some subspace E(ϑ, ν).
The following proposition is the main result about the spectral resolution of the kernel.

Proposition 3.1. Let α be a K-finite function in C1(G). Then Rc
Γ (α) is an integral operator with

kernel Kc
α(x, y) given by

Kc
α(x, y) = 1

4π

∑
m,n∈I

∫
R

〈
π iλ(α)em, en

〉
E(en, iλ, x)E(em, iλ, y) dλ. (3.20)

Furthermore, the kernel Kd
α = Kα − Kc

α is integrable over the diagonal, the operator Rd
Γ (α) is

of trace class and its trace is given by

Tr
(
Rd

Γ (α)
) =

∫
Γ \G

Kd
α (x, x) dx.
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Proof. See [42, Theorem 4.7]. �
The Eisenstein series are not square integrable. However, the truncated Eisenstein series,

which are obtained by subtracting the constant terms in each cusp, are square integrable. Their
inner product gives rise to the Maass–Selberg relations which we recall next.

Let Y0 > 0 be such that (3.3) holds. Let Y � Y0. For P ∈ P let χP,Y be the characteristic
function of NPA

0
P [Y ]K ⊂ G. Let Φ ∈ E0. For Y � Y0 put

EY (Φ,λ, x) := E(Φ,λ,x)−
∑
P∈P

∑
γ∈Γ ∩NP \Γ

χP,Y (γg)EP (Φ,λ, γg),

where EP (Φ,λ, x) is as in (3.8). By (3.4) at most one summand in this sum is not zero. By [14]
the function EY (Φ,λ) belongs to L2(Γ \G). Now we have the following proposition.

Proposition 3.2. Let Φ,Ψ ∈ E0 and λ ∈C. Then one has∫
Γ \G

EY (Φ, iλ, x)EY (Ψ, iλ, x) dx

= −
〈
C(−iλ)

d

dz
C(iλ)Φ,Ψ

〉
+ 2〈Φ,Ψ 〉 logY + Y 2iλ

2iλ

〈
Φ,C(iλ)Ψ

〉 − Y−2iλ

2iλ

〈
C(iλ)Φ,Ψ

〉
.

At the end of this section, we remark that the space L2
d(Γ \G) admits a further decomposition

L2
d(Γ \G) = L2

cusp(Γ \G)⊕L2
res(Γ \G). (3.21)

Here L2
cusp(Γ \G) is the space spanned by the cusp forms, i.e. the square integrable functions f ,

which for all P ∈ P satisfy

f 0
P (x) :=

∫
Γ ∩NP \NP

f (nx)dn = 0 for almost all x ∈ G.

One does not know much about L2
cusp(Γ \G) and its size in general. On the other hand, let

Φ ∈ E(σ , ν). Let s0 ∈ (0, n] be a pole of E(Φ, s). Then the function x �→ Res|s=s0E(Φ, s) is
square integrable on Γ \G and L2

res(Γ \G) is spanned by all these residues of Eisenstein series.

4. Bochner Laplace operators

Regard G as a principal K-fibre bundle over X̃. By the invariance of p under Ad(K), the
assignment

T hor
g :=

{
d

dt

∣∣∣∣
t=0

g exp tX: X ∈ p

}
defines a horizontal distribution on G. This connection is called the canonical connection. Let ν
be a finite-dimensional unitary representation of K on (Vν, 〈·,·〉ν). Let



W. Müller, J. Pfaff / Journal of Functional Analysis 263 (2012) 2615–2675 2631
Ẽν := G×ν Vν

be the associated homogeneous vector bundle over X̃. Then 〈·,·〉ν induces a G-invariant metric
B̃ν on Ẽν . Let ∇̃ν be the connection on Ẽν induced by the canonical connection. Then ∇̃ν is
G-invariant. Let

Eν := Γ \(G×ν Vν)

be the associated locally homogeneous bundle over X. Since B̃ν and ∇̃ν are G-invariant, they
push down to a metric Bν and a connection ∇ν on Eν . Let

C∞(G,ν) := {
f : G → Vν : f ∈ C∞, f (gk) = ν

(
k−1)f (g), ∀g ∈ G, ∀k ∈ K

}
. (4.1)

Let

C∞(Γ \G,ν) := {
f ∈ C∞(G,ν): f (γg) = f (g), ∀g ∈ G, ∀γ ∈ Γ

}
. (4.2)

Let C∞(X,Eν) denote the space of smooth sections of Eν . Then there is a canonical isomor-
phism

A : C∞(X,Eν) ∼= C∞(Γ \G,ν)

(see [28, p. 4]). There is also a corresponding isometry for the space L2(X,Eν) of L2-sections
of Eν . For every X ∈ g, g ∈ G and every f ∈ C∞(X,Eν) one has

A
(∇ν

L(g)∗Xf
)
(g) = d

dt

∣∣∣∣
t=0

Af (g exp tX).

Let �̃ν = ∇̃ν∗∇̃ν be the Bochner–Laplace operator of Ẽν . Since X̃ is complete, �̃ν with domain
the smooth compactly supported sections is essentially self-adjoint [5]. Its self-adjoint extension
will be denoted by �̃ν too. Let R be the regular representation of Z(g) on C∞(G,ν). Then by
[28, Proposition 1.1] it follows that on C∞(G,ν) one has

�̃ν = −R(Ω) + ν(ΩK), (4.3)

where ΩK is the Casimir operator of k with respect to the restriction of the normalized Killing
form of g to k. Let Ãν be the differential operator on Eν which acts as −RΓ (Ω) on C∞(G,ν).
Then it follows from (4.3) that Ãν is bounded from below and is essentially self-adjoint. Its self-
adjoint extension will be denoted by Ãν too. Let e−tÃν be the corresponding heat semigroup
on L2(G,ν), where L2(G,ν) is defined analogously to (4.1). Then the same arguments as in
[4, Section 1] imply that there exists a function

Kν ∈ C∞(
G×G,End(Vν)

)
, (4.4)
t
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with the following properties: Kν
t (g, g

′) is symmetric in the G-variables, for each g ∈ G, the
function g′ �→ Kν

t (g, g
′) belongs to L2(G,End(Vν)), it satisfies

Kν
t

(
gk,g′k′) = ν

(
k−1)Kν

t

(
g,g′)ν(

k′), ∀g,g′ ∈ G, ∀k, k′ ∈ K

and it is the kernel of the heat operator, i.e.,

(
e−tÃν φ

)
(g) =

∫
G

Kν
t

(
g,g′)φ(

g′)dg′, ∀φ ∈ L2(G,ν).

Since Ω is G-invariant, Kν
t is invariant under the diagonal action of G. Hence there exists a

function

Hν
t : G → End(Vν)

which satisfies

Hν
t

(
k−1gk′) = ν(k)−1 ◦Hν

t (g) ◦ ν
(
k′), ∀k, k′ ∈ K, ∀g ∈ G, (4.5)

such that

Kν
t

(
g,g′) = Hν

t

(
g−1g′), ∀g,g′ ∈ G. (4.6)

Thus one has

(
e−tÃν φ

)
(g) =

∫
G

Hν
t

(
g−1g′)φ(

g′)dg′, φ ∈ L2(G,ν), g ∈ G. (4.7)

By the arguments of [1, Proposition 2.4], Hν
t belongs to all Harish-Chandra Schwartz spaces

(Cq(G)⊗ End(Vν)), q > 0.
Now we pass to the quotient X = Γ \X̃. Let �ν = ∇ν∗∇ν the closure of the Bochner–Laplace

operator with domain the smooth compactly supported sections of Eν . Then �ν is self-adjoint
and by (4.3) it induces the operator −RΓ (Ω) + ν(ΩK) on C∞(Γ \G,ν). Thus if we let Aν be
the operator −RΓ (Ω) on C∞

c (Γ \G,ν), then Aν is bounded from below and is essentially self-
adjoint. The closure of Aν will be denoted by Aν too. Let e−tAν be the heat semigroup of Aν on
L2(Γ \G,ν). Let

Hν
(
t;x, x′) :=

∑
γ∈Γ

Hν
t

(
g−1γg′), (4.8)

where x, x′ ∈ Γ \G, x = Γg, x′ = Γg′. By [42, Chapter 4] this series converges absolutely and
locally uniformly. It follows from (4.7) that

(
e−tAνφ

)
(x) =

∫
Hν

(
t;x, x′)φ(

x′)dx′, φ ∈ L2(Γ \G,ν), x ∈ Γ \G.
Γ \G
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Put

hν
t (g) := trHν

t (g), (4.9)

where tr denotes the trace in EndVν . Define the operator RΓ (hν
t ) on L2(Γ \G) as in (3.19). Then

RΓ (hν
t ) is an integral operator on L2(Γ \G), whose kernel is given by

hν
(
t;x, x′) := trHν

(
t;x, x′). (4.10)

We shall now compute the Fourier transform of hν
t . Let π be a unitary admissible representa-

tion of G on a Hilbert space Hπ . Let ν̌ be the contragredient representation of ν and let Pν̌(π)

be the projection of Hπ onto Hν̌
π , the ν̌-isotypical component of Hπ . By assumption Hν̌

π is
finite-dimensional. Furthermore, it easily follows from (4.5) and the Schur orthogonality rela-
tions [18, Corollary 4.10] that

π
(
hν
t

) = Pν̌(π)π
(
hν
t

)
Pν̌(π). (4.11)

The restriction of π(hν
t ) to Hν̌

π will be denoted by π(hν
t ) too. Define a bounded operator π̃(Hν

t )

on Hπ ⊗ Vν by

π̃
(
Hν

t

)
(g) :=

∫
G

π(g) ⊗Hν
t (g) dg. (4.12)

Then relative to the splitting

Hπ ⊗ Vν = (Hπ ⊗ Vν)
K ⊕ (

(Hπ ⊗ Vν)
K

)⊥
,

π̃(Hν
t ) has the form (

π(Hν
t ) 0

0 0

)
,

where π(Hν
t ) acts on (Hπ ⊗ Vν)

K . It follows as in [1, Corollary 2.2] that

π
(
Hν

t

) = etπ(Ω) Id, (4.13)

where Id is the identity on (Hπ ⊗ Vν)
K . Now let A : Hπ → Hπ be a bounded operator which

is an intertwining operator for π |K . Then A ◦ π(hν
t ) is again a finite rank operator. Define an

operator Ã on Hπ ⊗ Vν by Ã := A ⊗ Id. Then by the same argument as in [1, Lemma 5.1] one
has

Tr
(
Ã ◦ π̃

(
Hν

t

)) = Tr
(
A ◦ π

(
hν
t

))
. (4.14)

Together with (4.13) we obtain

Tr
(
A ◦ π

(
hν

)) = etπ(Ω) · Tr Ã|(H ⊗V )K . (4.15)
t π ν
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Let π ∈ Ĝ and let Θπ be its global character. Taking A = Id in (4.15), one obtains

Θπ

(
hν
t

) = etπ(Ω) · dim(Hπ ⊗ Vν)
K = etπ(Ω) · [π : ν̌].

Now note that if d is odd, we have ν̌ ∼= ν for every ν ∈ K̂ and if d is even we have σ̌ ∼= σ for
every σ ∈ M̂ , see for example [12, Section 3.2.5]. Thus, in any case we have [ν̌ : σ ] = [ν : σ ].
Moreover, by [12, Theorems 8.1.3, 8.1.4] we have [ν : σ ] � 1 for all ν ∈ K̂ and all σ ∈ M̂ . Now
consider the principal series representation πσ,λ, where σ ∈ M̂ and λ ∈ R. Let Θσ,λ be the global
character of πσ,λ. For all ν ∈ K̂ one has

[πσ,λ : ν] = [ν : σ ]

by Frobenius reciprocity [17, p. 208]. Hence for [ν : σ ] �= 0 one has

Θσ,λ

(
hν
t

) = etπσ,λ(Ω)

and one has Θσ,λ(h
ν
t ) = 0 for [ν : σ ] = 0. The Casimir eigenvalue can be computed as follows.

For σ ∈ M̂ with highest weight given by (2.11) resp. (2.12), let

c(σ ) :=
n+1∑
j=2

(
kj (σ )+ ρj

)2 −
n+1∑
j=1

ρ2
j . (4.16)

Then one has

πσ,λ(Ω) = −λ2 + c(σ ). (4.17)

For G = Spin(2n + 1,1) this was proved in [34, Corollary 2.4]. For G = Spin(2n + 2,1), one
can proceed in the same way. Thus we obtain the following proposition.

Proposition 4.1. For σ ∈ M̂ and λ ∈ R let Θσ,λ be the global character of πσ,λ. Let c(σ ) be
defined by (4.16). Then one has

Θσ,λ

(
hν
t

) = et(c(σ )−λ2)

for [ν : σ ] �= 0 and Θσ,λ(h
ν
t ) = 0 otherwise.

Finally, by (3.18), (4.17) also gives

πσ,λ(Ω) = λ2 + c(σ ). (4.18)
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5. The regularized trace

In this section we define the regularized trace of the heat operator. The decomposition (3.7)
induces a decomposition of L2(Γ \G,ν) ∼= (L2(Γ \G,ν) ⊗ Vν)

K as

L2(Γ \G,ν) = L2
d(Γ \G,ν)⊕L2

c(Γ \G,ν). (5.1)

Let Aν be the operator induced by −RΓ (Ω) on C∞
c (Γ \G). The decomposition (5.1) is in-

variant under Aν in the sense of unbounded operators. Let Ad
ν denote the restriction of Aν to

L2
d(Γ \G,ν). Then the spectrum of Ad

ν is discrete. Let λ1 � λ2 � · · · be the sequence of eigen-
values of Ad

ν , counted with multiplicities. This sequence may be finite or infinite. For λ ∈ [0,∞)

let

N(λ) := #{j : λj � λ}

be the counting function of eigenvalues. By [30, Theorem 0.1] there exists C > 0 such that

N(λ) � C
(
1 + λ2d) (5.2)

for all λ � 0. In fact, in the present case, the exponent is d/2. This follows from an estima-
tion of the counting function of the cuspidal eigenvalues, which can be obtained by adapting
[7, Theorem I.1] and its proof to the case of a locally homogeneous vector bundle, and the fact
that the residual spectrum is finite in the present case. Hence the sum

∑
j e

−tλj converges for all

t > 0, the operator e−tAd
ν is of trace class and one has

Tr
(
e−tAd

ν
) =

∑
j

e−tλj . (5.3)

Let Hν
t be the kernel of e−tÃν and let hν

t = trHν
t . Then hν

t belongs to C1(G). Let hν(t;x, y) be
the kernel of RΓ (hν

t ). By Proposition 3.1, the kernel hν
c (t;x, y) of Rc

Γ (hν
t ) is given by

hν
c (t;x, y) = 1

4π

∑
k,l

∫
R

〈
π iλ

(
hν
t

)
el, ek

〉
E(ek, iλ, x)E(el, iλ, y) dλ, (5.4)

where {ek: k ∈ I } is an orthonormal basis of E adapted to the decomposition (3.10). Let

hν
d(t;x, y) = hν(t;x, y)− hν

c (t;x, y). (5.5)

By the second part of Proposition 3.1, hν
d is the kernel of Rd

Γ (hν
t ) and we have

Tr
(
e−tAd

ν
) = Tr

(
Rd

Γ

(
hν
t

)) =
∫

hν
d(t;x, x) dx. (5.6)
Γ \G
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Now the argument on p. 82 in [42] can be extended to hν
t ∈ C(G) and one has∫

R

∫
Γ \G

∣∣∣∣∑
k,l

〈
π iλ

(
hν
t

)
el, ek

〉
EY (ek, iλ, x)E

Y (el, iλ, x)

∣∣∣∣dx dλ < ∞.

Thus one can apply Proposition 3.2 and interchange the order of integration. Let C(σ, ν,λ) be
the operator (3.12). Arguing now as in [42, pp. 82–84] and using Proposition 4.1 one obtains

∫
X(Y)

hν
c (t;x, x) dx =

∑
σ∈M̂;σ=w0σ[ν:σ ]�=0

Tr(πσ,0(h
ν
t )C(σ, ν,0))

4
+

∑
σ∈M̂[ν:σ ]�=0

(
κetc(σ ) logY dim(σ )√

4πt

− 1

4π

∫
R

Tr

(
πσ,iλ

(
hν
t

)
C(σ, ν,−iλ)

d

dz
C(σ, ν, iλ)

)
dλ

)
+ o(1),

as Y → ∞. Now recall that the restriction of the representation πσ,iλ to K is independent of the
parameter λ. Let

C̃(σ, ν,λ) : (E(σ )⊗ Vν

)K → (
E(wσ)⊗ Vν

)K
be the restriction of C(σ,λ)⊗ IdVν to (E(σ )⊗Vν)

K , where C(σ,λ) is the operator (3.13). Using
the intertwining property of C(σ,λ), Eqs. (4.15) and (4.18) one obtains

∫
X(Y)

hν
c (t;x, x) dx =

∑
σ∈M̂;σ=w0σ[ν:σ ]�=0

etc(σ )
Tr(C̃(σ, ν,0))

4
+

∑
σ∈M̂[ν:σ ]�=0

(
κetc(σ ) logY dim(σ )√

4πt

− 1

4π

∫
R

e−t (λ2−c(σ )) Tr

(
C̃(σ, ν,−iλ)

d

dz
C̃(σ, ν, iλ)

)
dλ

)
+ o(1),

as Y → ∞. Thus together with (5.5), (5.6) we obtain

∫
X(Y)

hν(t;x, x) dx =
∑
σ∈M̂[ν:σ ]�=0

κetc(σ ) dim(σ ) logY√
4πt

+
∑
j

e−tλj

+
∑

σ∈M̂;σ=w0σ[ν:σ ]�=0

etc(σ )
Tr(C̃(σ, ν,0))

4

− 1

4π

∑
σ∈M̂[ν:σ ]�=0

∫
R

e−t (λ2−c(σ )) Tr

(
C̃(σ, ν,−iλ)

d

dz
C̃(σ, ν, iλ)

)
dλ

+ o(1) (5.7)
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as Y → ∞. It follows that
∫
X(Y)

trhν(t;x, x) dx has an asymptotic expansion as Y → ∞ and
following [27], we take the constant coefficient as the definition of the regularized trace.

Definition 5.1. The regularized trace of e−tAν is defined as

Trreg
(
e−tAν

) = Tr
(
e−tAd

ν
) +

∑
σ∈M̂;σ=w0σ[ν:σ ]�=0

etc(σ )
Tr(C̃(σ, ν,0))

4

− 1

4π

∑
σ∈M̂[ν:σ ]�=0

∫
R

e−t (λ2−c(σ )) Tr

(
C̃(σ, ν,−iλ)

d

dz
C̃(σ, ν, iλ)

)
dλ. (5.8)

Remark 5.2. The right-hand side of (5.8) equals the spectral side of the Selberg trace formula
applied to exp(−tAν). This follows from [42, Theorem 8.4].

Remark 5.3. There are slightly different methods to regularize the trace. One is to truncate
the zero Fourier coefficients of hν(t;x, y) at level Y � Y0. The resulting kernel hν

Y (t;x, y) is
integrable over the diagonal. The integral

∫
X
hν
Y (t;x, x) dx depends on Y in a simple way. If

one subtracts off the term which contains Y , one gets another definition of the regularized trace
which is closely related to (5.8).

Remark 5.4. The definition of the regularized trace depends in a subtle way on a choice of the
representatives P of Γ -cuspidal proper parabolic subgroups of G since the terms in Eq. (5.8)
involving the scattering matrices C̃ depend on this choice. If one expresses the regularized traces
as in Theorem 6.1 below, then its dependence on the set P is incorporated in the constant C(Γ )

which occurs in the definition of the distribution T . This fact has been brought to our attention
by Werner Hoffmann. However, it will follow immediately from our proof that our main result
Theorem 1.1 is not affected by the choice of P since the leading term C(n)vol(X)m ·dim(τ (m))

in Theorem 1.1 is independent of the choice of P.

6. The trace formula

In this section we apply the Selberg trace formula to study the regularized trace of the heat
operator e−tAν . To begin with, we briefly recall the Selberg trace formula. First we introduce the
distributions involved. Let α be a K-finite Schwartz function. Let

I (α) := vol(Γ \G)α(1).

By [15, Theorem 3], the Plancherel theorem can be applied to α. For groups of real rank one
which do not possess a compact Cartan subgroup it is stated in [17, Theorem 13.2]. Thus if
Pσ (z) is as in Section 2.8, then for an odd-dimensional X one has

I (α) = vol(X)
∑
σ∈M̂

∫
R

Pσ (iλ)Θσ,λ(α) dλ, (6.1)
[ν:σ ]�=0
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where the sum is finite since α is K-finite. In even dimensions an additional contribution of the
discrete series appears. Let Γs be the semi-simple elements of Γ and let C(Γ )s be the set of
Γ -conjugacy classes [γ ], γ ∈ Γs. Put

H(α) :=
∫

Γ \G

∑
γ∈Γs−{1}

α
(
x−1γ x

)
dx.

By [42, Lemma 8.1] the integral converges absolutely. Its Fourier transform can be computed
as follows. Since Γ is assumed to be torsion free, every non-trivial semi-simple element γ is
conjugate to an element m(γ ) exp�(γ )H1, m(γ ) ∈ M . By [39, Lemma 6.6], l(γ ) > 0 is unique
and m(γ ) is determined up to conjugacy in M . Moreover, �(γ ) is the length of the unique closed
geodesic in X associated to [γ ]. It follows that Γγ , the centralizer of γ in Γ , is infinite cyclic. Let
γ0 denote its generator which is semi-simple too. For γ ∈ C(Γ )s − {[1]} let aγ := exp�(γ )H1
and let

L(γ,σ ) := Tr(σ )(mγ )

det(Id−Ad(mγ aγ )|n̄)e
−n�(γ ). (6.2)

Proceeding as in [39] and using [10, Eq. 4.6], one obtains

H(α) =
∑
σ∈M̂

∑
[γ ]∈C(Γ )s−[1]

l(γ0)

2π
L(γ,σ )

∞∫
−∞

Θσ,λ(α)e
−il(γ )λ dλ, (6.3)

where the sum is finite since α is K-finite.
Now let P ∈ P. For every η ∈ Γ ∩NP − {1} let Xη := logη. Write ‖ · ‖ for the norm induced

on nP by the restriction of 1
4nB(·, θ ·). Then for Re(s) > 0 the Epstein-type zeta function ζP ,

defined by

ζP (s) :=
∑

η∈Γ ∩NP −{1}
‖Xη‖−2n(1+s), (6.4)

converges and ζP has a meromorphic continuation to C with a simple pole at 0. Let CP (Γ ) be
the constant term of ζP at s = 0. Then put

TP (α) :=
∫
K

∫
NP

α
(
knP k

−1)dnP dk =
∫
K

∫
N

α
(
kn0k

−1)dn0 dk,

T (α) :=
∑
P∈P

CP (Γ )
vol(Γ ∩NP \NP )

vol(S2n−1)
TP (α),

T ′
P (α) :=

∫ ∫
α
(
knP k

−1) log‖lognP ‖dnP dk.
K NP
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Then T and TP ′ are tempered distributions. The distribution T is invariant. Let

C(Γ ) :=
∑
P∈P

CP (Γ )
vol(Γ ∩NP \NP )

vol(S2n−1)
.

Applying the Fourier inversion formula and the Peter–Weyl theorem to Eq. 10.21 in [17], one
obtains the Fourier transform of T as

T (α) =
∑
σ∈M̂

dim(σ )
1

2π
C(Γ )

∫
R

Θσ,λ(α)dλ. (6.5)

The distributions T ′
P are not invariant. However, they can be made invariant using the standard

Knapp–Stein intertwining operators. These operators are defined as follows. Let P̄0 := N̄0A0M0
be the parabolic subgroup opposite to P0. Let σ ∈ M̂ and let (Hσ )∞ be the subspace of C∞-
vectors in Hσ . For Φ ∈ (Hσ )∞ and λ ∈C define Φλ : G → Vσ by

Φλ(nak) := Φ(k)e(iλe1+ρ) loga.

Then for Im(λ) < 0 the integral

JP̄0|P0
(σ,λ)(Φ)(k) :=

∫
N̄

Φλ(n̄k) dn̄ (6.6)

is convergent and JP̄0|P0
(σ,λ) : (Hσ )∞ → (Hσ )∞ defines an intertwining operator between πσ,λ

and πσ,λ,P̄0
, where πσ,λ,P̄0

denotes the principal series representation associated to σ , λ and P̄0.
As an operator-valued function, JP̄0|P0

(σ,λ) has a meromorphic continuation to C (see [19]).

Let ν ∈ K̂ be a K-type of πσ,λ. Since [ν : σ ] � 1 for every ν ∈ K̂ , it follows from Frobenius
reciprocity and Schur’s lemma that

JP̄0|P0
(σ,λ)|(Hσ )ν = cν(σ : λ) · Id, (6.7)

where cν(σ : λ) ∈ C. The function z �→ cν(σ : z) can be computed explicitly. Assume that d =
2n+1. Let k2(σ )e2 +· · ·+kn+1(σ )en+1 be the highest weight of σ as in (2.11) and let k2(ν)e2 +
· · ·+kn+1(ν)en+1 be the highest weight of ν as in (2.9). Then taking the different parametrization
into account, it follows from Theorem 8.2 in [8] that there exists a constant α(n) depending on n

such that

cν(σ : z) = α(n)

∏n+1
j=2 Γ (iz − kj (σ )− ρj )

∏n+1
j=2 Γ (iz + kj (σ )+ ρj )∏n+1

j=2 Γ (iz − kj (ν)− ρj )
∏n+1

j=2 Γ (iz + kj (ν)+ ρj + 1)
. (6.8)

This formula implies that

cν(σ : z)−1 d

dz
cν(σ : z) =

n+1∑
j=2

∑
|k (σ )|<l�k (ν)

i

iz − l − ρj

−
n+1∑
j=2

kj (ν)∑
l=|k (σ )|

i

iz + l + ρj

. (6.9)

j j j
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Next let d = 2n+2. Let k2(σ )e2 +· · ·+ kn+1(σ )en+1 be the highest weight of σ as in (2.12) and
let k1(ν)e1 +· · ·+kn+1(ν)en+1 be the highest weight of ν as in (2.10). Then by [8, Theorem 8.2],
there exists a constant α(n) depending only on n such that

cν(σ : z) = α(n)
Γ (2iz)

∏n+1
j=2 Γ (iz − kj (σ )− ρj )

∏n+1
j=2 Γ (iz + kj (σ )+ ρj )

22iz
∏n+1

j=1 Γ (iz − kj (ν)− ρj + 1)
∏n+1

j=1 Γ (iz + kj (ν)+ ρj )
. (6.10)

Eqs. (6.8) and (6.10) imply that JP̄0|P0
(σ,λ) has no poles on R − {0} and is invertible there

and that JP̄0|P0
(σ, z)−1 is defined as a meromorphic function of z. It follows that the weighted

character

Tr

(
JP̄0|P0

(σ, z)−1 d

dz
JP̄0|P0

(σ, z)πσ,z(α)

)
(6.11)

is regular for z ∈ R − {0}. Let ε > 0 be sufficiently small. Let Hε be the half-circle from −ε to
ε in the lower half-plane, oriented counter-clockwise. Let Dε be the path which is the union of
(−∞,−ε], Hε and [ε,∞). Using (6.8), (6.10) and the fact that the matrix coefficients of πσ,z(α)

are rapidly decreasing, it follows that (6.11) is integrable over Dε . Let

Jσ (α) := κ dimσ

4πi

∫
Dε

Tr

(
JP̄0|P0

(σ, z)−1 d

dz
JP̄0|P0

(σ, z)πσ,z(α)

)
dz. (6.12)

The change of contour is only necessary if JP̄0|P0
(σ, s) has a pole at 0. Let

J (α) := −
∑
σ∈M̂

Jσ (α). (6.13)

Using [12, Section 3.2.5], [12, Theorems 8.1.3, 8.1.4], (6.8) and (6.10) it is easy to see that
[ν̌ : σ ] = [ν : σ ] and cν̌(σ : z) = cν(σ : z) for all ν ∈ K̂ and all σ ∈ M̂ . Thus by (4.11) and
Proposition 4.1 one has

J
(
hν
t

) = − κ

4πi

∑
σ∈M̂

[ν : σ ]dim(σ )

∫
Dε

e−t (z2−c(σ ))cν(σ : z)−1 d

dz
cν(σ : z) dz. (6.14)

For notational convenience, if ν ∈ K̂ and σ ∈ M̂ with [ν : σ ] = 0 we let cν(σ : z) := 0. Now we
define a distribution I by

I(α) :=
∑
P∈P

T ′
P (α) − J (α). (6.15)

We claim that I is an invariant distribution. This can be seen as follows. Using the formula for
JM(m,α) on p. 92 of [16], we get JM (1, α) = T ′ (α). Next using the formula for the invariant
P P
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distribution IP (m,α) on p. 93 of [16] and formula (8) of [16], it follows that

IP (1, α) = T ′
P (α)+

∑
σ∈M̂0

dim(σ )

4πi

∫
Dε

Tr

(
JP̄0|P0

(σ, z)−1 d

dz
JP̄0|P0

(σ, z)πσ,z(α)

)
dz.

Adding over P ∈ P, we get

∑
P∈P

IP (1, α) = I(α) − J (α),

which proves our claim.

Theorem 6.1. With the above notations, one has

Trreg
(
e−tAν

) = I
(
hν
t

) +H
(
hν
t

) + T
(
h̃ν
t

) + I
(
hν
t

) + J
(
hν
t

)
.

Proof. By (5.8), Trreg(e
−tAν ) is the difference of Tr(e−tAd

ν ) and the terms in the trace formula
which are associated to the continuous spectrum. These are the last two terms in the trace formula
[42, Theorem 8.4]. Using [42, Theorem 8.4], the theorem on p. 299 in [35], and taking our
normalization of measures into account, we obtain the claimed equality. �

The Fourier transform of the distribution I was computed in [16]. We shall now state his
result. For σ ∈ M̂ with highest weight k2(σ )e2 + · · · + kn+1(σ )en+1 and λ ∈ R define λσ ∈ (h)∗

C

by

λσ := iλe1 +
n+1∑
j=2

(
kj (σ )+ ρj

)
ej . (6.16)

Let S(bC) be the symmetric algebra of bC. Define Π ∈ S(bC) by

Π :=
∏

α∈�+(mC,bC)

Hα. (6.17)

The restriction of the Killing form to hC defines a non-degenerate symmetric bilinear form. We
will identify h∗

C
with hC via this form and denote the induced symmetric bilinear form on h∗

C
by

〈·,·〉. Then for α ∈ �+(gC,hC) we denote by sα : h∗
C

→ h∗
C

the reflection sα(x) = x − 2 〈x,α〉
〈α,α〉α.

Now the Fourier transform of I is computed as follows.

Theorem 6.2. For every K-finite α ∈ C2(G) one has

I(α) = κ

4π

∑
ˆ

∫
Ω(σ̌ ,−λ)Θσ,λ(α)dλ,
σ∈M R
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where

Ω(σ,λ) := −2 dim(σ )γ − 1

2

∑
α∈�+(gC,aC)

Π(sαλσ )

Π(ρM)

(
ψ

(
1 + λσ (Hα)

) +ψ
(
1 − λσ (Hα)

))
.

Here ψ denotes the digamma function and γ denotes the Euler–Mascheroni constant. Moreover
σ̌ denotes the contragredient representation of σ and Π is as in (6.17).

Proof. This follows from [16, Theorems 5, 6], [16, Corollary on p. 96]. Here we use that
for d even and π ∈ Ĝd , the discrete series of G, the term |DG(a)|1/2Θπ̌(a) occurring in
[16, Theorem 5] vanishes for a = 1. This can be seen as follows. By the formula for the char-
acter of the discrete series [17, Theorem 12.7], [41, Theorem 10.1.1.1], one needs to show that∑

w∈WK
det(w) = 0. This has been established in the proof of Lemma 5 in [6]. �

For the applications we have in mind, we shall now transform the functions Ω(λ,σ ) a bit.
In the rest of this section we assume that d = dim(X) is odd, d = 2n + 1. We start with the
following elementary lemma.

Lemma 6.3. One has

∑
α∈�+(gC,aC)

Π(sαλσ )

Π(ρM)
= 2 dimσ.

Proof. This is proved in [16, p. 95] but can also be seen as follows. Let ξ ∈ b∗
C

, ξ = ξ2e2 + · · ·+
ξn+1en+1. Then it follows from (2.3) that

Π(ξ) =
∏

2�i<j�n+1

(ξi − ξj )(ξi + ξj ). (6.18)

If τ is a permutation of {2, . . . , n+ 1} and

ξτ := ξ2eτ(2) + · · · + ξn+1eτ(n+1)

it follows from (6.18) that

Π(ξτ ) = ±Π(ξ). (6.19)

Write Λ(σ)+ ρM = ξ2e2 + · · · + ξn+1en+1. Let λσ be as in (6.16). Then if α = e1 ± ej , one has

sα(λσ ) = ∓ξj e1 + ξ2e2 + · · · + ξj−1ej−1 ∓ iλej + ξj+1ej+1 + · · · + ξn+1en+1. (6.20)

Using (2.15) and (6.18) it follows that

Π
(
se +e (λσ )

) = Π
(
se −e (λσ )

); Π
(
se +e (λσ )

) = Π
(
se +e (λw σ )

)
. (6.21)
1 j 1 j 1 j 1 j 0
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Thus by (2.14) and (6.18) for α = e1 ± ej one gets

Π(sα(λσ ))

Π(ρM)
= (−1)j

Π(ρM)

∏
2�k<l�n+1

k,l �=j

(
ξ2
k − ξ2

l

) n+1∏
p=2
p �=j

(−λ2 − ξ2
p

)

= 1

Π(ρM)

∏
2�k<l�n+1

(
ξ2
k − ξ2

l

) n+1∏
p=2
p �=j

−λ2 − ξ2
p

ξ2
j − ξ2

p

= dim(σ )

n+1∏
p=2
p �=j

−λ2 − ξ2
p

ξ2
j − ξ2

p

. (6.22)

Now as in [34, Lemma 5.6] one has

n+1∑
j=2

n+1∏
p=2
p �=j

−λ2 − ξ2
p

ξ2
j − ξ2

p

= 1

for every λ. This proves the lemma. �
For j = 2, . . . , n+ 1 and λ ∈ C let

Pj (σ,λ) := Π(se1+ej λσ )

Π(ρM)
. (6.23)

Then if σ is of highest weight k2(σ )e2 + · · · + kn+1(σ )en+1 as in (2.11) it follows from (6.22)
that

Pj (σ,λ) = dim(σ )

n+1∏
p=2
p �=j

−λ2 − (kp(σ )+ ρp)
2

(kj (σ )+ ρj )2 − (kp(σ )+ ρp)2
. (6.24)

In particular Pj (σ,λ) is an even polynomial in λ of degree 2n− 2.

Proposition 6.4. Let σ ∈ M̂ be of highest weight k2(σ )e2 + · · · + kn+1(σ )en+1. Assume that all
kj (σ ) are integral and that kn+1(σ ) > 0. Let the notation be as in Theorem 6.2. Then one has

Ω(σ,λ) = Ω(w0σ,λ); Ω(σ,λ) = Ω(σ̌ ,−λ).

Moreover one can write

Ω(σ,λ) = Ω1(σ,λ)+Ω2(σ,λ),
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where Ω1(σ,λ) and Ω2(σ,λ) are defined as follows. Let m0 := |kn+1(σ )| − 1. Then one puts

Ω1(σ,λ) := −dim(σ )

(
2γ +ψ(1 + iλ)+ψ(1 − iλ)+

∑
1�l�m0

2l

l2 + λ2

)
.

Furthermore for every j let Pj (σ,λ) be as in (6.23). For m0 � l � kj (σ ) + ρj define an even
polynomial Qj,l(σ,λ) by

Qj,l(σ,λ) := Pj (σ,λ)− Pj (σ, il)

l + iλ
+ Pj (σ,λ)− Pj (σ, il)

l − iλ
. (6.25)

Then

Ω2(σ,λ) := −
n+1∑
j=2

∑
m0<l<kj (σ )+ρj

Pj (σ, il)
2l

λ2 + l2
−

n+1∑
j=2

dim(σ )
kj (σ )+ ρj

(kj (σ )+ ρj )2 + λ2

−
n+1∑
j=2

∑
m0<l<kj (σ )+ρj

Qj,l(σ,λ)− 1

2

∑
l=kj (σ )+ρj
2�j�n+1

Qj,l(σ,λ).

Finally, if kn+1(σ ) < 0, one puts Ω1(σ,λ) = Ω1(w0σ,λ), Ω2(σ,λ) = Ω2(w0σ,λ).

Proof. Let j ∈ {2, . . . , n+ 1}. We have

λσ (He1±ej ) = iλ± (
kj (σ )+ ρj

)
. (6.26)

Now recall that ρn+1 = 0 and that the highest weight of w0σ is given by k2(σ )e2 + · · · +
kn(σ )en − kn+1(σ )en+1. Moreover recall that for M = Spin(n) one has σ̌ ∼= σ if n is odd
and σ̌ ∼= w0σ if n is even. Thus (6.21) and (6.26) imply that Ω(λ,σ ) = Ω(λ,w0σ) and
Ω(λ,σ ) = Ω(−λ, σ̌ ). Moreover, using ψ(z + 1) = 1

z
+ψ(z), (6.21) and (6.26) we obtain

Π(se1+ej λσ )

Π(ρM)

(
ψ

(
1 + λσ (He1+ej )

) +ψ
(
1 − λσ (He1+ej )

))
+ Π(se1−ej λσ )

Π(ρM)

(
ψ

(
1 + λσ (He1−ej )

) +ψ
(
1 − λσ (He1−ej )

))
= 2

Π(se1+ej λσ )

Π(ρM)

(
ψ(1 + iλ)+ψ(1 − iλ)+

∑
1�l�m0

2l

l2 + λ2

+
∑

m0<l<kj (σ )+ρj

2l

l2 + λ2
+ (kj (σ )+ ρj )

(kj (σ )+ ρj )2 + λ2

)
.

Using Lemma 6.3 and (6.21) we obtain

Ω(σ,λ) = Ω1(σ,λ)−
n+1∑
j=2

Pj (σ,λ)

( ∑
m <l<k (σ )+ρ

2l

l2 + λ2
+ (kj (σ )+ ρj )

(kj (σ )+ ρj )2 + λ2

)
.

0 j j
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Since Pj (σ,λ) is an even polynomial in λ, for every j = 2, . . . , n+ 1 and every l with m0 � l �
|kj (σ )| + ρj we can write

Pj (σ,λ)l

l2 + λ2
= 1

2
Qj,l(σ,λ)+ Pj (σ, il)

l

l2 + λ2
.

Using (6.24) it follows that

Pj

(
σ, i

(
kj (σ )+ ρj

)) = dim(σ ).

This implies the proposition. �
Remark 6.5. There is a similar formula for σ ∈ M̂ with half-integral weight.

In order to define the analytic torsion, we need to know that the regularized trace of e−t�p(τ)

admits an asymptotic expansion as t → +0. We establish this in general for the operators e−tAν .
To begin with, we prove some auxiliary lemmas.

Lemma 6.6. Let φ1(t) := ∫
R
e−tλ2 1

λ2+c2 dλ. Then there exist aj ∈ C such that

φ1(t) ∼
∞∑
j=0

aj t
j
2

as t → 0.

Proof. We have

φ1(t) = etc
2
∫
R

e−t (λ2+c2)

λ2 + c2
dλ.

One has

d

dt

∫
R

e−t (λ2+c2)

λ2 + c2
dλ = −

√
π√
t
.

Thus one has

∫
R

e−t (λ2+c2)

λ2 + c2
dλ = C + √

πt.

Writing etc
2

as a power series, the proposition follows. �
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Lemma 6.7. Let φ2(t) := ∫
R
e−tλ2

ψ(1 + iλ) dλ. Then there exist complex coefficients aj , bj , cj
such that as t → 0, there is an asymptotic expansion

φ2(t) ∼
∞∑
j=0

aj t
j−1/2 +

∞∑
j=0

bj t
j−1/2 log t +

∞∑
j=0

cj t
j .

Proof. The asymptotic behavior of the Laplace transform at 0 of functions which admit suitable
asymptotic expansions at infinity has been treated in [13].

Recall that

ψ(z + 1) = log z + 1

2z
−

N∑
k=1

B2k

2k
· 1

z2k
+RN(z), N ∈N, (6.27)

where Bi are the Bernoulli numbers and

RN(z) = O
(
z−2N−2), z → ∞

uniformly on sectors −π + δ < arg(z) < π − δ. Consider

φ+
2 (t) :=

∞∫
0

e−tλ2
ψ(1 + iλ) dλ.

Let χ be the characteristic function of [1,∞). Define a function

g(λ) := ψ(1 + iλ)− log(iλ) − χ(λ)

2iλ

and define a function

h(λ) := g(
√
λ)

2
√
λ

.

Then by (6.27) there is an asymptotic expansion

h(λ) ∼
∞∑
k=1

akλ
−k−1/2, λ → ∞. (6.28)

First define

ψ+
2 (t) :=

∞∫
e−tλ2

g(λ)dλ =
∞∫
e−tλh(λ)dλ.
0 0
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Then by (6.28) and [13, Corollary 5.2] one obtains

ψ+
2 (t) ∼

∞∑
k=0

a′
kt

k+1/2 +
∞∑
k=0

c′
kt

k

for complex a′
k , c′

k . Next we have

∞∫
0

e−tλ2
logλdλ = t−1/2

∞∫
0

e−λ2
logλdλ−

√
π

4
t−1/2 log t.

Finally we have

∞∫
1

e−tλ2
λ−1 dλ =

1∫
√
t

e−λ2
λ−1 dλ+

∞∫
1

e−λ2
λ−1 dλ =

1∫
√
t

∞∑
k=0

(−1)k
λ2k−1

k! dλ+C

= − log
√
t +

∞∑
k=1

(−1)k+1 tk

k!2k +C′.

Putting everything together, we obtain the desired asymptotic expansion for φ+
2 . For the integral

over (−∞,0] we proceed similarly.
Alternatively, one can also proceed as in [21, pp. 156–157, 165–166]. The methods of [13]

and [21] are closely related. �
Lemma 6.8. Let P(z) := ∑N

j=0 aj z
2j be an even polynomial. Then there exist a′

j ∈ C such that

∫
R

e−tλ2
P(λ)dλ =

N∑
j=0

a′
j t

−j− 1
2 .

Proof. This follows by a change of variables. �
Proposition 6.9. Assume that dim(X) is odd. There exist coefficients aj , bj , cj , j ∈ N, such that
one has

Trreg
(
e−tAν

) ∼
∞∑
j=0

aj t
j− d

2 +
∞∑
j=0

bj t
j− 1

2 log t +
∞∑
j=0

cj t
j

as t → +0.

Proof. We use Theorem 6.1 and derive an asymptotic expansion of each term on the right-
hand side. We can always ignore additional factors of the form e−tc, c > 0 by expanding this
term in a power series. The term I (hν

t ) has the desired asymptotic expansion by Proposition 4.1,
Eq. (6.1) and Lemma 6.8. Secondly, using [11, Proposition 5.4] one obtains H(hν

t ) = O(e− c
t ) for
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a constant c > 0. By Proposition 4.1 and Eq. (6.5), the term T (hν
t ) has an asymptotic expansion

starting with t− 1
2 . For every σ ∈ M̂ with [ν : σ ] �= 0 we write Ω(λ,σ ) as in Proposition 6.4.

Then by Propositions 4.1, 6.4 together with Remark 6.5, Lemmas 6.6, 6.7 and 6.8 it follows
that the term I(hν

t ) has the claimed asymptotic expansion in t . The term J (hν
t ) has the claimed

asymptotic expansion by Eq. (6.14) and Lemma 6.6. �
Remark 6.10. The proposition remains true in even dimensions. The proof, however, would
require more work due to the discrete series. This is not needed for our purpose.

7. The analytic torsion

Let τ be an irreducible finite-dimensional representation of G on Vτ . Let E′
τ be the flat vector

bundle associated to the restriction of τ to Γ . Then E′
τ is canonically isomorphic to the locally

homogeneous vector bundle Eτ associated to τ |K . By [26], there exists an inner product 〈·,·〉 on
Vτ such that

(1) 〈τ(Y )u, v〉 = −〈u, τ(Y )v〉 for all Y ∈ k, u,v ∈ Vτ ,
(2) 〈τ(Y )u, v〉 = 〈u, τ(Y )v〉 for all Y ∈ p, u,v ∈ Vτ .

Such an inner product is called admissible. It is unique up to scaling. Fix an admissible inner
product. Since τ |K is unitary with respect to this inner product, it induces a metric on Eτ which
will be called admissible too. Let Λp(Eτ ) be the bundle of Eτ -valued p-forms on X. Let

νp(τ ) := Λp Ad∗ ⊗τ : K → GL
(
Λpp∗ ⊗ Vτ

)
. (7.1)

There is a canonical isomorphism

Λp(Eτ ) ∼= Γ \(G×νp(τ)

(
Λpp∗ ⊗ Vτ

))
. (7.2)

If Λp(X,Eτ ) are the smooth Eτ -valued p-forms on X, the isomorphism (7.2) induces an iso-
morphism

Λp(X,Eτ ) ∼= C∞(
Γ \G,νp(τ)

)
. (7.3)

A corresponding isomorphism also holds for the L2-spaces. Let �p(τ) be the Hodge–
Laplacian on Λp(X,Eτ ) with respect to the admissible inner product. By (6.9) in [26], on
C∞(Γ \G,νp(τ)) one has

�p(τ) = −Ω + τ(Ω) Id. (7.4)

If Λ(τ) = k1(τ )e1 + · · · + kn+1(τ )en+1 is the highest weight of τ , we have

τ(Ω) =
n+1∑(

kj (τ )+ ρj

)2 −
n+1∑

ρ2
j . (7.5)
j=1 j=1
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For G = Spin(2n + 1,1) this was proved in [34, Section 2]. For G = Spin(2n + 2,1), one can
proceed in the same way. Let 0 � λ1 � λ2 � · · · be the eigenvalues of �p(τ). By (7.4) and (5.8)
we have

Trreg
(
e−t�p(τ)

) =
∑
j

e−tλj +
∑

σ∈M̂;σ=w0σ[νp(τ):σ ]�=0

e−t (τ (Ω)−c(σ )) Tr(C̃(σ, νp(τ ),0))

4

− 1

4π

∑
σ∈M̂[νp(τ):σ ]�=0

e−t (τ (Ω)−c(σ ))

·
∫
R

e−tλ2
Tr

(
C̃

(
σ, νp(τ ),−iλ

) d

dz
C̃

(
σ, νp(τ ), iλ

))
dλ. (7.6)

Let

K(t, τ ) :=
d∑

p=0

(−1)ppTrreg
(
e−t�p(τ)

)
. (7.7)

Then the analytic torsion is defined in terms of the Mellin transform of K(t, τ ). For every p =
0, . . . , d , let νp(τ ) be the representation (7.1) and let h

νp(τ)
t be defined by (4.9). Put

kτt := e−tτ (Ω)

d∑
p=0

(−1)pph
νp(τ)
t . (7.8)

By Theorem 6.1 we have

K(t, τ ) = I
(
kτt

) +H
(
kτt

) + T
(
kτt

) + I
(
kτt

) + J
(
kτt

)
. (7.9)

This equality will be used in Section 10 to study the Mellin transform of K(t, τ ).
To define the analytic torsion, we need to determine the asymptotic behavior of the regularized

trace of e−t�p(τ) as t → ∞. To begin with we estimate the exponential factors occurring on the
right-hand side of (7.6).

Lemma 7.1.

(1) Let G = Spin(2n+ 2,1). Let τ be an irreducible representation of G. Then

τ(Ω) − c(σ ) � 1

4

for all σ ∈ M̂ with [νp(τ ) : σ ] �= 0.
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(2) Let G = Spin(2n + 1,1). Let τ be an irreducible representation of G with highest weight
τ1e1 + · · · + τn+1en+1 as in (2.7). Then

τ(Ω)− c(σ ) � τ 2
n+1

for all σ ∈ M̂ with [νp(τ ) : σ ] �= 0. Moreover assume that σ ∈ M̂ is such that [νp(τ ) : σ ] �= 0
and such that σ = w0σ . Then one has

τ(Ω)− c(σ ) � (τn + 1)2 + τ 2
n+1 � 1 + τ 2

n+1.

Proof. For p = 0, . . . , d let

νp := Λp Ad∗
p : K → GL

(
Λpp∗).

Recall that νp(τ ) = τ |K ⊗ νp . Let ν ∈ K̂ with [νp(τ ) : ν] �= 0. Then by [17, Proposition 9.72],
there exists ν′ ∈ K̂ with [τ : ν′] �= 0 of highest weight Λ(ν′) ∈ b∗

C
and μ ∈ b∗

C
which is a weight

of νp such that the highest weight Λ(ν) of ν is given by μ + Λ(ν′). Now let ν′ ∈ K̂ be such
that [τ : ν′] �= 0. Let Λ(ν′) be the highest weight of ν′ as in (2.9) resp. (2.10). Then by [12,
Theorems 8.1.3, 8.1.4] we have

τj−1 � kj
(
ν′) � 0, j = 2, . . . , n+ 1,

if d = 2n+ 1 and

τj �
∣∣kj (ν′)∣∣, j = 1, . . . , n+ 1,

if d = 2n+ 2. Moreover, every weight μ ∈ b∗
C

of νp is given as

μ = ±ej1 ± · · · ± ejp , j1 < j2 < · · · < jp � n+ 1.

Thus, if ν ∈ K̂ is such that [νp(τ ) : ν] �= 0, the highest weight Λ(ν) of ν, given as in (2.9) resp.
(2.10), satisfies

τj−1 + 1 � kj (ν) � 0, j ∈ {2, . . . , n+ 1},

if d = 2n+ 1 and

τj + 1 �
∣∣kj (ν)∣∣ � 0, j ∈ {1, . . . , n+ 1},

if d = 2n+ 2. Let σ ∈ M̂ be such that [νp(τ ) : σ ] �= 0. Then using [12, Theorems 8.1.3, 8.1.4] it
follows that

τj−1 + 1 �
∣∣kj (σ )∣∣
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for every j ∈ {2, . . . , n+ 1}, where the kj (σ ) are as in (2.11) resp. (2.12). Furthermore note that
by (2.4) we have ρj−1 = ρj + 1. Using (7.5) and (4.16) we get

c(σ ) =
n+1∑
j=2

(
kj (σ )+ ρj

)2 −
n+1∑
j=1

ρ2
j �

n+1∑
j=2

(τj−1 + ρj−1)
2 −

n+1∑
j=1

ρ2
j = τ(Ω)− (τn+1 + ρn+1)

2.

If G = Spin(2n + 2,2), we have ρn+1 = 1/2 and τn+1 � 0. If G = Spin(2n + 1,1), we have
ρn+1 = 0. Thus item (1) and the first statement of item (2) are proved.

Now assume that G = Spin(2n+ 1,1). Assume that σ additionally satisfies σ = w0σ . This is
equivalent to kn+1(σ ) = 0 by (2.15). Thus since ρn+1 = 0, ρn = 1 we get

c(σ ) =
n∑

j=2

(
kj (σ )+ ρj

)2 −
n+1∑
j=1

ρ2
j �

n∑
j=2

(τj−1 + ρj−1)
2 −

n+1∑
j=1

ρ2
j = τ(Ω) − (τn + 1)2 − τ 2

n+1.

Finally by (2.7) we have τn � 0. This proves the lemma. �
The next two lemmas are also needed to determine the behavior of the regularized trace as

t → ∞.

Lemma 7.2. There is an asymptotic expansion

∫
R

e−tλ2
Tr

(
C̃

(
σ, νp(τ ),−iλ

) d

dz
C̃

(
σ, νp(τ ), iλ

))
dλ ∼

∞∑
j=1

bj t
−j/2

as t → ∞.

Proof. Since C̃(σ : νp(τ ) : iλ) is analytic near λ = 0, we have a power series expansion

Tr

(
C̃

(
σ, νp(τ ),−iλ

) d

dz
C̃

(
σ, νp(τ ), iλ

)) =
∞∑
j=0

ajλ
j

which converges for |λ| � 2ε. Hence we get an asymptotic expansion

ε∫
−ε

e−tλ2
Tr

(
C̃

(
σ, νp(τ ),−iλ

) d

dz
C̃

(
σ, νp(τ ), iλ

))
dλ ∼

∞∑
j=1

bj t
−j/2.

The integral over (−∞,−ε/2] ∪ [ε/2,∞) is exponentially decreasing. This proves the
lemma. �
Lemma 7.3. Let G = Spin(2n + 1,1). Let τ ∈ Ĝ and assume that τ �= τθ . For p ∈ {0, . . . , d} let
λ0 ∈ R+ be an eigenvalue of �p(τ). Then one has λ0 � 1/4.
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Proof. If τ �= τθ one has |τn+1| � 1/2. Let Ĝ be the unitary dual of G. Recall that if λ0 is an
eigenvalue of �p(τ), there exists a π ∈ Ĝ with [π : ν̌p(τ )] = [π : νp(τ )] �= 0 such that

λ0 = −π(Ω)+ τ(Ω).

Since rk(G) > rk(K), it follows from [17, Theorem 8.54] and [38, Corollary 6.2] that Ĝ consist
of the unitary principal series representations πσ,λ, σ ∈ M̂ , λ ∈ R and the complementary series
representations πc

σ,λ, σ ∈ M̂ , λ ∈ R. First consider a unitary principal series representation πσ,λ.
Then by Frobenius reciprocity [17, p. 208], [πσ,λ : νp(τ )] is non-zero iff [νp(τ ) : σ ] is non-zero.
Thus together with (4.17) and Lemma 7.1, for every λ ∈ R one has

−πσ,λ(Ω)+ τ(Ω) = −c(σ )+ λ2 + τ(Ω) � 1/4.

Next consider a complementary series representation πc
σ,λ. Again it follows from Frobenius

reciprocity that [πσ,λ : νp(τ )] is non-zero iff [νp(τ ) : σ ] is non-zero. Moreover by [19, Propo-
sitions 49, 53], if πc

σ,λ belongs to the complementary series one has σ = w0σ and 0 < λ < 1.
Recall that by (4.17) one has

πc
σ,λ(Ω) = c(σ )+ λ2.

Thus together with Lemma 7.1 one gets

−πc
σ,λ(Ω)+ τ(Ω) = −c(σ )− λ2 + τ(Ω) � τ 2

n+1 � 1/4. �
We are now ready to introduce the analytic torsion. We distinguish between the odd- and

even-dimensional case. The reason is that the even-dimensional case can be treated in a more
elementary way.

First assume that d = 2n + 1. Let hp(τ) := dim(ker�p(τ) ∩ L2). Using (7.6), Lemmas 7.1
and 7.2, it follows that there is an asymptotic expansion

Trreg
(
e−t�p(τ)

) ∼ hp(τ)+
∞∑
j=1

cj t
−j/2, t → ∞. (7.10)

On the other hand, by Proposition 6.9, Trreg(e
−t�p(τ)) has also an asymptotic expansion as t → 0.

Thus we can define the spectral zeta function by

ζp(s; τ) := 1

Γ (s)

1∫
0

t s−1(Trreg
(
e−t�p(τ)

) − hp(τ)
)
dt

+ 1

Γ (s)

∞∫
1

t s−1(Trreg
(
e−t�p(τ)

) − hp(τ)
)
dt. (7.11)

By Proposition 6.9, the first integral on the right converges in the half-plane Re(s) > d/2 and
admits a meromorphic extension to C which is holomorphic at s = 0. By (7.10), the second
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integral converges in the half-plane Re(s) < 1/2 and also admits a meromorphic extension to C

which is holomorphic at s = 0.
Now assume that τ �= τθ . This is equivalent to τn+1 �= 0. Then by (2.7) and Lemma 7.1 we

have τ(Ω) − c(σ ) � 1/4 for all σ ∈ M̂ with [νp(τ ) : σ ] �= 0 and p = 0, . . . , d . Furthermore
by Lemma 7.3 we have ker(�p(τ) ∩ L2) = 0, p = 0, . . . , d . By (7.6) it follows that there exist
C,c > 0 such that for all p = 0, . . . , d :

Trreg
(
e−t�p(τ)

)
� Ce−ct , t � 1. (7.12)

Using Proposition 6.9, it follows that ζp(s; τ) can be defined as in the compact case by

ζp(s; τ) := 1

Γ (s)

∞∫
0

t s−1 Trreg
(
e−t�p(τ)

)
dt. (7.13)

The integral converges absolutely and uniformly on compact subsets of Re(s) > d/2 and ad-
mits a meromorphic extension to C which is holomorphic at s = 0. We define the regularized
determinant of �p(τ) as in the compact case by

det�p(τ) := exp

(
− d

ds
ζp(s; τ)|s=0

)
. (7.14)

In analogy to the compact case we now define the analytic torsion TX(τ) ∈ R+ associated to the
flat bundle Eτ , equipped with the admissible metric, by

TX(τ) :=
d∏

p=0

det�p(τ)
(−1)p+1p/2. (7.15)

Let K(t, τ ) be defined by (7.7). If τ � τθ , then K(t, τ ) = O(e−ct ) as t → ∞, and the analytic
torsion is given by

logTX(τ) = 1

2

d

ds

∣∣∣∣
s=0

(
1

Γ (s)

∞∫
0

t s−1K(t, τ ) dt

)
, (7.16)

where the right-hand side is defined near s = 0 by analytic continuation.
Now assume that d = 2n + 2. We use (7.16) as the definition of TX(τ). Let hp(τ) :=

dim(ker�p(τ)∩L2) and let

h(τ) :=
d∑

p=0

(−1)pphp(τ).

Then it follows from (7.6) and Lemma 7.1 that there exists a constant c > 0 such that

K(t, τ )− h(τ) = O
(
e−ct

)
, t → ∞. (7.17)
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Next we use (7.9) to determine the short-time asymptotics of K(t, τ ) and to prove Proposi-
tion 1.4. To compute the terms on the right-hand side of (7.9), we note that by [34, Lemma 4.1]
we have

Θσ,λ

(
kτt

) = 0, ∀σ ∈ M̂, λ ∈ R. (7.18)

This result immediately implies H(kτt ) = 0 by (6.3), T (kτt ) = 0 by (6.5), and I(kτt ) = 0 by
Theorem 6.2. The identity contribution is given by

I
(
kτt

) = vol(X)kτt (1).

Since kτt is a K-finite function in C(G), the Plancherel theorem can be applied to kτt by
[15, Theorem 3]. Thus by [17, Theorem 13.5] and (7.18) we have

kτt (1) =
∑
π∈Ĝd

a(π)Θπ

(
kτt

)
,

where Ĝd denotes the discrete series and a(π) ∈ C. Since kτt is K-finite, the sum is finite. In
[34, Section 5] it was shown that for each π ∈ Ĝd , Θπ(k

τ
t ) is independent of t > 0. This implies

that I (kτt ) is independent of t . Summarizing, it follows from (7.9) that there exists c(τ ) ∈ C such
that

K(t, τ ) = c(τ )+ J
(
kτt

)
. (7.19)

Next we investigate J (kτt ). Using (7.8) and (6.14), we have

J
(
kτt

) = −κ(X)

4πi

d∑
p=1

(−1)pp
∑
ν∈K̂[νp(τ):ν]�=0

∑
σ∈M̂

[ν : σ ]dim(σ )e−t (τ (Ω)−c(σ ))

·
∫
Dε

e−tz2
cν(σ : z)−1 d

dz
cν(σ : z) dz. (7.20)

Thus by Lemma 7.1 one has

J
(
kτt

) = O
(
e−ct

)
, t → ∞

for some constant c > 0. Using (7.17) and (7.19) it follows that c(τ ) = h(τ) and we get

K(t, τ )− h(τ) = J
(
kτt

)
. (7.21)

For the short-time asymptotics of K(t, τ ), we use Eq. (6.10), Lemmas 6.6, 6.7 and (7.21). This
implies that there exist aj , bj ∈C such that

K(t, τ ) ∼
∞∑

aj t
j−1/2 +

∞∑
bj t

j−1/2 log t +
∞∑

cj t
j

j=0 j=0 j=0
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as t → 0. Together with (7.17) it follows that the integral

∞∫
0

t s−1(K(t, τ )− h(τ)
)
dt

converges for Re(s) 
 0 and admits a meromorphic continuation to s ∈C with at most a simple
pole at s = 0. Then in analogy with (7.16), we define the analytic torsion TX(τ) ∈R+ of Eτ with
respect to the admissible metric by

TX(τ) = exp

(
1

2

d

ds

(
1

Γ (s)

∞∫
0

t s−1(K(t, τ ) − h(τ)
)
dt

)∣∣∣∣∣
s=0

)
.

Let τ = τλ be an irreducible finite-dimensional representation of G with highest weight λ ∈
Λ(G). Using (7.20) it follows that there exists a function ψ :R+ ×Λ(G) → R such that

J
(
k
τλ
t

) = κ(X)ψ(t, λ)

for all even-dimensional X and λ ∈ Λ(G). For λ ∈ Λ(G) let

Φ(λ) := 1

2

d

ds

(
1

Γ (s)

∞∫
0

ψ(t, λ)ts−1 dt

)∣∣∣∣∣
s=0

,

where the value at s = 0 is defined by analytic continuation. Then by the definition of TX(τ) we
have

logTX(τλ) = κ(X)Φ(λ)

for all even-dimensional X and λ ∈ Λ(G). This proves Proposition 1.4.

8. Virtual heat kernels

In order to deal with the Mellin transform of the terms on the right-hand side of (6.1) we
express kτt in terms of certain auxiliary heat kernels which are easier to handle. These functions
first occurred in [3] in a different context. To begin with, we need some preparation. In this
section we assume that d = 2n+ 1.

Let τ ∈ Ĝ and let Λ(τ) = τ1e1 + · · · + τn+1en+1 be its highest weight. For w ∈ W let l(w)

denote its length with respect to the simple roots which define the positive roots above. Let

W 1 := {
w ∈ WG: w−1α > 0, ∀α ∈ �(mC,bC)

}
.

Let Vτ be the representation space of τ . For k = 0, . . . ,2n let Hk(n,Vτ ) be the cohomology
of n with coefficients in Vτ . Then Hk(n,Vτ ) is an MA module. For w ∈ W 1 let Vτ(w) be the
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MA module of highest weight w(Λ(τ) + ρG) − ρG. By a theorem of Kostant (see [40, Theo-
rem 2.5.1.3]), it follows that as MA-modules one has

Hk(n;Vτ ) ∼=
∑

w∈W 1

l(w)=k

Vτ(w).

Using the Poincaré principle [20, (7.2.3)], we get

2n∑
k=0

(−1)kΛkn∗ ⊗ Vτ =
∑

w∈W 1

(−1)l(w)Vτ(w) (8.1)

as MA-modules.
For w ∈ W 1 let στ,w be the representation of M with highest weight

Λ(στ,w) := w
(
Λ(τ)+ ρG

)∣∣
bC

− ρM (8.2)

and let λτ,w ∈C such that

w
(
Λ(τ)+ ρG

)∣∣
aC

= λτ,we1. (8.3)

For k = 0, . . . , n let

λτ,k = τk+1 + n− k (8.4)

and let στ,k be the representation of M with highest weight

Λστ,k := (τ1 + 1)e2 + · · · + (τk + 1)ek+1 + τk+2ek+2 + · · · + τn+1en+1. (8.5)

Then by the computations in [2, Chapter VI.3] one has

{(
λτ,w,στ,w, l(w)

)
: w ∈ W 1} = {

(λτ,k, στ,k, k): k = 0, . . . , n
}

� {
(−λτ,k,w0στ,k,2n− k): k = 0, . . . , n

}
. (8.6)

We will also need the following lemma.

Lemma 8.1. For every w ∈ W 1 one has

τ(Ω) = λ2
τ,w + c(στ,w).

Proof. See [34, Proposition 2.7]. �
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Fix σ ∈ M̂ and assume that σ �= w0σ . For ν ∈ K̂ let mν(σ) ∈ {−1,0,1} be defined by (2.17).
Let Hν

t be the kernel of e−tÃν as in (4.7) and let hν
t := trHν

t . Put

hσ
t (g) := e−tc(σ )

∑
ν

mν(σ )�=0

mν(σ)h
ν
t (g). (8.7)

Proposition 8.2. For k = 0, . . . , n let στ,k and λτ,k be as in (8.6). Then one has

kτt =
n∑

k=0

(−1)k+1e
−tλ2

τ,k h
στ,k
t .

Proof. It is easy to see that as M-modules p and a ⊕ n are equivalent. Thus in the sense of
M-modules one has

d∑
p=0

(−1)ppΛpp∗ =
d∑

p=0

(−1)pp
(
Λpn∗ +Λp−1n∗) =

d−1∑
p=0

(−1)p+1Λpn∗. (8.8)

Let i∗ : R(K) → R(M)W(A) be the restriction map. Then it follows from (8.8), (8.1) and (8.6)
that we have

d∑
p=0

(−1)pp i∗
(
νp(τ )

) =
n∑

k=0

(−1)k+1(στ,k +w0στ,k). (8.9)

Since τ �= τθ we have στ,k �= w0στ,k for all k by (2.13), (2.15) and (8.5). Thus as in (2.17) we
can write

στ,k +w0στ,k =
∑
ν∈K̂

mν(στ,k)i
∗(ν).

Moreover, the restriction map i∗ is injective. Therefore the following equality holds in R(K):

d∑
p=0

(−1)ppνp(τ) =
n∑

k=0

(−1)k+1
∑
ν∈K̂

mν(στ,k)ν.

Since R(K) is a free abelian group generated by the representations ν ∈ K̂ , it follows that for
every ν ∈ K̂ one has

d∑
p=0

(−1)pp
[
νp(τ ) : ν] =

n∑
k=0

(−1)k+1mν(στ,k). (8.10)

Moreover let us remark that if ν, ν1, ν2 are finite-dimensional unitary representations of K with
ν = ν1 ⊕ ν2 one has

hν = h
ν1
t + h

ν2
t . (8.11)
t
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Thus we obtain

kτt =
d∑

p=0

(−1)ppe−tτ (Ω)h
νp(τ)
t =

d∑
p=0

(−1)pp
∑
ν∈K̂

[
νp(τ ) : ν]

e−tτ (Ω)hν
t

=
∑
ν∈K̂

d∑
p=0

(−1)pp
[
νp(τ ) : ν]

e−tτ (Ω)hν
t

=
∑
ν∈K̂

n∑
k=0

(−1)k+1mν(στ,k)e
−t (τ (Ω))hν

t (+)

=
n∑

k=0

(−1)k+1
∑
ν∈K̂

mν(στ,k)e
−t (τ (Ω))hν

t

=
n∑

k=0

(−1)k+1
∑
ν∈K̂

mν(στ,k)e
−t (λ2

τ,k+c(στ,k))hν
t (++)

=
n∑

k=0

(−1)k+1e
−tλ2

τ,k h
στ,k
t . (+++)

Here the second equality in the first line follows from (8.11), (+) is (8.10), (++) follows from
Lemma 8.1 and (+++) follows from (8.7). �

Finally we compute the Fourier transform of hσ
t , σ ∈ M̂ . Using (2.17) and Proposition 4.1, it

follows that for a principal series representation πσ ′,λ, λ ∈ R we have

Θσ ′,λ
(
hσ
t

) = e−tλ2
for σ ′ ∈ {σ,w0σ }; Θσ ′,λ

(
hσ
t

) = 0, otherwise. (8.12)

9. L2-torsion

In this section we briefly discuss the L2-torsion T
(2)
X (τ ). We assume that d = 2n + 1. For

the trivial representation, the L2-torsion of complete hyperbolic manifolds of finite volume has
been studied in [24]. Although X is not compact, the L2-torsion can be defined as in the compact
case [23]. This follows from the fact that X̃ is homogeneous. We assume that the highest weight
of τ satisfies τn+1 �= 0. Let �̃p(τ ) be the Laplace operator on Ẽτ -valued p-forms on X̃. By

(7.4) the kernel of e−t�̃p(τ ) is given by e−tτ (Ω)H
νp(τ)
t where H

νp(τ)
t is the kernel of the operator

induced by −Ω in the homogeneous bundle attached to νp(τ ) (see (4.6)). Then the Γ -trace of

e−t�̃p(τ ) (see [23] for its definition) is given by

TrΓ
(
e−t�̃p(τ )

) = vol(X)e−tτ (Ω)h
νp(τ)
t (1). (9.1)
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Applying the Plancherel theorem to h
νp(τ)
t (1) and using Proposition 4.1, we get

TrΓ
(
e−t�̃p(τ )

) = vol(X)
∑
σ∈M̂[νp(τ):σ ]�=0

e−t (τ (Ω)−c(σ ))

∫
R

e−tλ2
Pσ (iλ) dλ. (9.2)

Since Pσ (z) is an even polynomial of degree d − 1, we get an asymptotic expansion

TrΓ
(
e−t�̃p(τ )

) ∼
∞∑
k=0

aj t
j−d/2, t → 0. (9.3)

Since we are assuming that the highest weight of τ satisfies τn+1 �= 0, it follows from Lemma 7.1
and (9.2) there exists c > 0 such that

TrΓ
(
e−t�̃p(τ )

) = O
(
e−ct

)
(9.4)

as t → ∞. Therefore the Mellin transform

∞∫
0

TrΓ
(
e−t�̃p(τ )

)
t s−1 dt

converges absolutely and uniformly on compact subsets of Re(s) > d/2 and admits a meromor-
phic extension to C. Moreover, since the asymptotic expansion (9.3) has no constant term, the
Mellin transform is regular at s = 0. So we can define the L2-torsion T

(2)
X (τ ) ∈R+ by

logT
(2)
X (τ ) = 1

2

d

ds

(
1

Γ (s)

d∑
p=1

(−1)pp
∫
R

TrΓ
(
e−t�̃p(τ )

)
t s−1 dt

)∣∣∣∣∣
s=0

. (9.5)

Now recall that the contribution of the identity I (kτt ) to the right-hand side of (7.9) is given by

I (t, τ ) := vol(X)kτt (1).

Let

MI (s, τ ) :=
∞∫

0

I (t, τ )ts−1 dt

be the Mellin transform. Using (7.8) and the considerations above, it follows that the integral
converges for Re(s) > d/2 and has a meromorphic extension to C which is regular at s = 0. Let
MI (τ ) be its value at s = 0. Then by (7.8), (9.1), and (9.5) we have

logT
(2)
X (τ ) = 1MI (τ ). (9.6)
2
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Our next goal is to compute MI (τ ). Let στ,k and λτ,k , k = 0, . . . , n, be defined by (8.4) and (8.5),
respectively. Then for every k we have στ,k �= w0στ,k . Let Pστ ,k be the Plancherel polynomial.
Using Proposition 8.2, the Plancherel theorem, (8.12) and (2.22), we obtain

I (t, τ ) = 2 vol(X)

n∑
k=0

(−1)k+1e
−tλ2

τ,k

∫
R

e−tλ2
Pστ ,k(iλ) dλ. (9.7)

To evaluate the Mellin transform of I (t, τ ) at s = 0, we use the following elementary lemma.

Lemma 9.1. Let P be an even polynomial. Let c > 0 and σ ∈ M̂ . For Re(s) > d
2 let

E(s) :=
∞∫

0

t s−1e−tc2
∫
R

e−tλ2
P(iλ)dλdt.

Then E(s) has a meromorphic continuation to C. Moreover E(s) is regular at zero and

E(0) = −2π

c∫
0

P(λ)dλ.

Proof. This follows from Lemmas 2 and 3 in [9]. �
We have λτ,k > 0 for every k. Applying Lemma 9.1 to the right-hand side of (9.7) we ob-

tain

MI (τ ) = 4π vol(X)

n∑
k=0

(−1)k
λτ,k∫
0

Pστ,k (λ) dλ.

Together with (9.6) we get the following proposition.

Proposition 9.2. Let τ be such that τn+1 �= 0. Then we have

logT
(2)
X (τ ) = 2π vol(X)

n∑
k=0

(−1)k
λτ,k∫
0

Pστ,k (λ) dλ.

10. Proof of the main results

In this section we assume that d = dim(X) is odd. Let d = 2n + 1. We fix natural numbers
τ1, . . . , τn+1 with τ1 � τ2 � · · · � τn+1. For m ∈ N we let τ(m) be the representation of G with
highest weight (m+ τ1)e1 + · · ·+ (m+ τn+1)en+1. Then τ(m) satisfies τ(m) ◦ θ � τ . Hence the
analytic torsion TX(τ(m)) is defined by (7.16).
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Our goal is to study the asymptotic behavior of logTX(τ(m)) as m → ∞. To begin with, for
k ∈ {0, . . . , n} let λτ(m),k ∈ R and στ(m),k ∈ M̂ with highest weight Λ(στ(m),k) be defined as in
(8.4) resp. (8.5). One has

Λ(στ(m),k) = (m + τ1 + 1)e2 + · · · + (m+ τk + 1)ek+1

+ (m + τk+2)ek+2 + · · · + (m + τn+1)en+1 (10.1)

and

λτ(m),k = m+ τk+1 + n− k. (10.2)

We use the decomposition (7.9) of K(t, τ (m)) and study the Mellin transform of each term on
the right-hand side separately. First we consider the identity contribution which is given by

I
(
t, τ (m)

) := vol(X)k
τ(m)
t (1).

Its Mellin transform MI (τ (m)) has been computed in the previous section and the contribution
to logTX(τ(m)) equals

1

2
MI

(
τ(m)

) = logT
(2)
X

(
τ(m)

)
.

In order to study the asymptotic behavior of logT
(2)
X (τ (m)) as m → ∞, we use Proposition 9.2.

Let

Pτ (m) := 2π
n∑

k=0

(−1)k
λτ(m),k∫

0

Pστ(m),k
(λ) dλ.

Using (10.2) and the explicit form of the Plancherel polynomial Pστ(m),k
(λ), it follows that Pτ (m)

is a polynomial in m of degree n(n + 1)/2 + 1. The coefficient of the leading power has been
determined at the end of Section 5 of [34]. Let C(n) be constant given by (1.7). Combining the
results above with the computations of the leading coefficient of Pτ (m) in [34], we get

Proposition 10.1. We have

logT
(2)
X

(
τ(m)

) = C(n)vol(X)mdim τ(m) +O
(
m

n(n+1)
2

)
,

as m → ∞.

Thus to prove our main results we have to show that the Mellin transform of the terms in (7.9)
which are different from the identity contribution is of lower order as m → ∞. We begin with
the contribution of the hyperbolic term to the analytic torsion. For [γ ] ∈ C(Γ )s − [1] and σ ∈ M̂

let L(γ,σ ) be defined by (6.2). Put

Lsym(γ ;σ) := L(γ ;σ)+L(γ ;w0σ). (10.3)
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Using (6.3), Proposition 8.2 and (8.12), it follows that the hyperbolic contribution is given by

H
(
t, τ (m)

) :=
n∑

k=0

(−1)k+1e
−tλ2

τ (m),k

∑
[γ ]∈C(Γ )s−[1]

�(γ )

nΓ (γ )
Lsym(γ ;στ(m),k)

e−�(γ )2/4t

(4πt)
1
2

. (10.4)

In order to study the Mellin transform of H(t, τ (m)), we use the following proposition.

Proposition 10.2. Let λ >
√

2n and σ ∈ M̂ . For every s ∈C the integral

G(s,λ;σ) :=
∞∫

0

t s−1e−tλ2 ∑
[γ ]∈C(Γ )s−[1]

�(γ )

nΓ (γ )
L(γ ;σ)e

−�(γ )2/4t

(4πt)
1
2

dt (10.5)

converges absolutely and is an entire function of s. There exists a constant C0 which is indepen-
dent of σ and λ such that ∣∣G(0, λ;σ)∣∣ � C0 dim(σ ). (10.6)

Proof. Let

f (t) :=
∑

[γ ]∈C(Γ )s−[1]

�(γ )

nΓ (γ )
L(γ ;σ)e

−�(γ )2/4t

(4πt)
1
2

.

We have

∣∣f (t)
∣∣ � dim(σ )

∑
[γ ]∈C(Γ )s−[1]

�(γ )

nΓ (γ )
L(γ ;1)

e−�(γ )2/4t

(4πt)
1
2

,

where 1 stands for the trivial representation of M . Now let �0 be the Laplace operator acting on
C∞(X) and let �d

0 be its restriction to the point spectrum. Then the right-hand side is exactly

the hyperbolic contribution to the Selberg trace formula for Tr(e−t�d
0 ). So we can apply the trace

formula to estimate the right-hand side. Denote the trivial representation of K by 1 too. Then if
we apply the trace formula [42, Theorems 8.4, 9.3] and use Eq. (4.16), Proposition 4.1, Eqs. (6.1)
and (6.3), it follows that there exist constants c1(Γ ), c2(Γ ) such that

e−tn2 ∑
[γ ]∈C(Γ )s−[1]

�(γ )

nΓ (γ )
L(γ ;1)

e−�(γ )2/4t

(4πt)
1
2

= Tr
(
e−t�d

0
) −

∫
R

e−t (λ2+n2) vol(X)P1(iλ) dλ

−
∫
R

e−t (λ2+n2)

(
ψ(1 + iλ)+ c2(Γ )+ Tr

(
C̃(1,1,−iλ)

d

dz
C̃(1,1, iλ)

))
dλ

+ c1(Γ )e−tn2
.
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The right-hand side of this equation is bounded for t � 1. Thus there exists a constant C1 which
is independent of σ such that ∣∣f (t)

∣∣ � C1 dim(σ ) etn
2
, t � 1. (10.7)

For λ > n and s ∈ C put

G0(s, λ;σ) :=
∞∫

1

t s−1e−tλ2
f (t) dt.

Then it follows from (10.7) that G0(s, λ;σ) is an entire function of s and that for λ >
√

2n we
can estimate

∣∣G0(0, λ;σ)∣∣ �
∞∫

1

t−1e−tλ2 ∣∣f (t)
∣∣dt � C1 dim(σ ) e− λ2

4 , λ >
√

2n. (10.8)

Next we consider the integral from 0 to 1. To begin with, we need to estimate L(γ,σ ). By
[11, Proposition 5.4] there exist a constant C2 > 0 such that for R > 0 one has

#
{[γ ] ∈ C(Γ )s: �(γ ) � R

}
� C2e

2nR. (10.9)

Thus if we let

c := min
{
�(γ ): [γ ] ∈ C(Γ )s − [1]} (10.10)

we have c > 0. Moreover one has

det
(
Id−Ad(mγ aγ )|n̄

)
�

(
1 − e−�(γ )

)n
.

Hence there exists a constant C3 such that for all [γ ] ∈ C(Γ )s − [1] one has

1

det(Id−Ad(mγ aγ )|n̄) � C3.

It follows that there exists a constant C4 which is independent of σ such that for every [γ ] ∈
C(Γ )s − [1] one has

�(γ )

nΓ (γ )

∣∣L(γ ;σ)∣∣ � dim(σ )�(γ )e−n�(γ )

det(Id−Ad(mγ aγ )|n̄) � C4 dim(σ ). (10.11)

Using (10.9) and (10.11), it follows that there exist constants c1 > 0, C5 > 0 which are indepen-
dent of σ such that ∣∣f (t)

∣∣ � C5 dim(σ )e−c1/t , 0 < t � 1. (10.12)
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For λ � 0 and s ∈ C put

G1(s, λ;σ) =
1∫

0

t s−1e−tλ2
f (t) dt.

By (10.12), G1(s, λ;σ) is an entire function of s and its value at zero can be estimated as follows

∣∣G1(0, λ;σ)∣∣ �
1∫

0

t−1e−tλ2 ∣∣f (t)
∣∣dt � C6 dim(σ )

1∫
0

e−tλ2
e− c1

2t dt � C6 dim(σ ).

Together with (10.8) the proposition follows. �
Now let m >

√
2n. Then by (10.2) one has λτ(m),k >

√
2n for every k. Thus by (10.4) and

Proposition 10.2 the integral

MH
(
s, τ (m)

) :=
∞∫

0

t s−1H
(
t, τ (m)

)
dt

converges absolutely and uniformly on compact subsets of C and defines an entire function of s.
Denote by MH(τ(m)) its value at zero. It can be estimated as follows.

Proposition 10.3. There exists a constant C such that for every m>
√

2n one has∣∣MH
(
τ(m)

)∣∣ � Cm
n(n−1)

2 .

Proof. By (2.14) and (10.1) there exists a constant C such that for every m ∈ N one has

dim(στ(m),k) � Cm
n(n−1)

2 . (10.13)

The proposition follows from Proposition 10.2. �
The contribution of the distribution T can be treated without difficulty.

Proposition 10.4. For Re(s) 
 0 let

MT
(
s, τ (m)

) :=
∞∫

0

t s−1T
(
k
τ(m)
t

)
dt.

Then MT (s, τ (m)) has a meromorphic continuation to C and is regular at s = 0. Let
MT (τ(m)) denote its value at s = 0. Then there exists a constant C which is independent of
m such that ∣∣MT

(
τ(m)

)∣∣ � Cm
n(n+1)

2 .
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Proof. By Proposition 8.2, Eqs. (6.5) and (8.12) we have

MT
(
s, τ (m)

) = C(Γ )

2
√
π

n∑
k=0

(−1)k+1 dim(στ(m),k)(λτ(m),k)
−2s+1Γ

(
s − 1

2

)
.

The proposition follows from (10.2) and (10.13). �
To treat the remaining terms, we need the following two auxiliary lemmas.

Lemma 10.5. For c ∈ (0,∞), s ∈C, Re(s) > 0, j ∈ [0,∞) let

ζc(s) := 1

π

∞∫
0

t s−1e−tc2
∫
Dε

e−tz2

iz + j
dz dt,

where Dε is the same contour as in (6.12). Then ζc(s) has a meromorphic continuation to C with
a simple pole at 0. Moreover, one has

d

ds

∣∣∣∣
s=0

ζc(s)

Γ (s)
= −2 log(c + j).

Proof. The statement about the convergence of the integral and the meromorphic continuation
follows from Lemma 6.6 and standard methods. Note that

∫
Dε

e−tz2

iz
dz = 1

2

∫
|z|=ε

e−tz2

iz
dz = π.

Hence, for j = 0 we have

ζc(s) = c−2sΓ (s)

and the claim follows in this case. Assume that j > 0. Then one has

ζc(s) = j

π

∞∫
0

t s−1e−tc2
∫
R

e−tλ2

λ2 + j2
dλdt. (10.14)

For Re(z2) > 0, Re(z) > 0 define a function ζ(z, s) by

ζ(z, s) := j

π

∞∫
t s−1e−tz2

∫
e−tλ2

λ2 + j2
dλdt.
0 R
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Then it is easy to see that ζ(z, s) is holomorphic in z. Let

φ(z, s) := j

π

∞∫
0

t s−1
∫
R

e−t (λ2+z2)

λ2 + j2
dλdt − j

π

∞∫
0

t s−1
∫
R

e−t (λ2+j2)

λ2 + j2
dλdt.

Then, since e−tz2 − e−tj2 = O(t), t → 0, the integral converges for Re(s) > −1. One has

d

dz
φ(z,0) = −2jz

π

∞∫
0

∫
R

e−t (λ2+z2)

λ2 + j2
dλdt = −2

z + j
.

Since φ(j,0) = 0, one has

φ(z,0) = −2 log(z + j)+ 2 log 2j. (10.15)

On the other hand, one has

ζ(j, s) = j

πs

∞∫
0

(
d

dt
ts

)∫
R

e−t (λ2+j2)

λ2 + j2
dλdt = j−2s

√
π s

Γ

(
s + 1

2

)
.

Hence for s → 0 one has

ζ(j, s) = 1

s
− 2 log j + Γ ′( 1

2 )√
π

+O(s) = 1

s
− 2 log j +ψ

(
1

2

)
+O(s).

Together with (10.15) this gives for s → 0:

ζ(z, s) = 1

s
− 2 log j +ψ

(
1

2

)
− 2 log(z + j)+ 2 log 2j +O(s)

= 1

s
− 2 log(z + j)− γ +O(s),

where we used ψ( 1
2 ) = −2 log 2 − γ . Since for s → 0 one has

1

Γ (s)
= s + γ s2 +O

(
s3), (10.16)

the proposition follows. �
Lemma 10.6. Let c ∈ R+, s ∈C, Re(s) > 1/2. Define

ζ̃c(s) := 1

π

∞∫
t s−1e−tc2

∫
e−tλ2

ψ(1 + iλ) dλdt.
0 R
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Then ζ̃c(s) has a meromorphic continuation to s ∈ C with at most a simple pole at s = 0. More-
over there exists a constant C(ψ) which is independent of c such that

d

ds

∣∣∣∣
s=0

ζ̃c(s)

Γ (s)
= −2 logΓ (1 + c)+C(ψ).

Proof. The convergence of the integral and the statement about the meromorphic continuation
follow from Lemma 6.7 and standard methods. Fix c0 ∈ R+. Since e−tz2 − e−tc2

0 = O(t) as
t → 0, it follows from Lemma 6.7 that the integral

φ̃c(s, z) :=
∞∫

0

t s−1
∫
R

(
e−t (λ2+z2) − e−t (λ2+z2

0)
)
ψ(1 + iλ) dλdt

converges for Re(s) > − 1
2 and is holomorphic in z ∈C, Re(z) > 0, Re(z2) > 0. One has

∂

∂z
φ̃c(0, z) = −2z

∫
R

ψ(1 + iλ)

λ2 + z2
dλ = −2πψ(1 + z).

This proves the lemma. �
Next we treat the contribution of the distribution I to the analytic torsion. By Theorem 6.2,

Propositions 6.4, 8.2 and (8.12) we have

I
(
k
τ(m)
t

) = κ

2π

n∑
k=0

(−1)k+1e
−tλ2

τ (m),k

∫
R

Ω(στ(m),k, λ)e
−tλ2

dλ. (10.17)

By Proposition 6.4 we have the decomposition

Ω(στ(m),k, λ) = Ω1(στ(m),k, λ)+Ω2(στ(m),k, λ).

Using the description of Ω1 and Ω2 together with Lemmas 6.6, 6.7 and 6.8, it follows that
I(kτ(m)

t ) admits an asymptotic expansion

I
(
k
τ(m)
t

) ∼
∞∑
k=0

akt
k−(d−2)/2 +

∞∑
k=0

bkt
k−1/2 log t + c0

as t → 0. Moreover, since λτ(m),k > m for every k, it follows that I(kτ(m)
t ) = O(e−tm2

) as
m → ∞. Thus for s ∈C with Re(s) > (d − 2)/2 the integral

MI
(
s; τ(m)

) :=
∞∫
t s−1I

(
k
τ(m)
t

)
dt
0
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converges and has a meromorphic continuation to C with at most a simple pole at s = 0. Let

MI
(
τ(m)

) := d

ds

∣∣∣∣
s=0

MI(s; τ(m))

Γ (s)
.

Next we will estimate MI(τ (m)) as m → ∞. To this end we establish some auxiliary lemmas.

Lemma 10.7. There exists a constant C such that for every m one has

n∑
k=0

(−1)k dim(στ(m),k)
(
logΓ

(
kn+1(στ(m),k)+ λτ(m),k

) + γ λτ(m),k +C(ψ)
)

� Cm
n(n+1)

2 , (10.18)

where C(ψ) is as in Lemma 10.6.

Proof. By (8.6) and (8.1) one has

2
n∑

k=0

(−1)k dim(στ(m),k) = dim(τ )

2n∑
p=0

(−1)p dimΛpn∗ = 0. (10.19)

Thus the sum on the left-hand side of (10.18) equals

n∑
k=0

(−1)k dim(στ(m),k)

(
log

Γ (kn+1(στ(m),k)+ λτ(m),k)

Γ (2m)
+ γ λτ(m),k

)
.

It follows from (10.2) that there exists a constant C which is independent of m such that

log
Γ (kn+1(στ(m),k)+ λτ(m),k)

Γ (2m)
� C logm.

Using (10.2) and (10.13) the proposition is proved. �
The next two lemmas are concerned with the polynomials Pj (σ,λ), j = 2, . . . , n + 1, which

are defined by (6.23).

Lemma 10.8. Let k ∈ {0, . . . , n} and let j ∈ {2, . . . , n + 1}. Then there exists a constant C such
that for every m one has

∣∣Pj (στ(m),k, λ)
∣∣ � Cm

(n−1)(n−2)
2

2(n−1)∑
i=0

(
1 + |λ|)im2(n−1)−i (10.20)

and such that
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∣∣∣∣ d

dλ
Pj (στ(m),k, λ)

∣∣∣∣ � Cm
(n−1)(n−2)

2

2(n−1)−1∑
i=0

(
1 + |λ|)im2(n−1)−i (10.21)

for all λ ∈C.

Proof. If we use the explicit formula (6.24) for the polynomials Pj (σ,λ), combined with (10.1)
and (10.13), the lemma follows. �
Lemma 10.9. Let k ∈ {0, . . . , n} and let j ∈ {2, . . . , n+ 1}. For l ∈ N with m � l � kj (στ(m),k)+
ρj let the even polynomial Qj,l(στ(m),k, λ) be defined by (6.25). Then there exists a constant C
such that for every m one has

∣∣∣∣∣
λτ(m),k∫

0

Qj,l(στ(m),k, iλ) dλ

∣∣∣∣∣ � Cm
n(n+1)

2 .

Proof. By (6.25) we have

Qj,l(στ(m),k, iλ) = Pj (στ(m),k, iλ)− Pj (στ(m),k, il)

l − λ
+ Pj (στ(m),k, iλ)− Pj (στ(m),k, il)

l + λ
.

Using the fact that Pj (σ, z) is an even polynomial, together with Eqs. (10.2) and (10.21), we
obtain

λτ(m),k∫
0

Qj,l(στ(m),k, iλ) dλ � 2λτ(m),k max
|ξ |�l+λτ(m),k

∣∣∣∣ d

dλ

∣∣∣∣
λ=ξ

Pj (σ, iλ)

∣∣∣∣ � Cm
n(n+1)

2 . �

Now we can estimate MI(τ (m)) as m → ∞.

Proposition 10.10. There exists a constant C such that for every m one has

∣∣MI
(
τ(m)

)∣∣ � Cm
n(n+1)

2 .

Proof. For k ∈ {0, . . . , n} let

MI(s;στ(m),k) =
∞∫

0

t s−1e
−tλ2

τ (m),kI
(
h
στ(m),k

t

)
dt.

As in the case of MI(s; τ(m)) it follows that the integral converges for Re(s) > (d − 2)/2 and
admits a meromorphic continuation to C with at most a simple pole at s = 0. By Proposition 8.2
we have

MI
(
τ(m)

) =
n∑

(−1)k+1 d

ds

∣∣∣∣
s=0

MI(s;στ(m),k)

Γ (s)
.

k=0
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Let k ∈ {0, . . . , n}. Using Proposition 6.4, Lemma 10.5 together with (10.14), Lemma 10.6 and
Lemma 9.1 we obtain

d

ds

∣∣∣∣
s=0

MI(s;στ(m),k)

Γ (s)

= 2κ dim(στ(m),k)
(
logΓ

(
kn+1(στ(m),k)+ λτ(m),k

) + γ λτ(m),k +C(ψ)
)

+ κ

n+1∑
j=2

∑
kn+1(στ(m),k)�l

<kj (στ(m),k)+ρj

(
2Pj (στ(m),k, il) log(l + λτ(m),k)+

λτ(m),k∫
0

Qj,l(στ(m),k, iλ) dλ

)

+ κ

n+1∑
j=2

l=kj (στ(m),k)+ρj

(
dim(στ(m),k) log(l + λτ(m),k)+ 1

2

λτ(m),k∫
0

Qj,l(στ(m),k, iλ) dλ

)
.

By (10.1) we have m � kn+1(στ(m),k) and kj (στ(m),k) + ρj � m + τ1 + n + 1 for every j =
2, . . . , n + 1, and by (10.2) we have 0 � λτ(m),k � m + τ1 + n. Thus if we apply Lemmas 10.7,
10.8, 10.9 and (10.13), the proposition follows. �

Finally we consider the asymptotic behavior of the contribution of the non-invariant distribu-
tion J to logTX(τ(m)). For k ∈ {0, . . . , n} let h

στ(m),k

t be as in (8.7), and for ν ∈ K̂ let

mν(στ(m),k) ∈ {−1,0,1}

be defined by (2.17). By (6.14) we have

J
(
h
στ(m),k

t

) = e−tc(στ(m),k)
∑
ν∈K̂

mν(στ(m),k)J
(
hν
t

)

= −κe−tc(στ(m),k)

4πi

∑
σ∈M̂

dim(σ )
∑
ν∈K̂

mν(στ(m),k)[ν : σ ]

×
∫
Dε

cν(σ : z)−1 d

dz
cν(σ : z)e−t (z2−c(σ )) dz. (10.22)

To continue with the investigation of the right-hand side, we need the following lemma.

Lemma 10.11. Let k = 0, . . . , n. For σ ∈ M̂ let

fk,m(z, σ ) :=
∑

mν(στ(m),k)[ν : σ ]cν(σ : z)−1 d

dz
cν(σ : z). (10.23)
ν∈K̂



W. Müller, J. Pfaff / Journal of Functional Analysis 263 (2012) 2615–2675 2671
Then one has

fk,m(z, σ ) =
∑
ν∈K̂

mν(στ(m),k)[ν : σ ]
n+1∑
j=2

( ∑
m�l�kj (ν)

|kj (σ )|<l

i

iz − l − ρj

−
∑

m�l�kj (ν)

|kj (σ )|�l

i

iz + l + ρj

)
.

Proof. By Proposition 2.1 and Eq. (10.1), it follows that for every ν ∈ K̂ with mν(στ(m),k) �= 0
and every j = 2, . . . , n+ 1 we have

m− 1 � kj (ν),

where (k2(ν), . . . , kn+1(ν)) is the highest weight of ν. Thus, using (6.9) one can write

fk,m(z, σ ) =
∑
ν∈K̂

mν(στ(m),k)[ν : σ ]

·
n+1∑
j=2

( ∑
m�l�kj (ν)

|kj (σ )|<l

i

iz − l − ρj

−
∑

m�l�kj (ν)

|kj (σ )|�l

i

iz + l + ρj

)

+
∑
ν∈K̂

mν(στ(m),k)[ν : σ ]

·
n+1∑
j=2

(
m−1∑
l=1

l>|kj (σ )|

i

iz − l − ρj

−
m−1∑
l=0

l�|kj (σ )|

i

iz + l + ρj

)
. (10.24)

Now if σ = στ(m),k or σ = w0στ(m),k the sum in the second row of (10.24) is zero by (10.1)
and (2.15). On the other hand, assume that σ �= στ(m),k , σ �= w0στ(m),k . Since R(M) is the free
abelian group generated by σ ∈ M̂ , it follows from (2.17) that∑

ν∈K̂
mν(στ(m),k)[ν : σ ] = 0.

Thus, in this case the sum in the second row of (10.24) is zero too. This proves the proposi-
tion. �
Proposition 10.12. For s ∈ C, Re(s) > 0 let

MJ (s;στ(m),k) :=
∞∫

0

t s−1e
−tλ2

τ (m),k J
(
h
στ(m),k

t

)
dt.

Then MJ (s;στ(m),k) has a meromorphic continuation to C with at most a simple pole at 0 and
we have
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d

ds

∣∣∣∣
s=0

MJ (s;στ(m),k)

Γ (s)
= −κ

∑
σ∈M̂

∑
ν∈K̂

mν(στ(m),k)[ν : σ ]dim(σ )

·
n+1∑
j=2

∑
m�l�kj (ν)

l>|kj (σ )|

log
(√

λ2
τ(m),k + c(στ(m),k)− c(σ )+ l + ρj

)

− κ

2

∑
σ∈M̂

∑
ν∈K̂

mν(στ(m),k)[ν : σ ]dim(σ )

·
n+1∑
j=2

|kj (σ )|�m

log
(√

λ2
τ(m),k + c(στ(m),k)− c(σ )+ ∣∣kj (σ )∣∣ + ρj

)
.

Proof. Let σ ∈ M̂ . By (2.16) the highest weights of ν ∈ K̂ with mν(στ(m),k) �= 0 are of the
form Λ(στ(m),k) − μ, where μ ∈ {0,1}n. Now assume that also [ν : σ ] �= 0. Then by [12, Theo-
rem 8.1.4] we have kj (στ(m),k) � kj (σ ). Hence if σ ∈ M̂ is such that [ν : σ ]mν(στ(m),k) �= 0 for
some ν ∈ K̂ , it follows from (4.16) that

c(στ(m),k)− c(σ ) � 0. (10.25)

Thus the proposition follows from Lemma 10.5, Eq. (10.22) and Lemma 10.11. �
Proposition 10.13. Let k ∈ {0, . . . , n}. There exists a constant C such that for every m one has

∣∣∣∣ d

ds

∣∣∣∣
s=0

MJ (s;στ(m),k)

Γ (s)

∣∣∣∣ � Cm
n(n+1)

2 logm.

Proof. Let ν ∈ K̂ such that mν(στ(m),k) �= 0. Let σ ∈ M̂ such that [ν : σ ] �= 0. Then (10.25)
holds as shown in the proof of the previous proposition. Hence

m �
√
λ2
τ(m),k + c(στ(m),k)− c(σ ) �

√
λ2
τ(m),k + c(στ(m),k).

By (4.16), (10.1) and (10.2) there exists a constant C1 which is independent of ν and σ such that
for every m we have

m �
√
λ2
τ(m),k + c(στ(m),k)− c(σ ) � C1m.

For ν ∈ K̂ as above, it follows from (2.16) and (10.1) that for every j ∈ {2, . . . , n+ 1} one has

kj (ν) � m+ τ1 + 1.
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Thus there exists a constant C2 which is independent of ν and σ such that for every m we have

n+1∑
j=2

∑
m�l�kj (ν)

∣∣log
(√

λ2
τ(m),k + c(στ(m),k)− c(σ )+ l + ρj

)∣∣ � C2 logm.

By Proposition 10.12 it follows that there exists a constant C3 such that for every m ∈N we have∣∣∣∣ d

ds

∣∣∣∣
s=0

MJ (s;στ(m),k)

Γ (s)

∣∣∣∣ � C3 logm
∑
ν∈K̂

∣∣mν(στ(m),k)
∣∣ ∑
σ∈M̂

[ν : σ ]dim(σ )

= C3 logm
∑
ν∈K̂

∣∣mν(στ(m),k)
∣∣dim(ν).

Now by (2.16) the number of ν ∈ K̂ with mν(στ(m),k) �= 0 is bounded by 2n and one has
|mν(στ(m),k)| � 1 for every ν ∈ K̂ . Let Λ(ν) ∈ b∗

C
be the highest weight of ν as in (2.9). Then by

Weyl’s dimension formula [17, Theorem 4.48] we have

dim(ν) =
∏

α∈�+(kC,bC)

〈Λ(ν)+ ρK,α〉
〈ρK,α〉

=
n+1∏
i=2

(
ki(ν)+ ρi + 1/2

) n+1∏
j=i+1

(ki(ν)+ ρi + 1/2)2 − (kj (ν)+ ρj + 1/2)2

(ρi + 1/2)2 − (ρj + 1/2)2
. (10.26)

By (2.16) the highest weights of ν ∈ K̂ with mν(στ(m),k) �= 0 are of the form Λ(στ(m),k) − μ,
where μ ∈ {0,1}n. Using (10.1) it follows that there exists C4 > 0, which is independent of m,
such that for each ν ∈ K̂ with mν(στ(m),k) �= 0 one has

dim(ν) � C4m
n(n+1)

2 .

This proves the proposition. �
Summarizing, we have proved the following proposition.

Proposition 10.14. For s ∈ C, Re(s) > 0 the integral

MJ
(
s; τ(m)

) :=
∞∫

0

t s−1J
(
k
τ(m)
t

)
dt

converges and MJ (s; τ(m)) admits a meromorphic continuation to C with at most simple a pole
at 0. Let

MJ
(
τ(m)

) := d
∣∣∣∣ MJ (s; τ(m))

.

ds s=0 Γ (s)
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Then there exists a constant C such that for every m ∈N one has∣∣MJ
(
τ(m)

)∣∣ � Cm
n(n+1)

2 logm.

Proof. By Proposition 8.2 one has

MJ
(
s; τ(m)

) =
n∑

k=0

(−1)k+1MJ (s;στ(m),k).

The proposition follows from Propositions 10.12 and 10.13. �
Now by Eqs. (7.16), (7.9) and Proposition 8.2 we have

logTX
(
τ(m)

) = 1

2

(
MI

(
τ(m)

) +MH
(
τ(m)

) +MT
(
τ(m)

) +MI
(
τ(m)

) +MJ
(
τ(m)

))
.

Combining Eq. (9.6) and Propositions 10.1, 10.3, 10.4, 10.10 and 10.14, Theorems 1.1 and 1.2
follow.
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