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Using so-called associated operations, we show that every comm-
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nilpotent. Starting with suitable elements of an anisotropic plane in
the vector space of 2 × 2 matrices over the field of prime order p,
we construct a family of automorphic loops of order p3 with trivial
center.
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1. Introduction

A classical result of group theory is that p-groups are (centrally) nilpotent. The analogous result
does not hold for loops.

The first difficulty is with the concept of a p-loop. For a prime p, a finite group has order a power
of p if and only if each of its elements has order a power of p, so p-groups can be defined in two
equivalent ways. Not so for loops, where the order of an element might not be well defined, and even
if it is, the two natural p-loop concepts might not be equivalent.

However, there exist several varieties of loops where the analogy with group theory is complete.
For instance, a Moufang loop has order a power of p if and only if each of its elements has order a
power of p, and, moreover, every Moufang p-loop is nilpotent [9,10].
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We showed in [12, Thm. 7.1] that a finite commutative automorphic loop has order a power of p
if and only if each of its elements has order a power of p. The same is true for automorphic loops,
by [15], provided that p is odd; the case p = 2 remains open.

In this paper we study nilpotency in automorphic loops of prime power order. We prove:

Theorem 1.1. Let p be an odd prime and let Q be a finite commutative automorphic p-loop. Then Q is centrally
nilpotent.

Since there is a (unique) commutative automorphic loop of order 23 with trivial center, cf. [11],
Theorem 1.1 is best possible in the variety of commutative automorphic loops. (The situation for p = 2
is indeed complicated in commutative automorphic loops. By [11, Prop. 6.1], if a nonassociative finite
simple commutative automorphic loop exists, it has exponent two. We now know that no nonasso-
ciative finite simple commutative automorphic loop of order less than 212 exists [13].)

In fact, Theorem 1.1 is best possible even in the variety of automorphic loops, because for every
prime p we construct here a family of automorphic loops of order p3 with trivial center.

1.1. Background

A loop (Q , ·) is a set Q with a binary operation · such that (i) for each x ∈ Q , the left translation
Lx : Q → Q ; y �→ yLx = xy and the right translation Rx : Q → Q ; y �→ yRx = yx are bijections, and
(ii) there exists 1 ∈ Q satisfying 1 · x = x · 1 = x for all x ∈ Q .

The left and right translations generate the multiplication group Mlt Q = 〈Lx, Rx | x ∈ Q 〉. The inner
mapping group Inn Q = (Mlt Q )1 is the stabilizer of 1 ∈ Q . Standard references for the theory of loops
are [2,3,19].

A loop Q is automorphic (or sometimes just an A-loop) if every inner mapping of Q is an auto-
morphism of Q , that is, Inn Q � Aut Q .

The study of automorphic loops was initiated by Bruck and Paige [4]. They obtained many basic
results, not the least of which is that automorphic loops are power-associative, that is, for all x and
all integers m,n, xmxn = xm+n . In power-associative loops, the order of an element may be defined
unambiguously.

For commutative automorphic loops, there now exists a detailed structure theory [11], as well as
constructions and small order classification results [12].

Informally, the center Z(Q ) of a loop Q is the set of all elements of Q which commute and
associate with all other elements. It can be characterized as Z(Q ) = Fix(Inn Q ), the set of fixed points
of the inner mapping group. (See Section 2 for the more traditional definition.)

The center is a normal subloop of Q , that is, Z(Q )ϕ = Z(Q ) for every ϕ ∈ Inn Q . Define
Z0(Q ) = {1}, and Zi+1(Q ), i � 0, as the preimage of Z(Q /Zi(Q )) under the canonical projection.
This defines the upper central series

1 � Z1(Q ) � Z2(Q ) � · · · � Zn(Q ) � · · · � Q

of Q . If for some n we have Zn−1(Q ) < Zn(Q ) = Q then Q is said to be (centrally) nilpotent of class n.

1.2. Summary

The proof of our main result, Theorem 1.1, is based on a construction from [11]. On each com-
mutative automorphic loop (Q , ·) which is uniquely 2-divisible (i.e., the squaring map x �→ x · x is a
permutation), there exists a second loop operation ◦ such that (Q ,◦) is a Bruck loop (see Section 3),
and such that powers of elements in (Q , ·) coincide with those in (Q ,◦).

Glauberman [8] showed that for each odd prime p a finite Bruck p-loop is centrally nilpotent.
Theorem 1.1 will therefore follow immediately from this and from the following result:

Theorem 1.2. Let (Q , ·) be a uniquely 2-divisible commutative automorphic loop with associated Bruck loop
(Q ,◦). Then Zn(Q ,◦) = Zn(Q , ·) for every n � 0.
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After reviewing preliminary results in Section 2, we discuss the associated Bruck loop in Section 3
and prove Theorem 1.2 in Section 4.

In Section 5, we use elements of anisotropic planes in the vector space of 2 × 2 matrices over
GF(p) to obtain automorphic loops of order p3 with trivial center. We obtain one such loop for p = 2
(this turns out to be the unique commutative automorphic loop of order 23 with trivial center), two
such loops for p = 3, three such loops for p � 5, and at least one (conjecturally, three) such loop for
every prime p � 7.

Finally, we pose open problems in Section 6.

2. Preliminaries

In a loop (Q , ·), there are various subsets of interest:

• the left nucleus Nλ(Q ) = {a ∈ Q | ax · y = a · xy, ∀x, y ∈ Q },
• the middle nucleus Nμ(Q ) = {a ∈ Q | xa · y = x · ay, ∀x, y ∈ Q },
• the right nucleus Nρ(Q ) = {a ∈ Q | xy · a = x · ya, ∀x, y ∈ Q },
• the nucleus N(Q ) = Nλ(Q ) ∩ Nμ(Q ) ∩ Nρ(Q ),

• the commutant C(Q ) = {a ∈ Q | ax = xa, ∀x ∈ Q },
• the center Z(Q ) = N(Q ) ∩ C(Q ).

The commutant is not necessarily a subloop, but the nuclei are.

Proposition 2.1. (See [4].) In an automorphic loop (Q , ·), Nλ(Q ) = Nρ(Q ) � Nμ(Q ). In a commutative
automorphic loop (Q , ·), Z(Q ) = Nλ(Q ).

We will also need the following (well known) characterization of C(Q ) ∩ Nρ(Q ):

Lemma 2.2. Let (Q , ·) be a loop. Then a ∈ C(Q ) ∩ Nρ(Q ) if and only if La Lx = LxLa for all x ∈ Q .

Proof. If a ∈ C(Q ) ∩ Nρ(Q ), then for all x, y ∈ Q , a · xy = xy · a = x · ya = x · ay, that is, La Lx = LxLa .
Conversely, if La Lx = LxLa holds, then applying both sides to 1 gives xa = ax, i.e., a ∈ C(Q ), and then
xy · a = a · xy = x · ay = x · ya, i.e., a ∈ Nρ(Q ). �

The inner mapping group Inn Q of a loop Q has a standard set of generators

Lx,y = LxL y L−1
yx , Rx,y = Rx R y R−1

xy , Tx = RxL−1
x ,

for x, y ∈ Q . The property of being an automorphic loop can therefore be expressed equationally by
demanding that the permutations Lx,y , Rx,y , Tx are homomorphisms. In particular, if Q is a commu-
tative loop then Q is automorphic if and only if

(uv)Lx,y = uLx,y · vLx,y

for every x, y, u, v .
We can conclude that (commutative) automorphic loops form a variety in the sense of universal

algebra, and are therefore closed under subloops, products, and homomorphic images.
We will generally compute with translations whenever possible, but it will sometimes be conve-

nient to work directly with the loop operations. Besides the loop multiplication, we also have the left
division operation \ : Q × Q → Q which satisfies

x\(xy) = x(x\y) = y.



P. Jedlička et al. / Journal of Algebra 350 (2012) 64–76 67
The division permutations Dx : Q → Q defined by yDx = y\x are also quite useful, as is the inversion
permutation J : Q → Q defined by x J = xD1 = x−1 in any power-associative loop.

If Q is a commutative automorphic loop then for all x, y ∈ Q we have

xL y,x = x, (2.1)

L y,xLx−1 = Lx−1 L y,x, (2.2)

yL y,x = (
(xy)\x

)−1
, (2.3)

Lx−1,y−1 = Lx,y, (2.4)

Dx2 = Dx J Dx, (2.5)

where the first two equalities follow from [11, Lem. 2.3], (2.3) from [11, Lem. 2.5], (2.4) is an imme-
diate consequence of [11, Lem. 2.7], and (2.5) is [11, Lem. 2.8]. In addition, commutative automorphic
loops satisfy the automorphic inverse property

(xy)−1 = x−1 y−1 and (x\y)−1 = x−1\y−1, (2.6)

by [11, Lem. 2.6].
Finally, as in [11], in a commutative automorphic loop (Q , ·), it will be convenient to introduce

the permutations

P x = LxL−1
x−1 = L−1

x−1 Lx,

where the second equality follows from [11, Lem. 2.3].

Lemma 2.3. For all x, y in a commutative automorphic loop (Q , ·)
(
x−1)P xy = xy2, (2.7)

x · xP y = (xy)2. (2.8)

Proof. Eq. (2.7) is from [11, Lem. 3.2]. Replacing x with x−1 and y with xy in (2.7) yields xPx−1·xy =
x−1(xy)2 and xPx−1·xy = xLx,x−1 Px−1·xy = xLx,x−1 P yLx,x−1 . Now, for every automorphism ϕ of Q we

have xϕP yϕ = (yϕ)−1\(yϕxϕ) = (y−1\(yx))ϕ = xP yϕ . Thus x−1(xy)2 = xLx,x−1 P yLx,x−1 = xP y Lx,x−1 .

Canceling x−1 on both sides, we obtain (2.8). �
3. The associated Bruck loop

A loop (Q ,◦) is said to be a (left) Bol loop if it satisfies the identity

(
x ◦ (y ◦ x)

) ◦ z = x ◦ (
y ◦ (x ◦ z)

)
. (3.1)

A Bol loop is a Bruck loop if it also satisfies the automorphic inverse property (x ◦ y)−1 = x−1 ◦ y−1.
(Bruck loops are also known as K -loops or gyrocommutative gyrogroups.)

The following construction is the reason for considering Bruck loops in this paper. Let (Q , ·) be a
uniquely 2-divisible commutative automorphic loop. Define a new operation ◦ on Q by

x ◦ y = [
x−1∖(

xy2)]1/2 = [(
y2)P x

]1/2
.

By [11, Lem. 3.5], (Q ,◦) is a Bruck loop, and powers in (Q ,◦) coincide with powers in (Q , ·).
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Since we will work with translations in both (Q , ·) and (Q ,◦), we will denote left translations in
(Q ,◦) by L◦

x . For instance, we can express the fact that every Bol loop (Q ,◦) is left power alternative
by

(
L◦

x

)n = L◦
xn (3.2)

for all integers n.

Proposition 3.1. (See [14, Thm. 5.10].) Let (Q ,◦) be a Bol loop. Then Nλ(Q ,◦) = Nμ(Q ,◦). If, in addition,
(Q ,◦) is a Bruck loop, then Nλ(Q ,◦) = Z(Q ,◦).

In the uniquely 2-divisible case, we can say more about the center.

Lemma 3.2. Let (Q ,◦) be a uniquely 2-divisible Bol loop. Then Z(Q ,◦) = C(Q ,◦) ∩ Nρ(Q ,◦).

Proof. One inclusion is obvious. For the other, suppose a ∈ C(Q ,◦) ∩ Nρ(Q ,◦). Then for all x, y ∈ Q ,

(
x2 ◦ a

) ◦ y
(3.2)= (

x ◦ (x ◦ a)
) ◦ y = (

x ◦ (a ◦ x)
) ◦ y

(3.1)= x ◦ (
a ◦ (x ◦ y)

) = x ◦ (
x ◦ (a ◦ y)

)
(3.2)= x2 ◦ (a ◦ y),

where we used a ∈ C(Q ,◦) in the second equality and Lemma 2.2 in the fourth. Since squaring
is a permutation, we may replace x2 with x to get (x ◦ a) ◦ y = x ◦ (a ◦ y) for all x, y ∈ Q . Thus
a ∈ Nμ(Q ,◦) = Nλ(Q ,◦) (Proposition 3.1), and so a ∈ Z(Q ,◦). �
Lemma 3.3. Let (Q , ·) be a uniquely 2-divisible commutative automorphic loop with associated Bruck loop
(Q ,◦). Then a ∈ Z(Q ,◦) if and only if, for all x ∈ Q ,

Pa P x = P x Pa. (3.3)

Proof. By Lemmas 2.2 and 3.2, a ∈ Z(Q ,◦) if and only if the identity a ◦ (x ◦ y) = x ◦ (a ◦ y) holds
for all x, y ∈ Q . This can be written as [(y2)Px Pa]1/2 = [(y2)Pa Px]1/2. Squaring both sides and using
unique 2-divisibility to replace y2 with y, we have (y)Px Pa = (y)Pa Px for all x, y ∈ Q . �
4. Proofs of the main results

Throughout this section, let (Q , ·) be a uniquely 2-divisible, commutative automorphic loop with
associated Bruck loop (Q ,◦).

Lemma 4.1. If a ∈ Z(Q ,◦), then for all x ∈ Q ,

xLa\x,a = xLa\x−1,a. (4.1)

Proof. First,

x−2 = x−2L−1
a−1 La−1 = a−1 Dx−2 La−1

(2.6)= aDx2 J La−1
(2.5)= aDx J Dx J La−1

(2.6)= aDx Dx−1 La−1 = (
x−1)L−1

a\xLa−1 .
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Thus we compute

(
x−2)La\x,a = (

x−1)L−1
a\xLa−1 La\x,a

(2.2)= (
x−1)L−1

a\xLa\x,a La−1

= (
x−1)La L−1

x La−1 = aLx−1 L−1
x La−1

= aP x−1 La−1 . (4.2)

Since a−1 ∈ Z(Q ,◦), we may also apply (4.2) with a−1 in place of a, and will do so in the next
calculation. Now

aP x−1 La−1 = aP x−1 Pa−1 La
(3.3)= aPa−1 P x−1 La

= a−1 P x−1 La
(4.2)= (

x−2)La−1\x,a−1

(2.6)= (
x−2)L(a\x−1)−1,a−1

(2.4)= (
x−2)La\x−1,a,

where we used a−1 ∈ Z(Q ,◦) in the second equality.
Putting this together with (4.2), we have (x−2)La\x,a = (x−2)La\x−1,a for all x ∈ Q . Since inner map-

pings are automorphisms, this implies (xLa\x,a)
−2 = (xLa\x−1,a)

−2. Taking inverses and square roots,
we have the desired result. �
Lemma 4.2. If a ∈ Z(Q ,◦), then for all x ∈ Q ,

(a\x)La\x−1,a = (x\a)−1, (4.3)

x−1 · xPa = a2. (4.4)

Proof. We compute

(a\x)La\x−1,a = a\(xLa\x−1,a)
(4.1)= a\(xLa\x,a)

(2.1)= (a\x)La\x,a
(2.3)= (x\a)−1,

where we used La\x−1,a ∈ Aut Q in the first equality and La\x,a ∈ Aut Q in the third equality.
To show (4.4), we compute

x−1 · xPa = (
x−1)La−1\(ax) = (

x−1)La−1\(ax)La−1 L−1
ax LaxL−1

a−1

= (
a\(ax)

)−1
La−1\(ax),a−1 LaxL−1

a−1
(2.6)= (

a−1∖(ax)−1)La−1\(ax),a−1 LaxL−1
a−1

(4.3)= (
(ax)−1∖a−1)−1

LaxL−1
a−1

(2.6)= (
(ax)\a

)
LaxL−1

a−1

= aL−1
a−1 = a2.

Note that in the fifth equality, we are applying (4.3) with a−1 in place of a and (ax)−1 in place
of x. �
Lemma 4.3. If a ∈ Z(Q ,◦), then La = L◦

a , and for all integers n

Ln
a = Lan . (4.5)



70 P. Jedlička et al. / Journal of Algebra 350 (2012) 64–76
Proof. For x ∈ Q , we compute

(a ◦ x)2 = (x ◦ a)2 = (
a2)P x

(4.4)= xPa Lx−1 P x = x · xPa
(2.8)= (ax)2.

Taking square roots, we have a ◦ x = ax, as desired. Then Ln
a = (L◦

a)
n (3.2)= L◦

an = Lan . �
Lemma 4.4. If a ∈ Z(Q ,◦), then for all x ∈ Q ,

P xa = P x Pa. (4.6)

Proof. For each y ∈ Q ,

y P xa = y Pax = [
ax ◦ y1/2]2 = [

(a ◦ x) ◦ y1/2]2 = [
a ◦ (

x ◦ y1/2)]2 = y P x Pa,

using Lemma 4.3 in the third equality and a ∈ Z(Q ,◦) in the fourth. �
Lemma 4.5. If a ∈ Z(Q ,◦), then a2 ∈ Z(Q , ·).

Proof. We compute

La2 Lx
(4.5)= L2

a Lx = La La,xLxa

(2.4)= La La−1,x−1 Lxa = La La−1 Lx−1 L−1
x−1a−1 Lxa

(4.5)= Lx−1 L−1
x−1a−1 Lxa

(2.6)= Lx−1 L−1
(xa)−1 Lxa

= Lx−1 P xa
(4.6)= Lx−1 P x Pa

= LxLa L−1
a−1

(4.5)= LxL2
a

(4.5)= LxLa2 .

By Lemma 2.2, it follows that a2 ∈ Nρ(Q , ·), and Nρ(Q , ·) = Z(Q , ·) by Proposition 2.1. �
Lemma 4.6. Let (Q , ·) be a uniquely 2-divisible commutative automorphic loop with associated Bruck loop
(Q ,◦). Then Z(Q ,◦) ⊆ Z(Q , ·).

Proof. Assume that a ∈ Z(Q ,◦). Then a2 ∈ Z(Q , ·) by Lemma 4.5, and thus (aLx,y)
2 = a2Lx,y = a2 for

every x, y ∈ Q . Taking square roots yields aLx,y = a, that is, a ∈ Z(Q , ·). �
Now we prove Theorem 1.2, that is, we show that the upper central series of (Q , ·) and (Q ,◦)

coincide.

Proof of Theorem 1.2. Since each Zn(Q ) is the preimage of Z(Q /Zn−1(Q )) under the canoni-
cal projection, it follows by induction that it suffices to show Z(Q ,◦) = Z(Q , ·). One inclusion is
Lemma 4.6. For the other, suppose a ∈ Z(Q , ·). Then Pa Px = La L−1

a−1 LxL−1
x−1 = LxL−1

x−1 La L−1
a−1 = Px Pa , and

so a ∈ Z(Q ,◦) by Lemma 3.3. �
Proof of Theorem 1.1. For an odd prime p, let Q be a commutative automorphic p-loop with associ-
ated Bruck loop (Q ,◦). By [8], (Q ,◦) is centrally nilpotent of class, say, n. By Theorem 1.2, Q is also
centrally nilpotent of class n. �
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5. From anisotropic planes to automorphic p-loops with trivial nucleus

We proved in [12] that for an odd prime p a commutative automorphic loop of order p, 2p,
4p, p2, 2p2 or 4p2 is an abelian group. For every prime p there exist nonassociative commutative
automorphic loops of order p3. These loops have been classified up to isomorphism in [6], where the
announced Theorem 1.1 has been used to guarantee nilpotency for p odd.

Without commutativity, we do not even know whether automorphic loops of order p2 are as-
sociative! Nevertheless we show here that the situation is much more complicated than in the
commutative case already for loops of order p3. Namely, we construct a family of automorphic loops
of order p3 with trivial nucleus.

5.1. Anisotropic planes

Let F be a field, V a finite-dimensional vector space over F , and q : V → F a quadratic form.
A subspace W � V is isotropic if q(x) = 0 for some 0 �= x ∈ W , else it is anisotropic.

It is well known that if F is a finite field and dim V � 3 then V must be isotropic. (See [21,
Thm. 3.8] for a proof in odd characteristic.) Moreover, if F = GF(p) then there is a unique anisotropic
space of dimension 2 over F up to isometry. (See [21, Cor. 3.10] for p odd. If p = 2 and V = 〈x, y〉,
we must have q(0) = 0, q(x) = q(y) = q(x + y) = 1 for V to be anisotropic.) Let us call anisotropic
subspaces of dimension two anisotropic planes.

Since our construction is based on elements of anisotropic planes rather than on the planes them-
selves, we will first have a detailed look at anisotropic planes in M(2, F ), the vector space of 2 × 2
matrices over F . The determinant

det : M(2, F ) → F , det

(
a1 a2

a3 a4

)
= a1a4 − a2a3

is a quadratic form on M(2, F ). If F C ⊕ F D is an anisotropic plane in M(2, F ) then C−1(F C ⊕ F D)

is also anisotropic, and hence, while looking for anisotropic planes, it suffices to consider subspaces
F I ⊕ F A, where I is the identity matrix and A ∈ GL(2, F ).

Lemma 5.1. With A ∈ M(2, F ), the subspace F I ⊕ F A is an anisotropic plane if and only if the characteristic
polynomial det(A − λI) = λ2 − tr(A)λ + det(A) has no roots in F .

Proof. The subspace F I ⊕ F A is anisotropic if and only if det(λI + μA) �= 0 for every λ, μ such that
(λ,μ) �= (0,0), or, equivalently, if and only if det(A − λI) �= 0 for every λ. We have det(A − λI) =
λ2 − tr(A)λ + det(A). �

We will now impose additional conditions on anisotropic planes over finite fields and establish
their existence or non-existence. We will take advantage of the following strong result of Perron [17,
Thms. 1 and 3] concerning additive properties of the set of quadratic residues.

A nonzero element a ∈ GF(p) is a quadratic residue if a = b2 for some b ∈ GF(p). A nonzero element
a ∈ GF(p) that is not a quadratic residue is a quadratic nonresidue.

Theorem 5.2 (Perron). Let p be a prime, N p the set of quadratic nonresidues, and R p = {a ∈ GF(p); a is
a quadratic residue or a = 0}.

(i) If p = 4k − 1 and a �= 0 then |(R p + a) ∩ R p | = k = |(R p + a) ∩ N p|.
(ii) If p = 4k + 1 and a �= 0 then |(R p + a) ∩ R p | = k + 1, |(R p + a) ∩ N p| = k.

Lemma 5.3. Let p � 5 be a prime. Then there is a quadratic nonresidue a and quadratic residues b, c such that
b − a is a quadratic residue and c − a is a quadratic nonresidue.
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Proof. Let p = 4k ± 1. If k � 3 then we are done by Theorem 5.2, since |(R p − a) ∩ R p|,
|(R p − a) ∩ N p| � 3. (We need k � 3 to be able to pick b ∈ R p \ {0} such that b − a ∈ R p \ {0}.) If
p = 7 then a = 3, b = 4, c = 1 do the job. If p = 5 then a = 2, b = 1, c = 4 do the job. �
Lemma 5.4. Let p be a prime and F = GF(p).

(i) There is A ∈ GL(2, p) such that tr(A) = 0 and F I ⊕ F A is anisotropic if and only if p �= 2.
(ii) There is A ∈ GL(2, p) such that tr(A) �= 0, det(A) is a quadratic residue modulo p and F I ⊕ F A is

anisotropic if and only if p �= 3.
(iii) There is A ∈ GL(2, p) such that tr(A) �= 0, det(A) is a quadratic nonresidue modulo p and F I ⊕ F A is

anisotropic if and only if p �= 2.

Proof. Let p � 3. For a quadratic nonresidue a and any b ∈ F , let

Ma,b =
(−b 1

a −b

)
.

Since Ma,b = Ma,0 − bI , we have FI ⊕ FMa,b = FI ⊕ FMa,0. Now, tr(Ma,0) = 0, det(Ma,0 − λI) = λ2 − a
has no roots, so FI ⊕ FMa,b is anisotropic by Lemma 5.1. Moreover, if b �= 0 then tr(Ma,b) = −2b �= 0
and det(Ma,b) = b2 − a.

If p � 5, Lemma 5.3 implies that the parameters a and b �= 0 can be chosen so that det(Ma,b) is a
quadratic residue or nonresidue as we please.

Let p = 3. Then det(M2,2) is a quadratic nonresidue. If tr(A) �= 0 and det(A) is a quadratic residue
then det(A) = 1 and det(A − λI) is equal to either λ2 + λ + 1 (with root 1) or λ2 − λ + 1 (with
root −1), so FI ⊕ F A is isotropic.

Let p = 2. Then

(
0 1

1 1

)

satisfies the conditions of (ii). The only elements A ∈ GL(2, p) with tr(A) = 0 are

(
0 1

1 0

)
,

(
1 0
1 1

)
,

(
1 1

0 1

)
,

all with det(A + I) = 0, so FI ⊕ F A is isotropic. There is no matrix satisfying the conditions of (iii)
because there are no quadratic nonresidues in GF(2). �

Let p be a prime and F = GF(p). Call an element A ∈ GL(2, p) of an anisotropic plane FI ⊕ F A of
type 1 if tr(A) = 0, of type 2 if tr(A) �= 0 and det(A) is a quadratic residue, and of type 3 if tr(A) �= 0
and det(A) is a quadratic nonresidue.

Note that for a fixed prime p we can find elements A of all possible types (with the restrictions
of Lemma 5.4) in a single anisotropic plane. This is because we only used matrices A = Ma,b with the
same a in the proof of Lemma 5.4, and FI ⊕ FMa,0 = FI ⊕ FMa,b .

5.2. Automorphic loops of order p3 with trivial nucleus

Let A ∈ GL(2, p) be such that FI ⊕ F A is an anisotropic plane. Define a binary operation on F ×
(F × F ) by

(a, x) · (b, y) = (
a + b, x(I + b A) + y(I − aA)

)
(5.1)
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and call the resulting groupoid Q (A). Since

Ua = I + aA

is invertible for every a ∈ F , we see that Q (A) is a loop (see Remark 5.8), and in fact, straightforward
calculation shows that

(b, y)L−1
(a,x) = (

b − a, (y − xUb−a)U−1−a

)
,

(b, y)R−1
(a,x) = (

b − a, (y − xUa−b)U−1
a

)
.

Lemma 5.5. Let F = GF(p). Let A ∈ GL(2, p) be such that FI ⊕ F A is an anisotropic plane in M(2, p). For each
z ∈ F × F and each C ∈ GL(2, p) satisfying C A = AC, define ϕz,C : F × (F × F ) → F × (F × F ) by

(a, x)ϕz,C = (a,az + xC).

Then ϕz,C is an automorphism of Q (A).

Proof. We compute

(a, x)ϕz,C · (b, y)ϕz,C = (a,az + xC) · (b,bz + yC)

= (
a + b, (az + xC)Ub + (bz + yC)U−a

)
= (

a + b, (a + b)z + xC Ub + yC U−a + abz A − abz A
)

= (
a + b, (a + b)z + (xUb + yU−a)C

)
= [

(a, x) · (b, y)
]
ϕz,C ,

where we have used C A = AC in the fourth equality. Since ϕz,C is clearly a bijection, we have the
desired result. �
Proposition 5.6. Let F = GF(p). Let A ∈ GL(2, p) be such that FI ⊕ F A is an anisotropic plane in M(2, p).
Then the loop Q = Q (A) defined on F × (F × F ) by (5.1) is an automorphic loop of order p3 and exponent p
with Nμ(Q ) = {(0, x) | x ∈ F × F } ∼= F × F and Nλ(Q ) = Nρ(Q ) = 1. In particular, N(Q ) = Z(Q ) = 1 and
so Q is not centrally nilpotent. In addition, if p = 2 then C(Q ) = Q , while if p > 2, then C(Q ) = 1.

Proof. Easy calculations show that the standard generators of the inner mapping group of Q (A) are

(b, y)T(a,x) = (
b,

(
x(U−b − Ub) + yUa

)
U−1−a

)
,

(c, z)R(a,x),(b,y) = (
c,

(
zUaUb + y(U−c−a − U−cU−a)

)
U−1

a+b

)
,

(c, z)L(a,x),(b,y) = (
c,

(
zU−aU−b + y(Uc+a − UcUa)

)
U−1

−a−b

)
. (5.2)

Since U−b − Ub = −2b A and Uc+a − Uc Ua = U−c−a − U−c U−a = −caA2, we find that each of these
generators is of the form ϕu,C for an appropriate u ∈ F × F and C ∈ GL(2, p) commuting with A.
Specifically, we have
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T(a,x) = ϕu,C where u = −2xAU−1−a and C = UaU−1−a ,

R(a,x),(b,y) = ϕu,C where u = −ay A2U−1
a+b and C = UaUbU−1

a+b,

L(a,x),(b,y) = ϕu,C where u = −ay A2U−1
−a−b and C = U−aU−bU−1

−a−b.

Hence Q (A) is automorphic by Lemma 5.5.
An easy induction shows that powers in Q (A) and in F × (F × F ) coincide, so Q (A) has expo-

nent p.
Suppose that (a, x) ∈ Nμ(Q ). Then (c, z)R(a,x),(b,y) = (c, z) for every (c, z), (b, y). Thus

(zUaUb + y(U−c−a − U−c U−a))U−1
a+b = z for every (c, z), (b, y). With z = 0, we have

y(U−c−a − U−c U−a) = −cay A2 = 0 for every y, hence caA2 = 0 for every c, and a = 0 follows. On the
other hand, clearly (0, x) ∈ Nμ(Q ) for every x. We have thus shown Nμ(Q ) = {(0, x) | x ∈ F × F } ∼=
F × F .

Suppose that (c, z) ∈ Nλ(Q ). By Proposition 2.1, Nλ(Q ) = Nρ(Q ) � Nμ(Q ), so c = 0. We then must
have (0, z)R(a,x),(b,y) = (0, z), or zUaUbU−1

a+b = z, or abz A2 = 0 for every a, b. In particular, z A2 = 0
and z = 0. We have proved Nλ(Q ) = 1.

If p = 2, then since Ua = U−a , it follows that Q is commutative. Now assume that p > 2 and let
(a, x) ∈ C(Q ). Then x(Ub − U−b) = y(Ua − U−a), that is, 2bxA = 2ay A for every (b, y) ∈ Q . With b = 0
we deduce that 2ay A = 0 for every y, thus 0 = 2aA, or a = 0. Then 2bxA = 0, and with b = 1 we
deduce 2xA = 0, or x = 0. We have proved that C(Q ) = 1. �
Remark 5.7. The construction Q (A) works for every real anisotropic plane RI ⊕ RA and results in an
automorphic loop on R

3 with trivial center. We believe that this is the first time a smooth nonasso-
ciative automorphic loop has been constructed.

Remark 5.8. The groupoid Q (A) is an automorphic loop as long as I + aA is invertible for every
a ∈ F , which is a weaker condition than having FI ⊕ FA an anisotropic plane, as witnessed by A = 0,
for instance. But we claim that nothing of interest is obtained in the more general case:

Let us assume that A ∈ M(2, F ) is such that I + aA is invertible for every a ∈ F but FI ⊕ FA is not
anisotropic. Then det(A) = 0 and det(A − λI) = λ2 − tr(A)λ = λ(λ − tr(A)) has no nonzero solutions.
Hence tr(A) = 0 and A2 = 0. The loop Q = Q (A) is still an automorphic loop by the argument given
in the proof of Proposition 5.6, and we claim that it is a group. Indeed, we have (c, z) ∈ Nλ(Q ) = N(Q )

if and only if (c, z) = (c, z)R(a,x),(b,y) for every (a, x), (b, y), that is, by (5.2),

z = (
zUaUb + y(U−c−a − U−c U−a)

)
U−1

a+b (5.3)

for every (a, x), (b, y). As Ub+a − UbUa = −baA2 = 0 for every a, b, we see that (5.3) holds.

6. Open problems

Problem 6.1. Are the following two statements equivalent for a finite automorphic loop Q ?

(i) Q has order a power of 2.
(ii) Every element of Q has order a power of 2.

Problem 6.2. Let p be a prime. Are all automorphic loops of order p2 associative?

Problem 6.3. Let p be a prime. Is there an automorphic loop of order a power of p and with trivial
middle nucleus?

Problem 6.4. Let p be a prime. Are there automorphic loops of order p3 that are not centrally nilpo-
tent and that are not constructed by Proposition 5.6?
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Conjecture 6.5. Let p be a prime and F = GF(p). Let A, B ∈ GL(2, p) be such that FI ⊕ FA and FI ⊕ F B are
anisotropic planes. Then the loops Q (A), Q (B) constructed by (5.1) are isomorphic if and only if A, B are of
the same type.

We have verified Conjecture 6.5 computationally for p � 5. Taking advantage of Lemma 5.4, we
can therefore conclude:

If p = 2, there is one isomorphism type of loops Q (A) obtained from the matrix

(
0 1

1 1

)

of type 2 – this is the unique commutative automorphic loop of order 8 that is not centrally nilpotent,
constructed already in [12]. If p = 3, there are two isomorphism types of loops Q (A), corresponding
to matrices

(
0 1

2 0

)
,

(
1 1

2 1

)

of types 1 and 3, respectively. If p = 5, there are three isomorphism types. If Conjecture 6.5 is valid
for a prime p > 5, then there are three isomorphism types of loops Q (A) for that prime p, according
to Lemma 5.4.

Acknowledgments

After this paper was submitted for publication, P. Csörgő obtained a stronger result than Theo-
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[18] G. Nagy, P. Vojtěchovský, LOOPS: Computing with quasigroups and loops in GAP – a GAP package, version 2.0.0, 2008,

http://www.math.du.edu/loops.
[19] H.O. Pflugfelder, Quasigroups and Loops: Introduction, Sigma Ser. in Pure Math., vol. 8, Heldermann-Verlag, Berlin, 1990.
[20] L.V. Safanova, K.K. Shchukin, On centrally nilpotent loops, Comment. Math. Univ. Carolin. 41 (2000) 401–404.
[21] W. Scharlau, Quadratic and Hermitian Forms, A Series of Comprehensive Stud. Math, vol. 270, Springer-Verlag, Berlin, 1985.
[22] K.K. Shchukin, On nilpotency of the multiplication group of an A-loop, Mat. Issled. 162 (1988) 116–117 (in Russian).

http://www.cs.unm.edu/~mccune/prover9/
http://www.math.du.edu/loops

	Nilpotency in automorphic loops of prime power order
	1 Introduction
	1.1 Background
	1.2 Summary

	2 Preliminaries
	3 The associated Bruck loop
	4 Proofs of the main results
	5 From anisotropic planes to automorphic p-loops with trivial nucleus
	5.1 Anisotropic planes
	5.2 Automorphic loops of order p3 with trivial nucleus

	6 Open problems
	Acknowledgments
	References


