Note

The γ-Hexomino Has Order 92

Karl A. Dahleke
603 Manville Hall, 2745 Bancroft Way, Berkeley, California 94720
Communicated by the Managing Editors

Received October 12, 1987

In 1966, S. Golomb [1] asked whether the " Y-hexomino" can tile a rectangle. As shown in Fig. 1, the answer is "yes," and the 23×24 rectangle is in fact the smallest rectangle which can be so tiled. Thus, in the terminology of D. Klarner [2], the Y-hexomino has order 92, the highest order (by more than a factor of 5) of any hexomino.

The solution in Fig. 1 was found after three days of computation on a microcomputer using a small C-language program. Exhaustive search alone proved highly inefficient, since unexpected interactions (e.g., among strips of width 2 and width 9 , as shown in Fig. 2) produce long periodic patterns. A bit-wise comparison of columns was introduced to detect periodicities, since none will be present in a minimum rectangle.

A column periodicity of 6 first arises when there are 16 rows (cf. [2, Fig. 7]). When there are 23 rows, periods in excess of 200 are not uncommon. The successful version of the program, which found the example in Fig. 1 in 3 h , rejected all patterns containing periodicities.

Fig. 1. The minimum rectangle, 23×24, tiled with Y-hexominoes.

Fig. 2. Interaction among strips of width 2 and width 9.
A subroutine for crosscorrelating patterns to determine when one pattern would complete a rectangle started by another was also written, but before it was incorporated into the main program the 23×24 solution had already appeared.

Acknowledgments

I would like to thank Dorothy Harris, David Klarner, and John Masley for verifying these results and helping with the accompanying figures.

References

1. S. Golomb, Tiling with polyominoes, J. Combin. Theory 1, No. 2 (1966), 280-296.
2. D. Klarner, Packing a rectangle with congruent N-ominoes, J. Combin. Theory 7, No. 2 (1969), 107-115.
