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Abstract

In this paper we study the existence and uniqueness of weak solutions of stochastic di�erential
equations on Banach spaces. We also study the existence of invariant measures for the corre-
sponding Markovian semigroups. Our main tool is the factorization of stochastic convolutions.
We close the paper with some examples. c© 1999 Elsevier Science B.V. All rights reserved.

MSC: Primary 60H15; 60G60; Secondary 60J25

Keywords: (Nonlinear) stochastic partial di�erential equations; Stochastic integration in Banach
spaces; Dissipative mappings; Martingale solutions; Feller processes; Invariant measures

1. Introduction

The aim of this paper is twofold. Firstly, we study weak (martingale) solutions of
stochastic evolution equations in Banach spaces. Secondly, we investigate existence of
invariant measures for such equations. The general motivation for studying weak rather
than strong solutions of stochastic equations in �nite dimensions is that existence of
weak solutions requires smaller degree of regularity of the coe�cients than existence of
strong solutions, see Ikeda and Watanabe (1981). This remains valid for equations in
in�nite-dimensional spaces. An important case, where there it is more natural to study
martingale (rather than strong) solutions are stochastic Navier–Stokes equations, see
Capi�nski and Cutland (1991) and Flandoli and G�atarek (1995), and references therein.

An extensive study of martingale solutions of stochastic evolution equations was
initiated in the thesis of Viot (1976) in the Hilbert space setting. Some results of Viot
(1976) were clari�ed and generalized in Metivier (1988). The paper by Dettweiler
(1992) was the �rst (to our knowledge) to deal with martingale problems on Banach
spaces. The model studied in Dettweiler (1992) is di�erent from ours in that we allow
unbounded coe�cients.
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In a vast literature on existence of invariant measures for stochastic evolution equa-
tions let us point out a paper by Manthey and Maslowski (1992) (see also references
therein), where the authors study a problem similar to ours but with more stringent con-
ditions. In particular, we do not assume that the di�usion coe�cient is constant nor that
the main linear part of the drift operator is symmetric. However, we do not study er-
godic properties of the solutions as is done in Manthey and Maslowski (1992). It would
be of some interest to study these in the framework of the present paper. One of the ba-
sic ingredients of our approach to existence of invariant measures is compactness which
allows us to use a general scheme due to Krylov–Bogoluobov. A similar technique to
the question of existence of an invariant measure for a single reaction–di�usion equa-
tion with Dirichlet boundary conditions was applied by Da Prato and Pardoux (1995).
Let us point out that the unbounded linear part of the drift is the Laplacian with Dirich-
let boundary condition. Our approach is more general as it allows to consider various
problems (even systems) with mixed boundary conditions without making use of the
speci�c forms of the fundamental solutions. Even when restricted to the case of Da
Prato and Pardoux (1995) our methods of obtaining a priori bounds on moments of
the solutions based on Burkholder inequality in Banach spaces is more transparent and
elegant than the other one. Still another paper is the one by Mueller (1993), where the
author uses in an ingenious way a coupling method for proving existence of invariant
measures for a heat equation with space-time noise. Large deviation for an invariant
measure in the case of globally Lipschitz coe�cient is studied by Sowers (1992).

Related questions for in�nite-dimensional stochastic di�erential equations but of com-
pletely di�erent type have been studied by Albeverio and R�ockner (1991) in the frame-
work of Dirichlet forms.

We use two di�erent techniques. On the one hand, we study some processes with val-
ues in Banach spaces by using various properties of dissipative mappings. On the other,
we study other processes with values in Banach spaces by making use of Burkholder
inequality. Thus, for the latter, we have to consider special types of Banach spaces:
M-type 2 or (as they are also called) 2-uniformly smooth. In this paper we follow the
general framework of integration in M-type 2 Banach spaces as introduced in Brze�zniak
(1995, 1997) together with the factorization method as in Da Prato et al. (1987), Da
Prato and Zabczyk (1992a) and G�atarek and Go ldys (1994). These tools seem to be
very e�ective for our purpose. Another important case, of dissipative equations, is in-
vestigated in the present publication. Factorization approach to the problem of existence
of martingale solutions of Hilbert-space-valued di�usions was introduced in G�atarek and
Go ldys (1994): see also some applications: in control theory (G�atarek and Sobczyk,
1994) and for stochastic Navier–Stokes equation, see Capi�nski and G�atarek (1994).
Stochastic reaction di�usion equations in Lp spaces are also studied by Peszat (1995).

Let us brie
y present the content of our paper. In Section 2 we study the factoriza-
tion operator in Banach spaces which proves to be a fractional power of some abstract
parabolic operator, see also Brze�zniak (1996). We prove general smoothing and com-
pactness properties of the operator in question. In Section 3 we prove general results on
stochastic convolutions in M-type 2 Banach spaces. These results are applied to some
examples in Section 3.2. The main results of the paper are in Section 4. We prove ex-
istence of weak solutions of nonlinear stochastic evolution equations in Banach spaces
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under general conditions: continuous and bounded di�usion coe�cient and continuous
drift coe�cient with one-sided growth condition. This covers important examples of
reaction–di�usion equations. In Section 5 we prove existence of invariant measures
under the same assumptions as in the previous section but with an extra condition on
the linear part: uniform asymptotic stability of the semigroup involved. In the last sec-
tion, which is in some sense a continuation of Section 3.2, we show how the previous
abstract results can be applied to a general stochastic reaction–di�usion equation with
space-time white noise. In this respect our results are complimentary to those obtained
recently by Bally et al. (1994). We close the section by showing how our results lead
to solvability of stochastic Ginzburg–Landau equations with nonconstant di�usion and
non-Lipschitz force. This generalizes the results from Funaki (1989) in the bounded
domain case.

In Brze�zniak and Peszat (1999a,b) we continue the line of research developed here
by studying SPDEs, contrary to the present paper, with all coe�cients time dependent.

2. The parabolic operator �T

Let us begin with a list of assumptions that will be frequently used throughout this
and later sections. Whenever we use any of them this will be speci�cally written.

(H1a) X is an UMD Banach space.
(H1b) X is a type 2 Banach space.
(H2a) A is a positive operator in X , i.e. a densely de�ned and closed operator for

which there exists M ¿ 0 such that for �¿ 0,

||(A+ �)−1||6 M
1 + �

; �¿ 0:

(H2b) −A is a generator of an analytic semigroup {e−tA}t¿0 on X .
(H3) There exist positive constants K and # satisfying

#¡
�
2

(2.1)

such that

||Ais||6Ke#|s|; s ∈ R: (2.2)

Digression 1. A Banach space X is an UMD space i� there exist �¿ 0 and p ∈
(1;∞) such that for any X -valued martingale di�erence sequence �= {�j}nj=1 and for
any � ∈ {−1; 1}n{

E

∣∣∣∣∣
n∑
i=1

�i�i
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p
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}1=p

6�
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E

∣∣∣∣∣
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X

}1=p

: (2.3)

The smallest constant � for which (2.3) holds will be denoted by �p(X ). This de�nition
is p independent, see Burkholder (1986).

A Banach space X is of type 2 i� there exists a constant K ¿ 0 such that for any
x1; : : : ; xn ∈ X and any symmetric i.i.d. random variables �1; : : : ; �n : 
→ {−1; 1} the
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following holds:
E
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|xi|2
}1=2

:

The smallest number K for which the above holds is denoted by K2(X ).
On the other hand, using the Kahane inequality which asserts that for any r ∈ (0;∞)

there exist numbers Ar; Br ¿ 0 such that for any Banach space Z , for all z1; : : : ; zn ∈ Z
and for all �1; : : : ; �n : 
→ {−1; 1} symmetric i.i.d. random variables
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one sees that X is of type 2 i� for any (some) r ∈ (0;∞) there exists K ′¿ 0 such
that {

E

∣∣∣∣∣
∑
i

�ixi
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r}1=r

6K ′
{∑

i

|xi|2
}1=2

(2.4)

for any x1; : : : ; xn ∈ X and any �1; : : : ; �n : 
 → {−1; 1} symmetric i.i.d. random
variables. The smallest constant K ′ is denoted by K2; r(X ).

In this context, let us note that K2; r(X )6K2(X )Br and K2(X ) = K2;2(X ).

Remark 2.1. If a linear operator A in Banach space X is positive then −A is the
generator of a C0 semigroup in X and one de�nes (see Triebel, 1978) the fractional
powers A� and A−�, � ∈ (0; 1) of A as closures of operators given by the formulas

A�x =
sin(��)
�

∫ ∞

0
t�−1A(�I + A)−1x d�; x ∈ D(A); (2.5)

A−�x =
sin(��)
�

∫ ∞

0
t−�(�I + A)−1x d�; x ∈ X: (2.6)

Note that A−� is a bounded operator in X and the function (0; 1) 3 � 7→ A−� ∈ L(X )
extends to an analytic function A−z on the open half-plane C+ = {z ∈ C: Re z¿ 0}.
Moreover, if (for example) −1¡Re z¡ 1, then for x ∈ D(A),

A−zx =
�(2)

�(1 − z)�(1 + z)

∫ ∞

0
�−zA(A+ �I)−2x d�:

Now the condition (H3) should be more clearly explained. It means, that the function
A−z has an extension to the imaginary line iR and the inequality (2.2) holds (with #
satisfying (2.1)).

Most of the content of this section follows Brze�zniak (1997), but our approach to
the compactness property in Theorem 2.6 is new. A result of this type has been �rst
discovered and applied in G�atarek and Go ldys (1994), see Proposition 1 therein.

Let us note that if X is a UMD and type 2 Banach space, i.e. the assumptions (H1)
are satis�ed, then X is also an M-type 2 Banach space, see Brze�zniak (1996). It is
known, see Pr�uss and Sohr (1990), that under the condition (H3), −A is the generator
of a uniformly bounded (!) analytic semigroup.
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For �xed q ∈ (1;∞); T ∈ (0;∞] and a Banach space X; H 1; q(0; T ; X ) is the Banach
space of (classes of) functions u ∈ Lq(0; T ;X ) whose weak derivative u′ belongs to
Lq(0; T ;X ) as well. By H 1; q

0 (0; T ;X ) we will denote, not in agreement with the standard
notation, the closure in H 1; q(0; T ;X ) of the space 1 {u ∈ C∞([0; T ];X ): u(0) = 0}. It
is known that H 1; q

0 (0; T ;X ) equals to the subspace of H 1; q(0; T ;X ) consisting of such
u with u(0) = 0. Note that due to the Sobolev imbedding theorem u(0) is well de�ned.

For � ∈ (0; 1) the Sobolev spaces H�;q(0; T ;X ) and H�;q0 (0; T ;X ) are de�ned by
means of complex interpolation

H 1; q(0; T ;X ) = [Lq(0; T ;X ); H 1; q(0; T ;X )]�; (2.7)

H�;q0 (0; T ;X ) = [Lq(0; T ;X ); H 1; q
0 (0; T ;X )]�: (2.8)

It is known that for �¿ 1=q the latter is equal to the space of all u ∈ H�;q(0; T ;X )
for which u(0) = 0 while for � ∈ (0; 1=q) it equals H�;q(0; T ;X ).

With q; T and X as above we set

BTu= u′; u ∈ D(BT ); (2.9)

D(BT ) = H 1; q
0 (0; T ;X ): (2.10)

It is also known, see Dore and Venni (1987) and Brze�zniak (1996), that the operator
−BT generates a C0-semigroup {S(t)}t¿0 on the Banach space Lq(0; T ;X ) =: YT

[S(t)u](r) =
{
u(r − t) if 06t6r;
0 if 06r ¡ t;

(2.11)

for r ∈ [0; T ] and u ∈ Lq(0; T ;X ).
Note also that the original norm on D(BT ) (or on H 1; q

0 (0; T ;X )) (i.e. the one inher-
ited from H 1; q(0; T ;X )) is equivalent to the following one:

||u||q =
∫ T

0
|u′(t)|q dt: (2.12)

The spectral properties of the operators BT for T=∞ and T �nite di�ers substantially.
While the spectrum �(B∞) of B∞ equals to the closed left half-plane {z ∈ C: Re z60}
the spectrum �(BT ) of BT for T �nite is empty. Moreover, B∞ + �I is positive for
any �¿0 (or Re �¿0 in the complex case) and, for T ¡∞, BT + �I is positive for
any � ∈ R (or � ∈ C in the complex case), see also below.

Finally let us recall, see Dore and Venni (1987) and Giga and Sohr (1991), that if
X is a UMD Banach space and T is �nite, BT satis�es a condition similar to (2.2) but
with the constant # equal to �=2, i.e.

||BisT ||6CT (1 + s2)e#|s|; s ∈ R: (2.13)

However, one can easily show that the same holds for BT − �I for any � ∈ C. The
key observation is the following formula:

(BT − �I)−1 = J� B−1
T J

−1
� ;

1 For T = ∞ we consider u : [0;∞) → X .
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where J� is a linear isomorphism of Lq(0; T ;X ) de�ned by (J�g)(s)=e�sg(s). Therefore,
with R(B) denoting the range of operator B, we have, see Brze�zniak (1996),

R((BT − �I)−�) := H�;q0 (0; T ;X ):

De�ne now a linear operator AT by the formula

D(AT ) = {u ∈ Lq(0; T ;X ) s:th: Au ∈ Lq(0; T ;X )};
AT u := {[0; T ] 3 t 7→ A(u(t)) ∈ X }: (2.14)

It is then easy to show, see Dore and Venni (1987), that if A+�I satis�es the conditions
(H2) and (H3) then AT + �I satis�es them as well. De�ne �nally the operator �T by

�T :=BT + AT ; (2.15)

D(�T ) :=D(BT ) ∩ D(AT ): (2.16)

If X is a UMD Banach space and A+ �I , for some �¿0, satis�es the conditions (H2)
and (H3) then, since �T = BT − �I + AT + �I , by Dore and Venni (1987) and Giga
and Sohr (1991), �T is a positive operator. In particular, �T has a bounded inverse.
The domain D(�T ) of �T endowed with a ‘graph’ norm

||u|| =
{∫ T

0
|u′(s)|q ds+

∫ T

0
|Au(s)|q ds

}1=p

(2.17)

is a Banach space. This space will be frequently denoted by H 1; q
0 (0; T ;X; A). Moreover,

�T satis�es the condition (H3). Therefore, compare with Brze�zniak (1996), we have

[Lq(0; T ;X ); D(�T )]� = D(��T ); 0¡�¡ 1: (2.18)

We begin exposition of our results by presenting an explicit formula for the fractional
power of the operator �T , see Brze�zniak (1996) for the proof.

Proposition 2.2. Assume that the conditions (H1a); (H2) are satis�ed. Assume also
that for some �¿0; A+ �I satis�es the condition (H3).
Then; for 0¡�61; �−�

T is a bounded linear operator in Lq(0; T ;X ); and for
0¡�¡ 1;

(�−�
T f)(t) =

1
�(�)

∫ t

0
(t − s)�−1e−(t−s)Af(s) ds;

t ∈ (0; T ); f ∈ Lq(0; T ;X ): (2.19)

Remark 2.3. The assumptions (H1b) and (H3) in Proposition 2.2 are to ensure that
the operator �T is closed. In fact, suppose that X is a Banach space and −A is a
generator of a C0 semigroup e−tA, t¿0 on X . Let P(t), t¿0 be a C0 semigroup
on YT = Lq(0; T ;X ) de�ned by [P(t)f](r) = e−tA(f(r)), r ∈ [0; T ], t¿0. Then the
semigroups S(t) and P(t) commute and the generator C of the C0 semigroup Q(t) =
P(t)S(t) is a positive operator and C−�=�T;�. Here the linear operator �T;� is de�ned
by the RHS of formula (2.19). Using just the Young inequality one can prove directly
that �T;� is bounded map in Lq(0; T ;X ). With this notation, Proposition 2.2 states that
if the conditions (H1a) and (H3) are satis�ed, then �−�

T = �T;�. See Carroll (1999)
for more details.
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One can easily mimic the proof of Lemma 2 from Da Prato et al. (1987) (set up in
a Hilbertian framework) to obtain the following generalization of that result.

Lemma 2.4. Assume a Banach space X and a linear operator A satisfy the condition
(H2). Suppose that the positive numbers �; �; � satisfy

0¡�¡�− 1
q

+ 
− �: (2.20)

Then; if T ∈ (0;∞) and f ∈ Lq(0; T ;D(A
)); the function u= �T;�f satis�es

u ∈ C�(0; T ;D(A�)): (2.21)

Moreover; �T;� is a bounded map in the above spaces.
If T = ∞ and the semigroup e−tA is exponentially bounded; i.e. for some a¿ 0,

C¿ 0

|e−tA|6Ce−at ; t¿0; (2.22)

then for any f ∈ Lq(0;∞;D(A
)) the function u=�∞; �f belongs to C
�
b (0;∞;D(A�)).

Moreover; �∞; � is a bounded map in the above spaces.

Remark 2.5. For a Banach space Y , C�b (0;∞; Y ) denotes a set of all continuous and
bounded functions u : [0;∞) → Y such that

||u||C�(0;∞;Y ) := sup
t¿0

|u(t)| + sup
06s¡t¡∞

|u(t) − u(s)|
|t − s|� (2.23)

is �nite. C�b (0;∞; Y ) endowed with a norm || · ||C�(0;∞; Y ) is a Banach space.

Our main result in this section is the following.

Theorem 2.6. Assume that X is an UMD Banach space and a operator A satisfying
the condition (H2) is such that A+�I; for some �¿0; satis�es (H3). We suppose also
that (A+ �I)−1 is a compact operator in X (i.e. the imbedding D(A) =D(A+ �I) ,→
X is compact). Then; for any �nite T and � ∈ (0; 1]; the fractional power operator
�−�
T :Lq(0; T ;X ) → Lq(0; T ;X ) is compact.

Proof. We begin with � = 1. The compactness of �−1
T is equivalent to compactness

of the imbedding D(�T ) ,→ Lq(0; T ;X ). Since X , as being an UMD Banach space is
also re
exive, the last compactness follows directly from Theorem 2.1 in Chapter III
of Temam (1977).

To prove compactness of �−�
T for � ∈ (0; 1) one can follow many di�erent roots,

we choose the one based on interpolation. As above �−�
T is compact i� the imbedding

D(��T ) ,→ YT is compact. Since YT = Lq(0; T ;X ) is an UMD Banach space (see
Burkholder, 1986) the latter is compact as follows from Theorem 9 in Cwikel and
Kalton (1993) by using (2.18) and compactness of the imbedding D(�T ) ,→ YT .

Remark 2.7. (i) The second part of the above proof can be summarized by saying
that if �−1

T is compact then also �−�
T is compact for � ∈ (0; 1).
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(ii) The conditions (H1a) and (H3) simplify many technical arguments and make
the proofs more transparent. However, if one simply assumes that X is any separable
Banach space and A satis�es the condition (H2) with A−1 being compact, then the
operator �T;�, see Remark 2.3, is compact. For a proof of a related result in a Hilbert
space framework, see G�atarek and Go ldys (1994, Proposition 1).

Theorem 2.6 in conjunction with Lemma 2.4 yields the following.

Corollary 2.8. Supposing that the assumptions of Theorem 2:6 are satis�ed and that
the nonnegative numbers �; �; � satisfy the following condition:

06� + �¡�− 1
q
; (2.24)

�−�
T is a compact map from Lq(0; T ;X ) into C�(0; T ;D(A�)). In particular; if �¿ 1=q;
the map �−�

T : Lq(0; T ;X ) → C(0; T ;X ) is compact.

Proof. Let �′ ∈ (0; �) be such that the condition (2.24) holds with � being replaced
by �′. Then, by Lemma 2.4 and Proposition 2.2, �−�′

T is a bounded linear map from
Lq(0; T ;X ) into C�(0; T ;D(A�)). On the other hand, as � − �′¿ 0, by Theorem 2.6,
�−(�−�′)
T is compact in Lq(0; T ;X ). This together with the semigroup property �−�

T =

�−�′
T �−(�−�′)

T concludes the proof.

3. Stochastic preliminaries

3.1. Regularity properties of stochastic convolution

Let us begin with an assumption that we will assume from now on in the whole
paper.
(H4) H is a separable Hilbert space, and W (t); t¿0 is an H -cylindrical Wiener

process on (
;F;P) with respect to the �ltration (Ft)t¿0.

Remark 3.1. W (t); t¿0 is an H -cylindrical Wiener process on (
;F;P) with respect
to the �ltration (Ft)t¿0 i�, see Da Prato and Zabczyk (1992a) and Brze�zniak (1997)
or Brze�zniak and Peszat (1999a), it is a family of bounded linear operators acting from
H into L2(
;F;P) such that

(i) for all t¿0; h1; h2 ∈ H; EW (t)h1W (t)h2 = t〈h1; h2〉H ,
(ii) for each h ∈ H; W (t)h; t¿0 is a real-valued Wiener process adapted to the

family (Ft).

Suppose that E is a real separable Banach space such that H is densily and con-
tinuously imbedded into H . Denote by i :H ,→ E the natural imbedding. If i :H ,→ E
is an abstract Wiener space (AWS), see Kuo (1975), and w(t); t¿0, is the canoni-
cal E-valued Wiener process on a probability space (
;F;P), then one can de�ne a
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family of linear operators from E∗ into L2(
;F;P),

W (t)h= 〈h; w(t)〉; h ∈ E∗; t¿0: (3.1)

Since W (t) is a continuous linear map from E∗ with topology induced by H (recall
that E∗ ⊆H∗ ∼= H ⊆E) W (t) extends in a unique way to a linear bounded map from
H into L2(
;F;P) such that the conditions (i) and (ii) above are satis�ed.

Conversely, if W (t); t¿0, is an H -cylindrical Wiener process with respect to the
�ltration (Ft)t¿0 and i :H → E is an AWS then there exists an E-valued Wiener pro-
cess w(t); t¿0 such that the condition (3.1) is satis�ed. In fact, it is enough to take
a continuous version of the process w̃(t) :=

∑
k W (t)(ek)ek ; t¿0, for some orthonor-

mal basis {ek}k of H . In Brze�zniak (1997) we studied Itô integrals with respect to
the canonical E-valued Wiener process which, as we observed therein, played only an
auxiliary role. In this paper we consider cylindrical Wiener processes and Itô integrals
with respect to them. This is motivated by many reasons. Firstly, it is more canonical,
as we avoid using any auxiliary objects.

Secondly, as explained above, any cylindrical Wiener process generates a true Wiener
process. The third reason is related to an Itô integral. For this we need to recall some
notation introduced in Brze�zniak (1997). We begin with

De�nition 3.2. For separable Hilbert and Banach spaces H and X we put

M (H; X ) := {L :H → X :L is linear bounded and 
-radonifying}: (3.2)

Thus, a bounded linear operator L :H → X belongs to M (H; X ) i� the image L(
H )
of the canonical �nitely additive Gaussian function 
H on H by L is �-additive on the
algebra of cylindrical sets in X . By �L we will denote the unique extension of L(
H )
to the Borel �-algebra B(x).

For L ∈ M (H; X ) we put

||L||M (H;X ) :=
{∫

X
|x|2 d�L(x)

}1=2

: (3.3)

In view of the Landau–Shepp–Fernique Theorem, ||L|| is a �nite number. It is known,
see Neidhardt (1978), that M (H; X ) is a separable Banach space.

Given a Banach S, usually S is one of the spaces X; M (H; X ) or L(E; X ), by
N(a; b; S) we denote the space of (equivalence classes of) functions � : [a; b) × 
→
S which are progressively measurable.

For q ∈ [1;∞), we set

Nq(a; b; S) =

{
� ∈ N(a; b; S):

∫ b

a
|�(s)|q ds¡∞ a:s:

}
; (3.4)

Mq(a; b; S) =

{
� ∈ N(a; b; S): E

∫ b

a
|�(s)|q ds¡∞

}
: (3.5)

Let Nstep(a; b; S) be the space of all � ∈ N(a; b; S) for which there exists a partition
a= t0¡t1¡ · · ·¡tn = b such that �(t) = �(tk) for t ∈ [tk ; tk+1). We put Mq

step =Mq ∩
Nstep. Note that Mq(a; b; S) is a closed subspace of Lq([a; b] ×
; S). Assume that X
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satis�es the assumptions (H1), thus in particular, X is an M -type 2 Banach space. Then
for any � ∈ M(0; T ;M (H; X )) there exists a continuous X -valued process, denoted by
x(t) :=

∫ t
0 � dw(s), 06t6T , such that if � = 1[c;d)f, f ∈ L2(
;Fc;L(E; X )), x(t) =

f(w(d∧ t) −w(c ∧ t)). Moreover, the following Burkholder-type inequality holds, see
Dettweiler (1991). For any r ∈ (1;∞) there exists a constant C depending only on X
and r (and so independent from �) such that for each �M2(0; T ;M (H; X )),

E sup
06t6T

∣∣∣∣
∫ t

0
�(s) dw(s)

∣∣∣∣
r

6
(

r
r − 1

)r
Cr(X )E

({∫ T

0
||�(s)||2M (H;X ) ds

}r=2)
:(3.6)

The above recalled de�nition of the Itô integral involves an auxiliary Banach space E
such that i: H ,→ E is an AWS. The third reason for considering cylindrical Wiener pro-
cesses is described below. If two true Wiener processes (E and respectively Ẽ-valued)
w(t) and w̃(t) correspond to the same H -cylindrical Wiener process W (t), then for any
� ∈ M(0; T ;M (H; X )) the processes x(t) :=

∫ t
0 �(s) dw(s) and x(t) :=

∫ t
0 �(s) dw̃(s) are

modi�cations of each other. Let us also point out that in Brze�zniak and Peszat (1999)
we de�ne an Itô integral without involving any auxiliary space E.

By (X;D(A))1=2;2 we shall denote the real interpolation space with parameters (1=2; 2)
between D(A) and X , see Triebel (1978).

Given � ∈ M2(0; T ; M (H; X )) and x0 ∈ L2(
;F0; X ) a process x ∈ M2(0; T ;X ) is
called a (mild) solution to

dx(t) + Ax(t) dt = �(t) dW (t); t¿0;

x(0) = x0 ; (3.7)

i� for all t ∈ [0; T ], a.s.

x(t) = e−Atx0 +
∫ t

0
e−(t−s)A�(s) dW (s): (3.8)

Now, we want to recall a couple of su�cient conditions for the stochastic Itô integral
in (3.8) to make sense. The most general one is the following:

e−(t−·)A�(·) ∈ M2(0; t;M (H; X )); t ∈ [0; T ]: (3.9)

Another one is presented in the theorem below.

Theorem 3.3. Denote V = (X;D(A))1=2;2 and assume that � is an operator-valued
process such that A−1� ∈ M2(0; T ;M (H; V )). Then; for almost all t ∈ (0; T ); the Itô
integral

v(t) =
∫ t

0
e−(t−s)A�(s) dW (s) (3.10)

exists and the following inequality holds:

E
∫ T

0
|v(t)|2 dt6C2(X )

∫ T

0
||A−1�(s)||2M (H;V ) ds: (3.11)

Proof of Theorem 3.3. We begin with a technical lemma.
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Lemma 3.4. For x ∈ X∫ ∞

0
|e−A�x|2 d�= |A−1x|2V :

Proof of Lemma 3.4. If x ∈ X then e−tAx = Ae−tAA−1x. Therefore,∫ ∞

0
|e−tAx|2 dt =

∫ ∞

0
|Ae−tAA−1x|2 dx = |A−1x|2V :

The Fubini theorem yields

E
∫ T

0

∫ t

0
||e−(t−s)A�(s)||2M (H;X ) ds dt =

∫ T

0

∫ t

s
||e−(t−s)A�(s)||2M (H;X ) dt ds

6
∫ T

0

∫ ∞

0
|e−A��(s)|2M (H;X ) d� ds: (3.12)

Taking into account Lemma 3.4 from which it follows that∫ ∞

0
||e−A��(s)||2M (H;X ) d�= ||A−1�(s)||2M (H;V );

we infer that

E
∫ T

0

∫ t

0
||e−(t−s)A�(s)||2M (H;X ) ds dt6

∫ T

0
||A−1�(s)||2M (H; (X;V )) ds; (3.13)

which concludes the proof of the Theorem 3.3.

The process v(t) de�ned above by the convolution type formula should be seen as
a candidate for a solution to the problem (3.7). As the following result shows, under
some additional assumptions, v(t) is indeed a strong solution. For a similar result see
Lemma 4.5 in Brze�zniak (1995).

Lemma 3.5. Assume that u0 ∈ L2(
;F0;P; V ); g ∈ M2(0; T;M (H; V )) and that; for
some �
¿ 0; f ∈ M2(0; T; D(A �
)). Then the following conditions are equivalent:

u(t) = e−tAu0 +
∫ t

0
e−(t−r)A g(r) dW (r) +

∫ t

0
e−(t−r)Af(r) dr; a:s:; for t6T;

(3.14)

u(t) +
∫ t

0
Au(s) ds= u0 +

∫ t

0
g(s) dw(s) +

∫ t

0
f(s) ds; a:s:; for t6T:

(3.15)

The following result is a slight modi�cation of Theorem 3.2 from Brze�zniak (1997).

Theorem 3.6. Assume that a Banach space X satis�es the condition (H1) and a linear
operator A satis�es condition (H2b) and; for some �¿0; the operator A+ �I satis�es
the condition (H2a). Assume that q¿2; T ∈ (0;∞) and �; � ∈ [0; 1

2 ) satisfy

�+ �¡ 1
2 : (3.16)
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Assume also that the stochastic process � is such that

A−�� ∈ Mq(0; T ;M (H; X )): (3.17)

Let the process v(t) be given by Theorem 3:3; then; there exists a stochastic process
ṽ(t); t ∈ [0; T ]; such that

ṽ(t) =
∫ t

0
e−(t−s)A�(s) dW (s); a:s:; for each t ∈ [0; T ]; (3.18)

and which satis�es the following conditions:

ṽ(·; !) ∈ [Lq(0; T ;X );H 1; q(0; T ;X; A)]�; a:s: in ! ∈ 
; (3.19)

E||ṽ||q�;T6CT ((1=2)−�−�)qE
∫ T

0
||A−��(s)||qM (H;X ) ds (3.20)

for some constant C independent of � and T but (possibly) depending on �; p;
X and A. Here || · ||�;T denotes the norm in the interpolation space [Lq(0; T ;X );
H 1; q(0; T ;X; A)]�.

The idea of the proof is taken from Da Prato et al. (1987) and Da Prato and Zabczyk
(1992a) (where only the Hilbert space case is considered) and is an extension of the
modi�cation used by the author in Brze�zniak (1996). An important ingredient of the
proof of the above result is the following lemma. It is of particular interest (as it will
be used in the sequel independently of Theorem 3.6) and so it is stated and proven
below.

Lemma 3.7. Assume that a Banach space X satis�es the conditions (H1) and a linear
operator A satis�es condition (H2b) and; for some �¿0; the operator A+ �I satis�es
the condition (H2a). Assume that q¿2; T ∈ (0;∞); �; �; �¿0 satisfy �+ �+ �¡ 1

2 .
Assume that the stochastic process � satis�es (3:17).
Then there exists a constant C¿ 0 such that if the process y(t) is de�ned by

y(t) :=
1

�(1 − �)
∫ t

0
(t − s)−�e−(t−s)A�(s) dW (s); t ∈ [0; T ]; (3.21)

then

||y||Lq(
×[0;T ];D(A�))6C T
(1=2)−�−�−�||A−��||Lq(
×[0;T ];M (H ; X )): (3.22)

In particular; y ∈ Lq(0; T ;D(A�)) a.s.

Proof of Lemma 3.7. Assume without loss of generality that �= 0. Then the Burkholder
inequality, see Brze�zniak (1996), gives, for t ∈ [0; T ]

E|A�y(t)|q6cpE
{∫ t

0
(t − s)−2�||A�e−(t−s)A�(s)||2M (H;X ) ds

}q=2
: (3.23)

Hence,

E
∫ T

0
|A�y(t)|q dt6cpE

∫ T

0

{∫ t

0
(t − s)−2�||A�e−(t−s)A�(s)||2M (H;X ) ds

}q=2
dt:

(3.24)
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In view of Baxendale (1976) the condition (3.36) implies that

||A�e−�A�(s)||M (H;X ) = ||A�A�e−�AA−��(s)||M (H;X )

6C|A�+�e−�A|L(X )||A−��(s)||M (H;X )

6C�−(�+�)||A−��(s)||M (H;X )

for some constant C¿ 0. Therefore,

E
∫ T

0
|A�y(t)|q dt6E

∫ T

0

{∫ t

0
(t − s)−2(�+�+�)||A−��(s)||2M (H;X ) ds

}q=2
dt: (3.25)

Since the RHS of (3.25) equals to ||h1 ∗ h2||q=2Lq=2(0;T ), where h1(s) = 1(0;T ](s)s−2(�+�+�),

h2(s) = 1(0;T ](s)||A−��(s)||2M (H;X ), by applying pathwise Young’s inequality we get

∫ T

0

{∫ t

0
(t − s)−2(�+�+�)||A−��(s)||M (H;X )ds

}q=2
dt

6cq;�(1 − 2(�+ �+ �))−q=2T 2((1=2)−(�+�+�))
∫ T

0
||A−��(s)||qM (H;X ) ds: (3.26)

Indeed, we have

|h1|L1(0;T ) =
∫ T

0
s−2(�+�+�)|A�e−sA|2 ds= (1 − 2(�+ �+ �))−1T 1−2(�+�+�);

|h2|Lq=2(0;T ) =
(∫ T

0
||A−��(s)||2q=2M (H;X ) ds

)2=q

= ||A−��||2Mq(0;T ;M (H;X )):

Taking expectation of (3.26) in view of (3.25) yields

E
∫ T

0
|A�y(t)|q dt6cq;�(1 − 2(�+ �+ �))−q=2T [(1=2)−(�+�+�)]q

×E
∫ T

0
||A−��(s)||qM (H;X ) ds; (3.27)

which proves (3.22).

Corollary 3.8. Under the assumptions of Theorem 3:6 the following holds:

v(t) =
1
�(�)

∫ t

0
(t − s)�−1e−(t−s)Ay(s) ds; a:s:; for each t ∈ [0; T ]; (3.28)

where y(t) is de�ned by (3:21).

Remark 3.9. A special case of Theorem 3.6 is when the operator A is positive and
the semigroup e−tA is exponentially bounded.

Then with T = ∞ one can show that the process y(t) de�ned by (3.21) satis�es

E
∫ ∞

0
|A�y(t)|q dt6cq;�(1 − 2(�+ �+ �))−q=2

∫ ∞

0
||A−��(s)||qM (H;X ) ds: (3.29)
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The only modi�cation of the proof of Theorem 3.6 lies in choosing the auxiliary func-
tion h1 of the form h1(s)= s−2(�+�+�)e−as, s ∈ [0;∞). Since obviously |h1|L1(0;∞)¡∞
one may infer that there exists a modi�cation ṽ(t) of the process v(t) satisfying

ṽ(·; !) ∈ [Lq(0;∞;X );H 1; q(0;∞;X; A)]�; a:s: in ! ∈ 
;

E||ṽ||q6CE
∫ ∞

0
||A−��(s)||qM (H;X ) ds:

(3.30)

In particular, under the assumptions of Corollary 3.10 below, using Lemma 2.4 and
still in the case T = ∞, one can see that ṽ satis�es (3.34) and the following version
of (3.35). If �¡�− 1=q then

E||ṽ||q
C�(0;∞; D(A�))6CE

∫ ∞

0
||A−��(s)||qM (H;X ) ds: (3.31)

In the very special but important case of � = 0, if �+ � + 1=q¡ 1=2 one gets

E sup
t¿0

||ṽ(t)||qD(A�)6C
∫ ∞

0
||A−��(s)||qM (H;X ) ds: (3.32)

Lemma 2.4 in conjunction with Theorem 3.6 (applied for 
=0) yields the following.

Corollary 3.10. Suppose that not only the assumptions of Theorem 3:6 are satis�ed
but also that the positive numbers �; � satisfy

� + �+ �¡
1
2
− 1
q
: (3.33)

Then there exists a stochastic process ṽ(t); t ∈ [0; T ]; a modi�cation of
∫ t

0 �(s) dW (s);
such that

ṽ(·; !) ∈ C�(0; T ;D(A�)); a:s: in ! ∈ 
; (3.34)

E||ṽ||q
C�(0;T ; D(A�))6CTE

∫ T

0
||A−��(s)||qM (H;X ) ds: (3.35)

Proof. It is su�cient to choose �¿�+1=q satisfying �+�+�¡ 1
2 and then to apply

the previous results.

Remark 3.11. If for some � ∈ [0; 1
2 ) satisfying (3.16),

A−� ∈ M (H; X ); (3.36)

i.e. A−� extends to a bounded linear map from H to X that is radonifying, then all
the previous results hold true with the condition (3.17) being replaced by

� ∈ Mq(0; T ;L(H)) (3.37)

and with replacing ||A−��(s)||M (H;X ) in formulae (3.20) and (3.29)–(3.32) by
|�(s)|L(X ). Indeed, in view of Baxendale (1976), ||A−��(s)||M (H;X )6|�(s)|L(X ) as long
as (3.36) holds.
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3.2. Examples

Assume that O is an open and bounded interval in R and that r ∈ [0; 1
2 ) and p ∈

[2;∞). Let H = L2(O); X = Hr;p(O) and A= Ap;r = −� with D(Ap;r) = H 2+r;p(O) ∩
H 1+r;p

0 (O). Note that −A is the Laplace operator with Dirichlet boundary conditions.
It is well known that the Banach space Hr;p(O) and the operator Ap;r satisfy all the
assumptions (H1)–(H3) from Section 2, see Triebel (1978). The operator Ap;0 will be
also denoted by Ap.

As a preliminary step we will prove the following simple but crucial Lemma.

Lemma 3.12. In the framework described above; if the number � satis�es

�¿
1
4

+
r
2
; (3.38)

then A−� ∈ M (H; X ); i.e. the condition (3:36) is satis�ed. In particular; there exists
� ∈ (0; 1

2 ) for which the condition (3:36) holds true.

Proof. It is known, see for example Brze�zniak (1996), that the imbedding map i� :
H 1; 2

0 (O) → H�;p0 (O) is radonifying if �¡ 1
2 . Since by (3.38) r + 1 − 2�¡ 1

2 ,

A−�p;r = A1=2−�
p;r ir+1−2�A

−1=2
2

and the maps A−1=2
2 :H → H 1; 2

0 and A1=2−�
p;r :Hr+1−2�;q

0 (O) → Hr;p = X are bounded,
the result follows by using Baxendale (1976).

The second part of the lemma follows as well since r ¡ 1
2 .

Remark 3.13. One can consider even more spatially irregular Wiener processes by
considering the Hilbert space H = H�;2(O) instead of H = L2(O). The smaller the �
the more spatially irregular the Wiener process is. The condition (3.38) takes the form
� + �=2¿r=2 + 1

4 . In particular, if � + �=2¿ 1
4 then A−�p ∈ M (H�;2(O); Lp(O)) and,

by the Sobolev imbedding theorem, A−�p ∈ M (H�;2(O);C( �O)).

In the multidimensional case the situation is similar but details are di�erent. Suppose
that O is a bounded domain in Rd with smooth boundary and A = Ap = −� with
Dirichlet boundary conditions in X = Lp(O), i.e. D(Ap) = H 2;p(O) ∩ Hr;p0 (O). Then
A−�p ∈ M (H�;2(O); Lp(O)) if � + �=2¿d=4. Hence one can �nd �¡ 1

2 for which
A−�p is 
-radonifying i� �¿d=2 − 1.

The main result of this subsection is given below. To prove it, to apply Theorem
3.6 and Corollary 3.10 in the framework as outlined above.

Theorem 3.14. Assume that the stochastic process � belongs to M2(0; T ;L(H)) for
some T ∈ (0;∞].

(i) If r + 1
p ¡

1
2 ; then; for almost all t ∈ (0; T ); the Itô integral

v(t) =
∫ t

0
e−(t−s)A�(s) dW (s) (3.39)
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exists and; with some positive constant C independent of �; the following inequal-
ity holds:

E
∫ T

0
|v(t)|2Brp; 2(O) dt6C

∫ T

0
|�(s)|2L(H) ds; (3.40)

where Brp;2 are the Besov spaces; see Triebel (1978).
(ii) Assume in addition that the numbers q¿2 and �; � satisfy the following

condition:

� + �+
1
q
¡

1
4
: (3.41)

Then; if the process � belongs toMq(0; T ;L(H)); there exists a modi�cation ṽ(t);
t ∈ [0; T ] of the stochastic process v(t); such that; for some constant CT ;

ṽ(·; !) ∈ C�(0; T ;H 2�;p
0 (0; 1)); a:s: in ! ∈ 
; (3.42)

E||ṽ||q
C�(0;T ; H 2�; p

0 (0;1))
6CTE

∫ T

0
|�(s)|qL(H) ds: (3.43)

(iii) If the numbers q¿2 and �; �¿0 satisfy the following inequality:

� +
�
2

+
1
q
¡

1
4

(3.44)

and the process � belongs to Mq(0; T ;L(H)); then there exists a modi�cation
ṽ(t) of the stochastic process v(t) such that

ṽ(·; !) ∈ C�(0; T ;C�0 (0; 1)); a:s: in ! ∈ 
; (3.45)

E||ṽ||q
C�(0;T ;C�0 (0;1))6CTE

∫ T

0
|�(s)|qL(H) ds: (3.46)

Proof. Part (i) follows from Theorem 3.6 by taking X=Hr;p(O). For, �rstly in view of
the Reiteration Theorem, see (Triebel, 1978, Remark 4, Section 2:4:2), the real interpo-
lation space V := (Hr;p(O); H 2+r;p(O)∩H 1+r;p

0 (O))1=2;2 equals to Br+1
p;2 (O)∩ �B1=2+r

p;2 (O).
Secondly, by Baxendale (1976), ||A−1�(s)||M (H;V )6C||A−1||M (H;V )|�(s)|L(H). Finally,
as D(A) = D(A2;2) = H 2;2(O) ∩ H 1; 2

0 (O); A−1 belongs to M (H; V ) i� the imbedding
i :H 2;2(O) ∩ H 1; 2

0 (O) ,→ V is 
-radonifying. The latter holds i� the imbedding i :
H 1; 2(O) ,→ Brp;q(O) is 
-radonifying, which holds, see Brze�zniak (1995), if r ¡ 1

2−1=p.
To prove part (ii) we take X =Lp(0; 1) and A=Ap with p¿2. Note that now r=0.

Then D(A�) = H 2�;p
0 (0; 1). Since r = 0 because of (3.41) we can choose a positive

number � such that both conditions (3.33) and (3.38) are satis�ed. Finally, we apply
Theorem 3.6.

To prove part (iii) we begin with choosing positive numbers p and � such that
�¿�=2 + 1=2p and � + � + 1=q¡ 1

2 . Then we take X = Lp(0; 1) and A = Ap. We
observe that by the Sobolev imbedding theorem H 2�;p

0 (0; 1)⊂C�0 (0; 1) continuously,
and hence (iii) follows from (ii).

Remark 3.15. Taking any �¡ 1
4 and � = 0 one can �nd q such that the assumptions

of Theorem 3.14(iii) are satis�ed. Therefore, there exists a modi�cation ṽ(t) of the
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process v(t) which is H�older continuous in t ∈ [0; T ] with exponent �, uniformly in
x ∈ [0; 1] a.s. Analogously, taking � = 0 and any �¡ 1

2 one can �nd q such that the
assumptions of Theorem 3.14(iii) are satis�ed. Therefore, there exists a modi�cation
ṽ(t) of the process v(t) which is H�older continuous in x ∈ [0; 1] with exponent �,
uniformly in t ∈ [0; T ] a.s.

In particular, there exists a modi�cation ṽ(t) of the process v(t) which is H�older
continuous in t ∈ [0; T ] with exponent � and in x ∈ [0; 1] with exponent �, uniformly
in t ∈ [0; T ] a.s.

Remark 3.16. The results described in Theorem 3.14 hold true in the multidimensional
framework as described in Remark 3.13 and with Laplace operator � being replaced
by any uniformly elliptic second-order di�erential operator A=

∑
ij @=@xi(aij(x)@=@xj)+

a0(x) with C2 coe�cients and boundary conditions of the form b0(x)u(x) +∑
j bj(x)@u=@xj = 0 for x ∈ @O. Moreover, this holds for systems of such equations

acting on vector valued functions. See also Section 6.

4. Martingale solutions

4.1. De�nitions and assumptions

Consider the following stochastic equation:

du(t) + Au(t) dt = F(t; u(t)) dt + G(t; u(t)) dW (t);
u(0) = u0:

(4.1)

Suppose that X is a separable Banach space and −A is a generator of an analytic semi-
group {e−tA}t¿0 on X . More precise conditions on X and A are listed in assumptions
(H1)–(H4). Moreover, we will need another Banach space B. Assumptions A.1–A.3
below are standing assumptions for the rest of the paper.

Assumption A.1. B is a Banach space (with norm denoted by | · |B) such that

D(A�) ,→ B ,→ X; (4.2)

for some � ∈ (0; 1
2 − �). The semigroup {e−tA}t¿0 restricts to a strongly continuous

semigroup of bounded linear operators on B. Unless we �nd ourselves in danger of
ambiguity; the semigroup itself and its generator will be denoted without any change.
Moreover; the imbedding D(A�) ,→ B is compact.

Assumption A.2. The mapping A−�G : [0;∞) × B → M (H; X ) is bounded; continu-
ous with respect to the second variable and strongly measurable with respect to the
�rst one.

The next condition uses a notion of a subdi�erential of the norm, see Da Prato
(1976). Given x; y ∈ B the map ’ :R 3 s 7→ |x + sy| ∈ B is convex and therefore is
right and left di�erentiable. De�ne D±|x|y to be the right=left derivative of ’ at 0.
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Then the subdi�erential @|x| of |x|, x ∈ B, is de�ned by

@|x| := {x∗ ∈ B∗: D−|x|y6〈y; x∗〉6D+|x|y; ∀y ∈ B};
where B∗ is the dual space to B. One can show that not only @|x| is a nonempty,
closed and convex set, but also

@|x| = {x∗ ∈ B∗: 〈x; x∗〉 = |x| and |x∗|61}:
In particular, @|0| is the unit ball in B∗.

Assumption A.3. The mapping F : [0;∞)×B→ B is strongly measurable with respect
to the �rst variable and continuous with respect to the second variable. Moreover;
there exist k ∈ R and an increasing function a :R+ → R+ with limt→∞ a(t)=∞ such
that for all x ∈ D(A); y ∈ B and t¿0

〈−Ax + F(t; x + y); z〉6a(|y|B) − k|x|B; (4.3)

for any z ∈ x∗ = @|x|.

Remark 4.1. The condition (H4) is the basic one from the previous sections. The
last part of Assumption A.1 implies the assumptions of Theorem 2.6, i.e. that A has
a compact resolvent. The only new ones (essential for our nonlinear problem (4.1))
are Assumptions A.2 and A.3. Note that the part (i) of the Assumption A.5 below
coincides with the condition (2.22) from Remark 3.9.

If a= 0 and F = 0 the condition (4.3) means that the operator A+ kI is dissipative
on B. The latter is then equivalent to the fact that the semigroup generated by −A
satis�es |e−tA|L(B)6ekt , for t¿0, by the Lumer Phillips Theorem, see Pazy (1983).

Later on we shall also need some of the following conditions.

Assumption A.4. There exist nonnegative numbers k0¿0 and N¿0 such that
Assumption (A:3) is satis�ed with a function

a(r) = k0(1 + rN ); r¿0:

Assumption A.5. (i) There exists constants M; a¿ 0 such that

|e−tA|L(X )6Me−at ; t¿0:

(ii) The constant k from Assumption A:3 is positive; i.e. k ¿ 0.

Before we proceed any further let us now state (and prove) the following important
consequence of Assumption A.3.

Lemma 4.2. Assume that B is a Banach space; −A a generator of a strongly con-
tinuous semigroup of bounded linear operators on B and a mapping F : [0;∞)×B→
B satis�es Assumption A:3. Assume that for some �¿ 0 two continuous functions
z; v : [0; �) → B satisfy

z(t) =
∫ t

0
e−(t−s)AF(s; z(s) + v(s)) ds; t6�:
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Then

|z(t)|B6
∫ t

0
e−k(t−s)a(|v(s)|B) ds; 06t6�: (4.4)

Proof of Lemma 4.2. For �¿!0 where !0 is large enough, let R(�) = (�I + A)−1 ∈
L(B) be the resolvent of the operator A. Set z�(t) = �R(�)z(t) and F� = �R(�) ◦ F .
Then

z�(t) =
∫ t

0
e−(t−s)AF�(s; z(s) + v(s)) ds; t¿0:

Since the function [0; �] 3 s 7→ F�(s; z(s) + v(s)) ∈ D(A) is continuous it follows from
Theorem 2.4, Section 4 in Pazy (1983) that the function z� : [0; �] → B is di�erentiable
and

d
dt
z�(t) + Az�(t) = F(t; z�(t) + v(t)) + ��(t); t ¿ 0;

where

��(s) = F�(s; z(s) + v(s)) − F(s; z�(s) + v(s)):

By Gronwall Lemma and Assumption A.3 it follows that

|z�(t)|B6
∫ t

0
e−k(t−s)(a(|v�(s)|B) + |��(s)|B) ds 06t6�:

Since ||�R(�)||6M for large � and �R(�)z → z as � → ∞ for any z ∈ B, the
Lebesgue-dominated convergence theorem implies that �� → 0 in L1(0; �;B). Hence
(4.4) follows.

We shall de�ne now the mild and, later on, the martingale solution to Eq. (4.1).

De�nition 4.3. Assume that the conditions (H1)–(H2) and (H4) as well as the As-
sumptions A.1 and A.2 are satis�ed. Suppose that F is a map from [0; T ) × B into B.
Let x ∈ B be �xed. Let u(t); 06t ¡T , be a B-valued admissible process. Then u(t)
is called a mild solution to the problem (4.1) i� for t ¡ T

u(t) = e−tAx +
∫ t

0
e−(t−r)AG(r; u(r)) dW (r) +

∫ t

0
e−(t−r)AF(r; u(r)) dr; a:s:

De�nition 4.4. Assume that H is a separable Hilbert space and that the conditions and
(H1), (H2) and (H4) as well as Assumptions A.1 and A.2 are satis�ed. Let F be a
map from [0;∞) × B into B and let x ∈ B be �xed.

A martingale solution to Eq. (4.1) is a system

(
;F;P; {Ft}t¿0; {W (t)}t¿0; {u(t)}t¿0) (4.5)

such that (
;F;P) is a complete probability space, {Ft}t¿0 a �ltration on it,
{W (t)}t¿0 is an H -cylindrical Wiener process (with respect to the �ltration Ft) and
u(t) is a B-valued admissible process such that for any t ∈ [0; T ]

u(t) = e−tAx +
∫ t

0
e−(t−s)AF(s; u(s)) ds+

∫ t

0
e−(t−s)AG(s; u(s)) dW (s); a:s:

(4.6)
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We say that the martingale solution (4:5)–(4:1) is unique i� given another martingale
solution to (4.1)

(
′;F′;P′; {F′
t}t¿0; {W ′(t)}t¿0; {u′(t)}t¿0);

the laws of the processes u(t) and u′(t) on the space C(0; T ;B) coincide.

We shall also need (sometimes) the following:

Assumption A.6. For any x ∈ B the martingale solution of (4:1) is unique.

Assumption A.6 results from uniqueness of strong solutions of stochastic evolution
equations as in Neidhardt (1978), Bally et al. (1994), Dettweiler (1988), Brze�zniak
(1995) and Brze�zniak and Elworthy (1999) by the well-known scheme of Yamada–
Watanabe, see Dettweiler (1988) for details. A more sophisticated way of proving
(A.6) via the Girsanov transformation is given in G�atarek and Go ldys (1997) (but with
more stringent conditions on the coe�cients). Let us also emphasize that uniqueness
of strong solutions of stochastic evolution equations in a framework similar to the one
considered in the present paper is studied in detail in Brze�zniak (1997).

In this section we show existence of martingale solution to Eq. (4.1). Let us notice
at �rst that Assumption A.3 implies that

|F(t; y)|B6a(|y|B); t¿0; y ∈ B: (4.7)

4.2. Existence

We begin with the following.

Theorem 4.5. Suppose that for a Banach space X; a Hilbert space H; a complete
probability space (
;F;P) and an operator A + �I (with some �¿0); Assumptions
A:1;A:2 and (H1)–(H4) are satis�ed. Suppose also that for some �¡ 1 the function
A−�F : [0;∞) × B→ X is strongly measurable with respect to the �rst variable and
with respect to the second variable and bounded. Then for any x ∈ B there exists a
martingale solution of (4:1).

Proof of Theorem 4.5. Without loss of generality we may assume that � = 0. Our
proof is an in�nite-dimensional modi�cation of the original Skorohod proof, see also
Gihman and Skorohod (1972) and G�atarek and Go ldys (1994). Let T ¿ 0 and x ∈ B
be �xed. Take �¿� such that �+�¡ 1

2 and next choose q¿ 2 such that 1=q¡�−�
and 1=q¡ 1 − �. Finally choose 
 such that �¡
¡� + 1=q. Consider a sequence
{xn}⊂D(A�) such that xn → x in B as n→ ∞. Let sn=(k=2n)T if (k=2n)T6s¡ ((k+
1)=2n)T . De�ne a sequence of admissible D(A�)-valued processes by

�un(t) = e−tAxn +
∫ t

0
e−(t−s)AF(s; �un(sn)) ds+

∫ t

0
e−(t−s)AG(s; �un(sn)) dW (s):

(4.8)

It follows from Assumption A.1 and Theorems 4:1 and A.1 from Brze�zniak (1997)
that the de�nition of �un is correct. We need to �nd some estimates on �un independent
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of n. Set

yn(t) =
1

�(1 − �)
∫ t

0
(t − s)−�e−(t−s)AG(s; �un(sn)) dW (s)

and �fn(s)=F(s; �un(sn)) and �gn(s)=G(s; �un(sn)); s ∈ [0; T ]. Since A−�G : [0;∞)×B→
M (H; X ) is bounded, Lemma 3.7 yields that

sup
n¿1

E |yn|qLq(0;T ; X )¡∞: (4.9)

Therefore the family of processes yn; n ∈ N, is uniformly bounded in probability
on Lq(0; T ;X ). The same holds for the family A−� �fn; n ∈ N. Indeed, since the map
A−�F : [0;∞) × B → X is bounded, |A−� �fn(t)|X6C for some C¿ 0 and all t¿0.
Let us recall that in view of Corollary 2.8 the operators �−�

T and �−(1−�)
T are compact

from Lq(0; T ;X ) to C(0; T ;D(A�)). Therefore, as also the map AT�−1
T is bounded on

Lq(0; T ;X ), the families of laws of �−�
T yn and �−1

T
�fn = �−(1−�)

T (AT�−1
T )�A−� �fn are

tight on C(0; T ;D(A�)). This in conjunction with (4.2) yields tightness on C(0; T ;B)
of the families of laws of �−1

T
�fn and �−�

T yn. De�ne

un(t) = e−tAxn + [�−1
T

�fn](t) + [�−�
T yn](t); t ∈ [0; T ]: (4.10)

In view of Corollary 3.8 un(t) = �un, a.s., t ∈ [0; T ]. Moreover, the argument preceding
(4.10) yields that the family of laws of un is tight on C(0; T ;B) = 
T . Hence, there
exists a measure � on 
T and a subsequence of the sequence un, still denoted by un,
such that un → � weakly. By the Skorohod imbedding theorem, see Williams (1979) or
Da Prato and Zabczyk (1992a), there exists a probability space (
̃; F̃; P̃) with �ltration
F̃t and a sequence of B-valued admissible processes ũ n(t); t ∈ [0; T ], on 
̃, such that
the laws of ũ n and un are the same, and there exists a process ũ(t); t ∈ [0; T ], on 
̃
with law � such that ũ n → ũ in C(0; T ;B), a.s. on 
̃.

Set fn(s)=F(s; un(sn)) and gn(s)=G(s; un(sn)); s ∈ [0; T ]. Since 1−�¿ 1
2 , the range

of A−1G=A−(1−�)A−�G is contained in M (H;D(A−(1−�)))⊂M (H; (X;D(A)1=2;2). Thus
Lemma 3.5 implies that, for t6T ,

A−1un(t) +
∫ t

0
un(s) ds= A−1xn +

∫ t

0
A−1gn(s) dW (s) +

∫ t

0
A−1fn(s) ds; a:s:

Therefore,

Mn(t) :=A−1 �un(t) +
∫ t

0
u(s) ds− A−1xn −

∫ t

0
A−1f(s) ds; t ∈ [0; T ]

is an X -valued martingale and its cylindrical quadratic variation [Mn] is of the form

[Mn](t) =
∫ t

0
Qn(s) ds;

with Qn(t)=A−1gn(s)◦ [A−1gn(s)]t, see Dettweiler (1988) for explanation of necessary
concepts (for L ∈ M (H; X )⊂L(H; X ); Lt ∈ L(X ∗; H) is its transpose).

The argument from the proof of Theorem 8.1 in Da Prato and Zabczyk (1992a)
yields (verbatim-verbatim) that

M̃ n(t) :=A−1ũ n(t) − A−1xn +
∫ t

0
[ũ n(s) − A−1F(s; ũ n(sn))] ds
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is an X -valued square integrable martingale with respect to the �ltration F̃n(t) :=
�{ũ n(s): s6t} and its cylindrical quadratic variation [M̃ n] is of the form

[M̃ n](t) =
∫ t

0
Q̃n(s) ds;

where Q̃n(s) = A−1g̃n(s) ◦ [A−1g̃n(s)]t and g̃n(s) :=G(ũ n(s)); s ∈ [0; T ].
Set also f̃n(s) :=F(s; ũ n(s)); s ∈ [0; T ]. Then, a.s. on (
̃;P), ũn → ũ, A−�f̃n → A−�f̃

and A−1g̃n → A−1g̃ in respectively,C(0; T ;B); C(0; T ;X ) and Mq(0; T ;M (H; X )).
Here f̃(s) :=F(s; ũ(s)) and g̃(s) :=A−1G(s; ũ(s)). Therefore, M̃ n → M̃ in C(0; T ;B)
a.s. on (
̃;P) and M̃ (t) is a square integrable X -valued martingale with respect to the
�ltration F̃(t) := �{ũ(s): s6t}. Moreover, if Q̃(s)=A−1g̃(s)◦[A−1g̃(s)]t, the cylindrical
quadratic variation [M̃ ] of M̃ (t) is of the following form:

[M̃ ](t) =
∫ t

0
Q̃(s) ds:

The next step is to employ the martingale representation Theorem, see Theorem 2.4
in Dettweiler (1988). Taking into account separability of both X and its dual X ∗,
the just cited result of Dettweiler yields existence of an enlarged probability space

( ˜̃
; ˜̃F; ˜̃P) and existence of an H -cylindrical Wiener process ˜̃W (t);¿0, on it, such that
M̃ (t) =

∫ t
0 A

−1g̃(s) d ˜̃W (s), a.s., t¿0. Therefore, for t ∈ [0; T ],

A−1ũ(t) +
∫ t

0
u(s) ds= A−1x +

∫ t

0
A−1g̃(s) d ˜̃W (s) +

∫ t

0
A−1f̃(s) ds; a:s:

Since A−1G(x) = A−(1−�)A−�G(x) ∈ M (H;D(A−(1−�)))⊂M (H; (X;D(A))1=2;2) as
1 − �¿ 1

2 , Lemma 3.5 implies that

A−1ũ(t) = e−tAA−1x +
∫ t

0
e−(t−s)AA−1g̃(s) d ˜̃W (s)

+
∫ t

0
e−(t−s)AA−1f̃(s) ds; a:s:; t ∈ [0; T ]:

Since ũ(t) is an admissible B-valued process the de�nitions of f̃ and g̃ imply that the
system

( ˜̃
; ˜̃F; ˜̃P; { ˜̃Ft}t¿0; { ˜̃W (t)}t¿0; {ũ(t)}t¿0)

is a martingale solution to the problem (4.6). This concludes the proof of Theorem 4.5.

In the main result of this section we replace the boundedness assumption of F by
the dissipativity of the drift −A+ F .

Theorem 4.6. Suppose that a Banach space X; a Hilbert space H; a complete prob-
ability space (
;F;P); the operator A + �I (with some �¿0) and the function
F : [0;∞) × B → B satisfy all Assumptions A:1–A:3 and (H1)–(H4). Then there
exists a martingale solution of 4:1.
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Proof of Theorem 4.6. Without loss of generality we may assume that � = 0. As in
the previous proof we take �¿� such that �+�¡ 1

2 and then choose q¿ 2 such that
1
q ¡�− �. We �x x ∈ B and T ¿ 0. Let Fn : [0;∞) × B→ B be de�ned by

Fn(s; x) =



F(s; x) if |x|B6n;

F
(
s;
n

|x|B x
)

otherwise:

By (4.7) |Fn(s; y)|6a(n), for all s¿0; y ∈ B. In view of Theorem 4.5 there exists a
martingale solution

(
n;Fn;Pn; {Fn; t}t¿0; {Wn(t)}t¿0; { �un(t)}t¿0):

of the following equation:

d �un(t) = [ − A �un(t) + Fn(s; �un(t))]dt + G(s; �un(t)) dW (t);

�un(0) = x: (4.11)

Denote, for t ∈ [0; T ],

yn(t) =
1

�(1 − �)
∫ t

0
(t − s)−�e−(t−s)AG(s; �un(s)) dWn(s); (4.12)

vn = �−�
T yn; (4.13)

zn(t) =
∫ t

0
e−(t−s)AFn(s; �un(s))) ds: (4.14)

Notice that the process vn(t) is an admissible modi�cation of the process given by the
stochastic Itô integral

∫ t
0 e−(t−s)AG( �un(s)) dWn(s). Furthermore, zn(t) = �un(t) − vn(t) −

e−tAx; t ∈ [0; T ]. Let

�n = inf{t¿0: | �un(t)|B¿n}:
As in the proof of Theorem 4.5, because A−�G : [0;∞) × B → M (H; X ) is bounded,
we have

sup
n¿1

En
∫ T

0
|yn(t)|q dt ¡∞:

Therefore, by Lemma 2.4 and (4.14)

sup
n¿1

En sup
06t6T

|vn(t)|qB ¡∞: (4.15)

Moreover, by Corollary 2.8 and Assumption A.1, the family of laws of vn is tight on
C(0; T ;B). Since �un(t) = zn(t) + vn(t) + e−tAx and

zn(t) =
∫ t

0
e−(t−s)AF(s; �un(s)) ds; t6�n; (4.16)

from Lemma 4.2 we infer that

|zn(t)|6
∫ t

0
e−k(t−s)a(|vn(s) + e−sAx|) ds; 06t6�n: (4.17)
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Set C1 := sup06t6T |e−tAx|D(A�)¡∞. Then (4.17) yields

sup
06t6�n

| �un(t)|B6C1 +
1 + e|k|T

|k| sup
06t6T

a(|vn(t)+e−tAx|B) + sup
06t6T

|vn(t)|B: (4.18)

Since the function a is increasing, the RHS of (4.18) is less than or equal to

sup
06t6T

[C1 + C2a(|vn(t)|B + C1) + |vn(t)|B]:

Let R : m 7→ R(m) be the inverse function of r 7→ C1 + C2a(r + C1) + r. Since R is
also increasing (and continuous). Therefore, by the Chebyshev inequality we get

Pn
(

sup
06t6�n∧T

| �un(t)|B¿m
)
6Pn

(
sup

06t6T
|vn(t)|B¿R(m)

)

6
1

R(m)q
En
(

sup
06t6T

|vn(t)|qB
)
:

Recall that{
sup

06t6T
| �un(t)|B¿n

}
= {�n6T}:

Thus, for any n¿m,{
sup

06t6�n∧T
| �un(t)|B¿m

}
=
{

sup
06t6T

| �un(t)|B¿m
}
:

Hence, by taking into account (4.15) we infer that

sup
n¿m

Pn
(

sup
06t6T

| �un(t)|B¿m
)

→ 0 as m→ 0: (4.19)

Since a(r)↗∞ as r↗∞ by Assumption A:3, by taking into account (4.7) and(4.19)
it follows that the laws of the family of processes �un(t), t ∈ [0; T ], are uniformly
bounded on C(0; T ;B). It follows, in view of (4.16) and Corollary 2.8, that the family
of laws of zn is tight on C(0; T ;B). On the other hand, by Corollary 3.8,

�un(t) = e−tAx + zn(t) + �−�
T yn(t); a:s:; t ∈ [0; T ]:

Setting

un(t) = e−tAx + zn(t) + �−�
T yn(t); t ∈ [0; T ];

we infer that the family of laws of un(t); t ∈ [0; T ], is tight on C(0; T ;B). Now we
can complete the proof as we have done at the end of the proof of Theorem 4.5.

4.3. Uniqueness

In this subsection we are working within the framework of conditions (H1)–(H4)
and Assumption A:1. We begin with

Theorem 4.7. Assume that a Banach space X satisfying the conditions (H1); a Hilbert
space H; a probability space (
;F;P) and an operator A+ �I; for some �¿0; satisfy
Assumption A:1 and condition (H1)–(H4).
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Assume that A−�G(t; ·) is a locally Lipschitz map from D(A�) to M (H; X ) uniformly
in t¿0 and that F is a locally Lipschitz map from D(A�) to X uniformly in t¿0.
This means that for each R¿ 0 there exists a constant KR such that for all t¿0 and
all u; v ∈ D(A�) satisfying |u|D(A�); |v|D(A�)6R

||A−�G(t; u) − A−�G(t; v)||M (H;X )6KR|u− v|D(A�); (4.20)

|F(t; u) − F(t; v)|X6KR|u− v|D(A�): (4.21)

Then; for any T ¿ 0; there exists at most one mild solution u(t); t ¡T; to the
problem (4:1).

Remark. The above result is similar to the uniqueness part of Theorem 4.9 from
Brze�zniak (1997). However some technical details make them incomparable and we
have to provide a complete proof of our Theorem 4.7. Nevertheless, our proof follows
the lines of the corresponding proof of Brze�zniak (1997).

Proof of Theorem 4.7. It is su�cient to prove the lemma below.

Lemma 4.8. Under the assumptions of Theorem 4:7; let U be an open subset of
D(A�) on which functions F and A−�G are uniformly Lipschitz continuous in the
sense of (4:20) and (4:21); respectively. Let 
0 ∈ F0 be such P(
0)¿ 0 and

u1(0)|
0 = u2(0)|
0 ∈ U a:s:

Let u1(t); t¿0 and u2(t); t¿0 be two mild solutions to problem (4:1). Let �i be the
�rst exit time of ui(t) from U . Then

�1 = �2 a:s:

and the processes

u1|[0; �1)×
0 ; u2|[0; �2)×
0 (4.22)

are equivalent.

Proof of Lemma 4.8. We may assume that 
0 =
 since we can normalize P on 
0

such that P(
0) = 1. In the same way we can assume that ui(0) ∈ U , i= 1; 2, a.s. Let
�= �1 ∧ �2. Denote u(t) =u1(t)−u2(t); t¿0. Then, with f(t) =F(t; u1(t))−F(t; u2(t))
and g(t) = G(t; u1(t)) − G(t; u2(t)); u(t); t¿0 is a mild solution to the problem

du(t) + Au(t) = f(t) dt + g(t) dW (t);
u(0) = 0:

(4.23)

Since u1(t); u2(t) ∈ U for t ¡ �, we have

||A−�g(t)||M (H; X )6K |u(t)|D(A�); t ¡ � a:s:; (4.24)

||f(t)||X6K |u(t)|D(A�); t ¡ � a:s: (4.25)

Now we encounter a delicate (but a simple) problem. Take �rst �; � as in Assumption
A:1. Then, in particular, � + �¡ 1

2 and A−� ∈ M (H; X ). Then there exist q¿2 and
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¿ 0 such that 06�¡
¡�+1=q¡ 1
2 −�. With this choice applying a stopping time

modi�cation of Theorem 4.1 from Brze�zniak (1997) yields existence of a constant
C¿ 0 such that for any t ∈ [0; T ] and any stopping time � such that �¡� a.s., the
following holds:

E
∫ t∧�

0
|u(s)|qD(A
) ds+ E sup

06s6t∧�
|u(s)|pD(A�) 6CE

∫ t∧�

0
||A−�g(s)||qM (H; X ) ds

+CE
∫ t∧�

0
|f(s)|qX ds:

Thus, by taking into account (4.2), (4.25) and (4.24) we infer that

E sup
06s6t∧�

|u(s)|qD(A�)6CKE
∫ t∧�

0
|u(s)|qD(A�) ds:

Set

�=
{

1 if t ¡�;
0 if t¿�:

Then the following sequence of inequalities holds a.s.:

sup
06s6t∧�

|u(s)|qD(A�) = sup
06s6t

|�(s)u(s)|qD(A�);

∫ t∧�

0
|u(s)|qD(A�) ds6

∫ t

0
||�(s)u(s)||qD(A�) ds;

Therefore

E sup
06s6t

|�(s)u(s)|qD(A�)6C
∫ t

0
E|�(s)u(s)|qD(A�) ds;

and hence the Gronwall Lemma yields that

E|�(t)u(t)|qD(A�) = 0; t¿0;

which implies that u(t) = 0 a.s. on {t ¡�}. Taking a sequence �n of stopping times
such that �n ↗ � a.s. we infer that u(t) = 0 a.s. on {t ¡ �} =
t which proves (4.22).

The proof that �1 = �2 can be then performed in the same way as the corresponding
part of the proof of Theorem 5 from Section VI of Elworthy (1982).

Remark 4.9. For a di�erent approach to the uniqueness question, more analogous to
the �nite-dimensional one as described in Kunita (1990); see Carroll’s (1999) thesis.

Following the scheme of Yamada–Watanabe uniqueness theorem, see the proof of
Theorem 1.1 in Chapter 4 of Ikeda and Watanabe (1981), and using the just proven
uniqueness of mild solutions, we get the following result on uniqueness of martingale
solutions.

Theorem 4.10. Assume that a Banach space X satisfying the conditions (H1); a
Hilbert space H; a probability space (
;F;P) and an operator A + �I; for some
�¿0; satisfy Assumptions A:1–A:3 and conditions (H1)–(H4). Assume that the maps
A−�G and F are locally Lipschitz maps uniformly in t¿0 in the sense of (4:20) and
(4:21). Then for any x ∈ B there exists a unique martingale solution of (4:1).
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4.4. Feller property

If the martingale solution is unique, i.e. when Assumption A:6 is satis�ed, u(t) is
a Markov process, see Da Prato and Zabczyk (1992a, Theorem 9.14). For x ∈ B let
(
;F;Px; {Ft}; u(t); {W (t)}) be the unique martingale solution to (4.1) with u0 = x.
Note that although all the objects depend on x we use the subscript x only in denoting
the probability measure Px and the expectation Ex.

De�ne the transition operator Pt by a standard formula: let ’ ∈ Cb(B), then

Pt’(x) = Ex[’(u(t))]: (4.26)

Theorem 4.11. Assume that a Banach space X satisfying the conditions (H1); a
Hilbert space H; a probability space (
;F;P) and an operator A+�I; for some �¿0;
satisfy Assumptions A:1–A:3 and A:6 and conditions (H1)–(H4). Let for t¿0; Pt be
the transition operator of the process u(t). Then Pt is a family of Feller operators;
i.e. Pt : Cb(B) → Cb(B) and; for any ’ ∈ Cb(B) and x ∈ B;

Pt’(x) → ’(x) as t → 0: (4.27)

Proof of Theorem 4.11. Let x ∈ B and ’ ∈ Cb(B). Let (
;F;Px; {Ft}; u(t); {W (t)})
be the martingale solution to (4.1). Since u(t) is a B-valued admissible process, u(t) →
x as t ↘ 0 Px-a.s. Thus, since ’ is bounded and continuous, (4.27) follows by applying
Lebesgue-dominated convergence theorem.

Let xn → x ∈ B and t ¿ 0. Fix T ¿ t. Let (
n;Fn;Pxn ; {Fn
t }; u(t; xn); {Wn(t)}) be

the martingale solution to (4.1) with the initial condition x replaced by xn. Let �xn be
the law of u(·; xn) on C(0; T ;B).

We will show that the family of measures �xn is tight (on C(0; T ;B) of course). Set
(see also (4.14), for t ∈ [0; T ],

y(t; xn) =
1

�(1 − �)
∫ t

0
(t − s)−�e−(t−s)AG(s; u(s; xn)) dWn(s); (4.28)

v(·; xn) = �−�
T y(·; xn); (4.29)

z(t; xn) =
∫ t

0
e−(t−s)AF(u(s; xn))) ds: (4.30)

Note that it follows from Corollary 3.8 that Pxn a.s.

u(·; xn) = e−·Ax + �−1
T F(s; u(·; xn)) + �−�

T y(·; xn): (4.31)

As in the proof of Theorem 4.5 there is an M ¿ 0 such that for all n ∈ N
E|y(·; xn)|qLq(0;T ; X )6M;

E|F(u(·; xn))|qLq(0;T ; X )6M:

Thus, as e−·Axn → e−·Ax in C(0; T ;B), and �−�
T and �−1

T are compact operators from
Lq(0; T ;X ) to C(0; T ;B), our claim follows.

Let � be any cluster point of �xn . By using the Skorohod imbedding theorem, com-
pare with the end of the proof of Theorem 4.5, we may show that there is a martingale
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solution (
̃; F̃; P̃x; {F̃t}; ũ(t); {W̃ t}) to the problem (4.1) with initial condition x such
that the law on C(0; T ;B) of this solution is equal to �. By uniqueness of martingale
solutions (i.e. by Assumption A:6), � = �x. Hence �x is a weak limit of some subse-
quence of the measures �xn . A standard subsequence–subsubsequence argument shows
that in fact 〈�xn ; ’〉 → 〈�x; ’〉. In other words, Pt’(xn) → Pt’(x). Hence Pt is a Feller
semigroup.

5. Invariant measures

Let us point out that it is exactly this section where we make use of Assumption
A:4. Furthermore, in this section, contrary to the previous one, we assume that the
operator A itself, not simply A+ �I for some �¿0, satis�es conditions (H2) and (H3)
and Assumptions A:1–A:3.

De�nition 5.1. Suppose that (Pt)t¿0 is a Feller semigroup on a Polish space B. A
Borel probability measure � on B is called an invariant measure for (Pt)t¿0 i�

P∗
t � = �; t¿0;

where (P∗
t �)(�) =

∫
B Pt(x; �)�(dx) for � ∈ B(B) and the Pt(x; ·) is the transition

probability, Pt(x; �) = Pt(1�)(x); x ∈ B.

Theorem 5.2. Assume that a Banach space X satisfying the conditions (H1); a Hilbert
space H; a probability space (
;F;P) and an operator A satisfy Assumptions A:1–
A:6 and conditions (H1)–(H4). Then there exists an invariant measure � for the
semigroup Pt; i.e. a probability measure � on B such that �Pt = �.

Proof of Theorem 5.2. Let x ∈ B be a �xed point. Let (
;F;Px; {Ft}; u(t); {W (t)})
be the martingale solution to (4.1). We need

Proposition 5.3. There exists x ∈ B such that the family of laws of u(t); t¿1 is tight
on B.

Since the process is Feller on B, invoking the above Proposition 5.3 by standard
Krylov–Bogoliubov technique there exists an invariant measure � on B for the semi-
group Pt . For details we refer to Da Prato and Zabczyk (1992a), Proposition 11.2.

Proof of Proposition 5.3. Take x = 0 and de�ne

v(t) =
∫ t

0
e−(t−s)AG(s; u(s)) dW (s); (5.1)

y(t) =
∫ t

0
(t − s)−�e−(t−s)AG(s; u(s)) dW (s); (5.2)

z(t) = u(t) − v(t) =
∫ t

0
e−(t−s)AF(s; u(s)) ds: (5.3)

Our �rst tool will be the following obvious lemma.
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Lemma 5.4. Assume that B is a complete topological vector space and (
;F;P) a
probability space. Let I be any nonempty index set. Given are two families �i; i ∈ I
and �i; i ∈ I of B-valued random variables such that the laws of each family are
tight on B (separately); i.e. for any �¿ there exist compact sets K and L in B such
that

P{�i 6∈ K}¡�; i ∈ I; (5.4)

P{�i 6∈ L}¡�; i ∈ I; (5.5)

Set �i := �i + �i; i ∈ I . Then the family of laws of �i; i ∈ I; is tight on B.

In order to prove Proposition 5.3 it su�ces to show the following two lemmata.

Lemma 5.5. The family of laws of v(t); t¿1 is tight on B.

Lemma 5.6. The family of laws of z(t); t¿1 is tight on B.

Proof of Lemma 5.5. Let us �rst put together some basic facts about tightness of laws
of families of random variables. Assume that B and Y are complete topological vector
spaces and (
;F;P) is a probability space. Let I be any nonempty index set. Given is
a compact (not necessarily linear) map � : B→ Y , i.e. for any bounded set G⊂B the
image �(G) is relatively compact in Y . Given is a uniformly bounded in probability
family �i; i ∈ I , of B-valued random variables, i.e. for any �¿ 0 there exist a bounded
set G⊂B such that

P{�i 6∈ G}¡�; i ∈ I: (5.6)

Then the family of laws of �i :=�(�i); i ∈ I is tight on Y .
Secondly, if B is a Banach space and for some q¿1 supi∈IE|�i|q ¡∞, then the

family �i; i ∈ I , is uniformly bounded in probability. This follows from the Chebyshev
inequality P(|�i|¿R)6R−qE|�i|q.

Let � ∈ (0; 1
2 ) be as in Assumption A.1. Take �¿� such that �+�¡ 1

2 and �nally
choose q such that 1=q¡�− �. Note that necessarily q¿ 2. Set, for t¿0,

ut(s) := u(t + s); s ∈ [0; 1]; (5.7)

yt(s) :=
1

�(1 − �)
∫ s

0
(s− r)−�e−(s−r)AG(r; ut(r)) dW (r); s ∈ [0; 1]: (5.8)

Then, for t¿0, a.s.

v(t + 1) = e−Av(t) + K�(yt); (5.9)

where

K�(f) := (�−�
1 f)(1); f ∈ Lq(0; 1;X ): (5.10)

Since, due to Assumption A.1, e−A is a compact operator from X into B and, due to
Corollary 2.8 and the fact that �+ 1=q¡�; K� is a compact operator from Lq(0; 1;X )
into B, by virtue of Lemma 5.4 and the discussion above it su�ces to show that

sup
t¿0

E|v(t)|qX ¡∞; (5.11)
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sup
t¿0

E
∫ 1

0
|yt(s)|qX ds¡∞: (5.12)

Proof of (5.11). This proof is similar to the proof of Lemma 3.7. Fix t ¿ 0. From
Burkholder inequality

E|v(t)|qX6CqE
(∫ t

0
||e−(t−s)AG(s; u(s))||2M (H;X ) ds

)q=2
:

Using condition (3.36) in view of Assumptions A.5 and A.2 we get

|e−�AG(s; u(s))|M (H;X ) 6 ||A�e−�A||L(X )||A−�G(s; u(s))||M (H;X )

6C�−�e−a�

for some generic (independent of �¿ 0) constant C¿ 0. Thus

E|v(t)|qX 6C
(∫ t

0
(t − s)−2�e−2a(t−s) ds

)q=2

6C
(∫ ∞

0
s−2�e−2as ds

)q=2
:

Proof of (5.12). This inequality follows from Lemma 3.7 by noting that due to
Assumption A.2

sup
t¿0

E
∫ 1

0
||A−�G(t; ut)||qM (H;X )¡∞:

The proof of Lemma 5.5 is therefore complete.

Proof of Lemma 5.6. From Lemma 4.2

|z(t)|B6
∫ t

0
e−k(t−s)a(|v(s)|B)ds; t¿0:

Hence

E|z(t)|B6
∫ t

0
e−k(t−s)Ea(|v(s)|B) ds; t¿0; (5.13)

and so

E|z(t)|B61
k

sup
s¿0

Ea(|v(s)|B); t¿0: (5.14)

On the other hand, from (5.11), in view of Assumptions A.4 and A.5, we infer that

sup
t¿0

Ea(|v(t)|B)¡∞; (5.15)

from which and (5.14) it follows that

sup
t¿0

E|z(t)|B ¡∞: (5.16)

Analogously as in Da Prato and Zabczyk (1992) we represent

z(t + 1) = e−Az(t) + K�(F(ut));

where K� and yt were de�ned in (5.10) and (5.7), respectively. Since e−A is a compact
operator in B it follows from (5.16) that the family of laws of {e−Az(t)}; t¿1 is
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tight on B. In virtue of Lemma 5.4, Assumption A.1 and Corollary 2.8, the proof of
Lemma 5.6 will be completed as soon as we show the following.

Lemma 5.7. The family of laws of F(ut); t¿0 is uniformly bounded in probability
on Lq(0; 1;B).

Proof of Lemma 5.7. Since F(x)6a(|x|B) by (4.7) it is su�cient to show that the
family of laws of a(ut(·)); t¿0 is uniformly bounded in probability on Lq(0; 1;B).
Since, in view of Assumption A.4, a(|ut(s)|B)6k0(1 + |ut(s)|NB ) for some k0; N ¿ 0,
it su�ces to show that laws of ut ; t¿0, are uniformly bounded in probability on
LqN (0; 1;B). The last statement follows from (5.11) and (5.16) by means of Chebyshev
inequality. Indeed, if t¿0 then for some C¿ 0 and all t¿0

E|ut |qNLqN (0;1;B) = E
∫ t+1

t
|u(s+ t)|qNB ds

= E
∫ t+1

t
|v(t + s) + z(t + s)|qNB ds

6 2qN−1
(

sup
t6r6+1

E|v(r)|qNB + sup
t6r6t+1

E|z(r)|qNB
)

6C:

This concludes the proof of Lemma 5.7 which completes the proof of Proposition 5.3
and the same the proof of Theorem 5.2 is complete.

6. Examples and applications

6.1. Reaction–di�usion equation

Let O be a bounded open interval in Rd; d¿1. Let H=H�;2(O) for �xed �¿d=2−1.
Let

A =
d∑

i; j=1

@
@xi

(
aij(x)

@
@xj

)
+ a0(x)

be a second-order di�erential uniformly elliptic operator, i.e. such that for some C¿ 0
and all x ∈ O; � ∈ Rd

d∑
i; j=1

aij(x)�i�j¿C|�|2:

If �= 0; d= 1 and A=� we are in the case studied in Da Prato and Pardoux (1995).
Assume that the functions aij and a0 are of C2 class on �O. Assume that f and g are
separately continuous real valued functions de�ned on [0;∞) ×O×R. Assume that g
is a bounded function. Consider the following condition

− K(1+ |u|q1{u¿0})6f(t; x; u)6K(1+ |u|q1{u60}); t¿0; x∈O; u ∈ R; (6.1)

where K ¿ 0. It is easy to prove that if f satis�es the condition (6.1) then f(t; x;
v+ z) sgn v6K(1 + |z|q) for all v; z ∈ R and t¿0; x ∈ O.
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Let �(t; x) be a space-time white noise on D with Cameron–Martin space equal to
H . We are interested in solutions to the following initial value problem:

du(t; x) + Au(t; x) dt = f(t; x; u(t; x)) dt + g(t; x; u(t; x)) �(t; x);
u(t; ·) = 0 on @O;
u(0; x) = u0(x); x ∈ O:

(6.2)

which will be interpreted as a solution to the problem (4.1) with W (t) being an
H -cylindrical Wiener process on some complete probability space in the following
framework.

De�ne B=C0(O); X=Lp(O); D(A)=H 2;p
0 (O) with Au=Au for u ∈ D(A). Obviously,

X satis�es the conditions (H1) and the conditions (H2) and (H3) hold for �0 + A for
some �0¿0, see Seeley (1971). Moreover, Assumptions A.1 and A.3 are satis�ed
as well. Indeed, by Lemma 3.12 and Remark 3.13 there exists � ∈ (0; 1

2 ) such that
A−� ∈ M (H; X ). Moreover, D(As) =H 2;p

0 (O) for d=2p¡s¡ 1
2 , and thus by choosing

p large enough (to be precise satisfying d=2p+�¡ 1
2 ) we see that D(As) ,→ B and so

the �rst part of Assumption A.1 is satis�ed. The second part of the latter is satis�ed
due to Theorem 5 in Stewart (1974).

It follows from the maximum principle and Stewart (1974) that the operator −A on B
is m-dissipative, if k := infa0(x)¿0. Therefore, Assumption A.3 is satis�ed. Moreover,
if infa0(x)¿ 0 then also Assumptions A.4 and A.5 are satis�ed.

In the framework described above the results from Sections 4 and 5 hold true. In
particular we have

Theorem 6.1. In the framework described above and under the assumptions listed
therein there exists a martingale solution to the problem (6:2). Moreover; if f and
g are locally Lipschitz continuous functions with respect to the third variable (i.e. u)
then the martingale solution is unique. Finally; if also inf a0(x)¿ 0; then there exists
an invariant measure for the problem (6:2).

Proof. First of all we need to verify Assumption A.2. Let G be the Nemytski map
associated with function g. Since �¿d=2− 1 one can �nd �¡ 1=2 such that A−� is a

-radonifying operator from H into X . Hence by involving a result of Neidhardt (see
Brze�zniak, 1997, Theorem 2.1), it is su�cient to show that G is bounded, continuous
with respect to u and strongly measurable with respect to t as a map from [0;∞)× B
into L(H), what is obviously satis�ed.

Assumption A.3 is a consequence of the above and following preparatory result a
proof of which in the case when f depends only on u, the third variable can be found
in Da Prato and Zabczyk (1992b, pp. 193–194).

Proposition 6.2. In the framework described above; assume that f satis�es the con-
dition (6:1) and let F(t; ·) be the Nemytski operators associated with f; i.e.

F(t; u)(x) = f(t; x; u(x)); u ∈ B; x ∈ O; t¿0:

Then for all t¿0 and any u; v ∈ B and any z ∈ u∗ = @|u| the following holds:
〈F(t; u+ v); z〉6K(1 + |v|qB): (6.3)
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Let us also note that obviously F is a continuous map from B into itself.

Remarks. (i) The question of existence of invariant measures in the case A symmetric
and g(x; u) = 1 with some di�erent assumptions on f was studied in Manthey and
Maslowski (1992).

(ii) Any function f of the form f(t; u)=−u2n+1+
∑2n

i=0 aj(t)u
j with aj being contin-

uous real-valued functions satis�es the condition (6.1) and the appropriate assumptions
of Theorem 6.1. As a function g we take the following (see Tribe, 1995):

g(u) =
{√

u(1 − u) if u ∈ [0; 1];
0 otherwise:

(6.4)

6.2. Equations of QFT type

Assume that O⊂Rd is a bounded domain with smooth boundary and let X =Lp(O)
with p¿2 and A=

√
−�D + m2, where m¿0 and −�D is the Laplace operator with

Dirichlet boundary conditions. Also let B=C0(D). The Neumann boundary conditions
can be treated without any signi�cant di�erence. We have D(A) =H 1;p

0 (O). It follows
from Seeley (1971) that the operator A satis�es the conditions (H2) and (H3). As in
many examples earlier in this paper the condition (H1) is satis�ed as well. Let H =
H�;2(O) with �¿ 1

2 (d− 1) and let W (t) be the H -cylindrical Wiener process on some
complete probability space. It follows from Remark 3.13 that A−� is a 
-radonifying
operator from H into X if �+�¿d=2. Suppose that p is chosen large enough so that

d
2
− �¡ 1

2
− d
p
:

Note that under these assumptions we can �nd �; �¿0 such that � + �¡ 1
2 ; A

−� ∈
M (H ;X ) and D(A�) ,→ B. Hence Assumption A.1 is satis�ed.

Assume that f and g are separately continuous real functions de�ned on [0;∞) ×
O×R which are locally bounded in time, i.e. for each T ¿ 0 there is C¿ 0 such that

|f(t; x; u)|; |g(t; x; u)|6C; if x ∈ O; u ∈ R; 06t6T:

We consider the following SPDE:

du+
√
−�D + m2u dt = f(t; x; u) dt + g(t; x; u) dW (t); t ¿ 0;

u(0) = u0;
(6.5)

where u0 ∈ B. This equation is similar to the equation of free �eld found by Hida and
Streit (1977); see also Rozovskij (1983) and Brze�zniak (1995).

Theorem 4.5 is applicable and so we have

Theorem 6.3. For any u0 ∈ C0(D) there exists a martingale solution of (6:5).
Moreover; if the functions f and g are locally Lipschitz continuous with respect
to u then the solution is unique.
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6.3. Higher-order equations

This section is devoted to presentation of general applications of the results from
Sections 4 and 5. These results are generalizations of the two examples from the
previous subsections to more systems of elliptic operators with more general boundary
conditions. For the sake of completeness of the exposition, we present the precise
results below.

Let O be a bounded open domain in Rd with a boundary of class C∞. We make
the following assumptions

(i) The di�erential operator −A
− A=

∑
|�|62k

a�(x)D� (6.6)

is properly elliptic, see Triebel (1978, 4.9.1). The coe�cients a� are C∞ functions
on the closure �O of O.

(ii) A system {Cj}kj=1 of di�erential operators on @O is given,

Cj =
∑

|�|6mj
cj;�(x)D�; (6.7)

with the coe�cients cj;� being C∞ functions on @O. The orders mj of the operators
Cj are ordered in the following way:

06m1¡m2¡ · · ·¡mk:

The system {Cj} is normal, i.e. mk ¡ 2k and∑
|�|=mj

cj;�(x)��x 6= 0; x ∈ D; j = 1; : : : ; k; (6.8)

where �x is the unit outer normal vector to @O at x ∈ @O.
(iii)

(−1)k
a(x; �)
|a(x; �)| 6= −1; x ∈ �O; � ∈ Rn \ {0}; (6.9)

where a(x; �) =
∑

|�|=2k a�(x)�
�.

(iv) If cj(x; �) =
∑

|�|=mj cj;�(x)�
� then for all x ∈ @O; � ∈ Tx(@O); t ∈ (−∞; 0] the

polynomials

{�→ cj(x; �+ ��x)}; j = 1; : : : ; k

are linearly independent modulo polynomial {�→∏k
j=1(�−�+

j (t)}. Here �+
j (t) are

the roots with positive imaginary part of the polynomial C 3 �→ a(x; �+ ��x)− t.
The di�erential operator A gives rise to a linear unbounded operator Ap in a Banach
space X = Lp(O) with a domain D(Ap) de�ned by

D(Ap) = H 2k;p
{Cj}(O) =

{
u ∈ H 2k;p(O): Cju|@O = 0 for mj ¡ 2k − 1

p

}
: (6.10)
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It has been shown by Seeley in Seeley (1971), see also Triebel (1978, 4.9.1), that for
any 
¿ 0 there is C = C
¿ 0 such that

||Aitp||6Ce
|t|; t ∈ R;
and therefore the operator Ap satis�es the condition (H3) from Section 2, see also
Dore and Venni (1987).

When there is no danger of ambiguity, the operator Ap will be denoted simply as A.
In order to be able to apply our results from Sections 4 and 5 we need to determine
the spaces of the fractional powers of the operator A. From Triebel (1978, Theorem
4.3.3) we have

D(A�) = H 2k�
p;2;{Cj}(O); (6.11)

where H 2k�
p;2;{Cj}(O) = {u ∈ H 2k�

p;2 (D): Cju|@D = 0 for mj ¡ 2k�− 1=p}.

Example 6.1. In this example O is as before but we take k = 1, i.e. the operator A is
of second order. We assume that it is given in the following divergence form:

(Au)(x) = −
n∑

i; j=1

@
@xi

(
aij(x)

@u(x)
@xj

)
+

n∑
i=1

di(x)
@u(x)
@xi

+ e(x)u(x); x ∈ O;

(6.12)

with all coe�cients of C∞ class on the closure �O of a bounded domain C∞ domain O

and the matrix [aij(x)] not necessarily symmetric. The boundary operator C is given by

(Cu)(x) = �
@u
@�A

(x) + �(x)u(x); x ∈ @O; (6.13)

again with C∞ coe�cients, where the �rst term is the “co-normal” derivative with
respect to A,

@u
@�A

(x) =
∑
i; j

aij(x)�jx
@u
@xi

(x);

where �x = (�1
x ; : : : ; �

n
x) is the unit outer normal vector to @D at point x ∈ @O.

We take X = Lp(O); D(A) = H 2;p
{C}(O) and the operator A with domain D(A) acting

in X via formula (6.12).

Now we present the main result of this section.

Theorem 6.4. Assume that O is a bounded domain in Rd with boundary @O of C∞

class. Let A be a di�erential operator satisfying the properties (i)–(iv) above. Also let
A=Ap denote a linear operator in X =Lp(O) with domain as in (6:10); where p¿2.
Let H=H�;2(O) with d=2¿�¿d=2−k. Assume that W (t); t¿0; is an H -cylindrical
Wiener process and w1(t); : : : ; wn(t); t¿0; be an independent n-dimensional Wiener
process on the same complete probability space. Suppose that � is a positive number
such that d=2k − �=2¡ 1=2 − �. Suppose that D0 is a di�erential operator on O of
order d0¡ 2k. Finally let us assume that B1; : : : ; Bn are linear di�erential operators
of orders ¡k;

Bj =
∑
|�|¡k

bj;�(x)D�; j = 1; : : : ; n; (6.14)

with the coe�cients bj;� of C∞ class.
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Assume that f and g are separately continuous real functions de�ned on [0;∞)×
O×R which are locally bounded in time; i.e. for each T ¿ 0 there is C¿ 0 such that

|f(t; x; u)|; |g(t; x; u)|6C if x ∈ O; u ∈ R; 06t6T:

Suppose �nally that u0 ∈ B=D(A�). Then the problem (6:15) below has a martingale
solution

du(t; x) + Au(t; x) dt +
d∑
j=1

Bju(t; x) dwj(t)

=D0f(t; x; u)dt + g(t; x; u) dW (t); t ¿ 0; x ∈ O;

u(0; x) = u0(x) for x ∈ O;

Cju(t; x) = 0 for x ∈ @O; t ¿ 0:

(6.15)

If the functions f and g are locally Lipschitz continuous with respect to the variable
u; the solution is unique.

Proof. By the assumption we can �nd a positive number � such that 1=2 − �¿�¿
(1=k)(d=4− �=2). With B=D(A�) the �rst of the last two inequalities implies the �rst
part of Assumption A.1. The second one implies that k� + �=2¿d=4 which in view
of Remark 3.13 implies that A−� ∈ M (H; X ). The result follows from Theorem 4.5 by
standard procedure. We only have to choose � = d0=2k.

Remark 6.5. Note that the condition d=2¿�¿d=2 − k implies that one can �nd a
positive number � such that d=2k − �=2¡ 1=2 − �.

We close this paper with a generalization of result from Funaki (1989) (but in a
bounded domain) on a stochastic Ginzburg–Landau equation.

Example 6.2. Let O=(0; 1) and A=Ap=�2−
� for some 
¿ 0 with X =Lp(O) and
D(A) = {u ∈ H 4;p(O): u(0) = u(1); u′(0) = u′(1)}. Let H = H 1; 2(O). The norm on H
is chosen in such a way the the derivative ∇ : L2(O) → H is a unitary isomorphism.
Suppose that V : R→ R is a C1 function with a bounded derivative and that g : R→ R
is a C1 function. Consider the following problem, see Eq. (5.1) in Funaki (1989):

du(t; x) + (�2 − 
�)u(t; x) dt = ∇(V ′(u(t; x))) dt + g(u(t; x)) dW (t); (6.16)

u(t; 0) = u(t; 1); u′(t; 0) = u′(t; 1); t ¿ 0; (6.17)

u(0) = u0: (6.18)

It is assumed in Funaki (1989) that V ∈ C3
b(R) and g =

√
2 which implied that

his problem had all coe�cients globally Lipschitz. Obviously, this is not our case.
Existence of martingale solutions to problem (6.16)–(6.18) follows from Theorem
6.4. Indeed, � = −1 is larger than d=2 − k = 1=2 − 2 and the order of the operator
D0 = � is less that 2k = 4. If the functions g and V ′ are also locally Lipschitz, then
the martingale solution is unique.
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7. For further reading

The following references are also of interest to the reader: Agmon et al., 1959;
Agmon et al., 1964; Bergh and L�ofstr�om, 1976; Henry, 1981; Pisier, 1976; Stewart,
1980; Walsh, 1986
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