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Abstract

In this paper, we show that the Cauchy problem of the Navier–Stokes equations with damping α|u|β−1u (α > 0) has global
weak solutions for any β � 1, global strong solution for any β � 7/2 and that the strong solution is unique for any 7/2 � β � 5.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following incompressible Navier–Stokes equations with damping⎧⎪⎪⎨
⎪⎪⎩

ut − μ�u + u · ∇u + α|u|β−1u + ∇p = 0, (x, t) ∈ R3 × (0, T ),

divu = 0, (x, t) ∈ R3 × [0, T ),

u|t=0 = u0, x ∈ R3,

|u| → 0, as |x| → ∞.

(1.1)

The unknown functions here are u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t), which stand for the
velocity field and the pressure of the flow, respectively. In damping term, β � 1 and α > 0 are two constants. The
given function u0 = u0(x) is the initial velocity and the constant μ > 0 represents the viscosity coefficient of the flow.

The existence of global weak solutions of initial value problem and initial–boundary value problem of the Navier–
Stokes equations were proved by Leray [11] and Hopf [6] long before. Since then, the uniqueness and the regularity of
the weak solutions and the global (in time) existence of strong solution have been extensively investigated (see [3–6,
9–18] and references therein). However, the uniqueness of weak solutions and the global existence (in time) of strong
solutions remain completely open. Introducing the class Ls(0, T ;Lq), Serrin showed that if u is a weak solution in
such a class with 2/s + 3/q < 1 satisfying 2 < s < ∞,3 < q < ∞, then u is smooth. Since Serrin’s criterion, many

* Corresponding author.
E-mail addresses: caixxj@126.com (X. Cai), jiuqs@mail.cnu.edu.cn (Q. Jiu).

1 The research is partially supported by the Key Project of National Natural Sciences Foundation of China (No. 10431060 & No. 10771177).
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.01.041

https://core.ac.uk/display/81977337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


800 X. Cai, Q. Jiu / J. Math. Anal. Appl. 343 (2008) 799–809
efforts have been made to obtain a larger class of weak solutions in which the uniqueness and regularity hold. The
obtained results show that if the weak solution u(x, t) of the Navier–Stokes equations belongs to Ls(0, T ;Lq) with
2/s + 3/q � 1 satisfying 2 � s � ∞,3 � q � ∞, then the weak solution is regular and unique (see [3–5,13–17] and
references therein). The class Ls(0, T ;Lq) is also called Serrin’s class.

The damping is from the resistance to the motion of the flow. It describes various physical situations such as
porous media flow, drag or friction effects, and some dissipative mechanisms (see [1,2,7,8] and references therein).
The purpose of this paper is to study the well-posedness of the incompressible Navier–Stokes equations with damping.
We will show that the Cauchy problem (1.1) has global weak solutions for any β � 1 and global strong solution for
any β � 7/2. Moreover, we will prove that for any 7/2 � β � 5, the global strong solution of (1.1) is unique.

We apply the Galerkin method to construct the approximate solutions and make more delicate a priori estimates
to proceed to compactness arguments. In particular, we obtain new more a priori estimates, comparing with the
Navier–Stokes equations, to guarantee that the solution u belongs to L∞(0, T ;W 1,2

0,σ (R3)) ∩ L∞(0, T ;Lβ+1(R3)) ∩
L2(0, T ;H 2(R3)) for β � 7

2 and the strong solution is unique when 7
2 � β � 5. Recalling Serrin’s class to the Navier–

Stokes equations, we obtain that the solutions of (1.1) will belong to Serrin’s class if and only if β � 4. As mentioned
above, the solution of the Navier–Stokes equations lying in Serrin’s class will be unique. However, for the Navier–
Stokes equations with damping, when β > 5, whether the strong solution is unique or not is still open.

Before ending this section, we introduce some notations of function spaces which will be used later. The space
Lp(R3), 1 � p � ∞, represents the usual Lebesgue space of scalar functions as well as that of vector-valued functions
with norm denoted by ‖ · ‖p . Let C∞

0,σ (R3) denote the set of all C∞ real vector-valued functions u = (u1, u2, u3) with

compact support in R3 such that divu = 0. Then the function space L
p
σ (R3), 1 < p < ∞, is defined as the closure of

C∞
0,σ (R3) in Lp(R3) endowed with norm ‖ · ‖p . We define Wk,p(R3) the usual Sobolev space with the norm ‖ · ‖k,p

and W
k,p

0,σ (Ω) is the closure of C∞
0,σ (Ω) with respect to ‖ · ‖k,p. When p = 2, we denote Wk,2(R3) by Hk(R3). Given

a Banach space X with norm ‖ · ‖X , we denote by Lp(0, T ;X), 1 � p � ∞, the set of functions f (t) defined on
(0, T ) with values in X such that

∫ T

0 ‖f (t)‖p
X dt < ∞. In this paper, we use C to express an absolute constant which

may change from line to line.
The rest of the paper is organized as follows. In Section 2, we prove the global weak solutions of (1.1) for any β � 1.

In Section 3, we prove the global existence of strong solutions for any β � 7
2 and the existence and uniqueness of

strong solution for 7
2 � β � 5 for the Cauchy problem (1.1).

2. Existence of weak solutions

In this section, we prove the global existence of weak solutions for the problem (1.1). The definition of weak
solutions is given as usual way.

Definition 1. The function pair (u(x, t),p(x, t)) is called a weak solution of the problem (1.1) if for any T > 0, the
following conditions are satisfied:

(1) u ∈ L∞(0, T ;L2
σ (R3)) ∩ L2(0, T ;W 1,2

0,σ (R3)) ∩ Lβ+1(0, T ;Lβ+1(R3)),

(2) for any Φ ∈ C∞
0,σ ([0, T ] × R3) with Φ(·, T ) = 0, we have

−
T∫

0

(u,Φt ) dt + μ

T∫
0

∫
R3

∇u : ∇Φ dx dt −
T∫

0

∫
R3

(u · ∇)uΦ dx dt

+ α

T∫
0

∫
R3

|u|β−1uΦ dx dt = (u0,Φ0), (2.1)

(3) divu(x, t) = 0 for a.e. (x, t) ∈ R3 × [0, T ).

In (2.1), ∇u denotes matrix (∂iuj )3×3 and for two matrices A = (aij ) and B = (bij ), the matrix A : B = ∑3
i,j=1 aij bij .

Here ( , ) means the inner product in L2(R3).
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The following lemma is a compactness result, for the proof of it one can refer to [18].

Lemma 2.1. Let X0,X be Hilbert spaces satisfying a compact imbedding X0 ↪→ X. Let 0 < γ � 1 and (vj )
∞
j=1 be a

sequence in L2(R;X0) satisfying

sup
j

( ∞∫
−∞

‖vj‖2
X0

dt

)
< ∞, sup

j

( +∞∫
−∞

|τ |2γ ‖v̂j‖2
X dτ

)
< ∞,

where

v̂(τ ) =
+∞∫

−∞
v(t) exp(−2πiτ t) dt

is the Fourier transformation of v(t) on the time variable. Then there exists a subsequence of {vj }∞j=1 which converges

strongly in L2(R;X) to some v ∈ L2(R;X).

Our main result of this section reads as

Theorem 1. Suppose that β � 1 and u0 ∈ L2
σ (R3). Then for any given T > 0, there exists a weak solution

(u(x, t),p(x, t)) to the problem (1.1) such that

u ∈ L∞(
0, T ;L2

σ

(
R3)) ∩ L2(0, T ;W 1,2

0,σ

(
R3)) ∩ Lβ+1(0, T ;Lβ+1(R3)). (2.2)

Moreover,

sup
0�t�T

∥∥u(t)
∥∥2

L2 + 2μ

T∫
0

‖∇u‖2
L2 dt + 2α

T∫
0

‖u‖β+1
Lβ+1 dt � ‖u0‖2

L2 . (2.3)

Proof. We employ the Galerkin approximations to prove the theorem. The approach is similar to that of [18] for the
classical Navier–Stokes equations.

Since W
1,2
0,σ is separable and C∞

0,σ is dense in W
1,2
0,σ , there exists a sequence ω1,ω2, . . . ,ωm of elements of C∞

0,σ ,

which is free and total in W
1,2
0,σ . For each m we define an approximate solution um as follows:

um =
m∑

i=1

gim(t)ωi(x)

and (
u′

m(t),ωj

) + μ
(∇um(t),∇ωj

) + (
um(t) · ∇um(t),ωj

) + (
α|um|β−1um(t),ωj

) = 0,

t ∈ [0, T ], j = 1,2, . . . ,m, (2.4)

and u0m → u0 in L2
σ , as m → ∞.

We have a priori estimates on the approximate solutions um as follows.

Lemma 2.2. Suppose that u0 ∈ L2
σ . Then for any given T > 0 and any β � 1, we have

sup
0�t�T

∥∥um(t)
∥∥

L2
σ

+ 2μ‖um‖
L2(0,T ;W 1,2

0,σ )
+ 2α‖um‖Lβ+1(0,T ;Lβ+1) � ‖u0‖2

L2 .

Proof. Multiplying on both sides of (2.4) by gjm(t) and summing over j = 1, . . . ,m, we have

1

2

d

dt
‖um‖2

L2 + μ‖∇um‖2
L2 + α‖um‖β+1

Lβ+1 � 0,

where we have used the fact that ((u · ∇)v, v) = 0 for u ∈ W
1,2
0,σ and v ∈ W 1,2.
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Integrating over (0, T ) we obtain

sup
0�t�T

∥∥um(t)
∥∥2

L2 + 2μ

T∫
0

‖∇um‖2
L2 dt + 2α

T∫
0

‖um‖β+1
Lβ+1 dt � ‖u0‖2

L2 . (2.5)

The proof of Lemma 2.2 is finished. �
By a standard procedure, applying Lemma 2.2, we obtain the global existence of the approximate solutions um ∈

L∞(0, T ;L2
σ (R3)) ∩ L2(0, T ;W 1,2

0,σ (R3)) ∩ Lβ+1(0, T ;Lβ+1(R3)). Next, we will use Lemma 2.1 to prove the strong

convergence of um (or its subsequence) in L2 ∩ Lβ([0, T ] × Ω) for any Ω ⊂ R3. To this end, we denote by ũm the
function from R into W

1,2
0,σ , which is equal to um on [0, T ] and to 0 on the complement of this interval. Similarly, we

prolong gim(t) to R by defining g̃im(t) = 0 for t ∈ R\[0, T ]. The Fourier transforms on time variable of ũm and g̃im

are denoted by ˆ̃um and ˆ̃gim respectively.
Note that the approximate solutions ũm satisfy

d

dt
(ũm,ωj ) = μ

(∇ũm(t),∇ωj

) + (
ũm(t) · ∇ũm(t),ωj

)
+ (

α|ũm|β−1ũm(t),ωj

) + (u0m,ωj )δ0 − (
um(T ),ωj

)
δT

≡ (f̃ ,ωj ) + (
α|ũm|β−1ũm(t),ωj

) + (u0m,ωj )δ0 − (
um(T ),ωj

)
δT , j = 1,2, . . . ,m, (2.6)

where δ0, δT are Dirac distributions at 0 and T and

(f̃m,ωj ) = μ
(∇ũm(t),∇ωj

) + (
ũm(t) · ∇ũm(t),ωj

)
.

Taking the Fourier transform about the time variable, (2.6) gives

2πiτ( ˆ̃um,ωj ) = (
ˆ̃

fm,ωj ) + α
(

̂|ũm|β−1ũm(t),ωj

) + (u0m,ωj ) − (
um(T ),ωj

)
exp(−2πiT τ), (2.7)

where ˆ̃
fm denotes the Fourier transform of f̃m.

Multiply (2.7) by ˆ̃gjm(τ) and add the resulting equations for j = 1, . . . ,m to get:

2πiτ
∥∥ ˆ̃um(τ)

∥∥2
2 = ( ˆ̃

fm(τ), ˆ̃um

) + α
(

̂|ũm|β−1ũm(τ ), ˆ̃um

) + (u0m, ˆ̃um) − (
um(T ), ˆ̃um

)
exp(−2πiT τ). (2.8)

For any v ∈ L2(0, T ;H 1
0 ) ∩ Lβ+1(0, T ;Lβ+1), we have(

fm(t), v
) = (∇um,∇v) + (um · ∇um,v) � C

(‖um‖2
2 + ‖∇um‖2

2 + ‖∇um‖2
)‖v‖H 1 .

It follows that for any given T > 0

T∫
0

∥∥fm(t)
∥∥

H−1 dt �
T∫

0

C
(‖um‖2

2 + ‖∇um‖2
2 + ‖∇um‖2

)
dt � C,

and hence

sup
τ∈R

∥∥ ˆ̃
fm(τ)

∥∥
H−1 �

T∫
0

∥∥fm(t)
∥∥

H−1 dt � C. (2.9)

Moreover, it follows from Lemma 2.2 that

T∫
0

∥∥|um|β−1um

∥∥
β+1
β

dt �
T∫

0

‖um‖β

β+1 dt � C,

which implies that

sup
∥∥ ̂|um|β−1u(τ)

∥∥
β+1
β

� C. (2.10)

τ∈R
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From Lemma 2.2, we have∥∥um(0)
∥∥

2 � C,
∥∥um(T )

∥∥
2 � C. (2.11)

We deduce from (2.8)–(2.11) that

|τ |∥∥ ˆ̃um(τ)
∥∥2

2 � C
(∥∥ ˆ̃um(τ)

∥∥
H 1 + ∥∥ ˆ̃um(τ)

∥∥
β+1

)
.

For any γ fixed, 0 < γ < 1
4 , we observe that

|τ |2γ � C
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R.

Thus

+∞∫
−∞

|τ |2γ
∥∥ ˆ̃um(τ)

∥∥2
2 dτ � C

+∞∫
−∞

1 + |τ |
1 + |τ |1−2γ

∥∥ ˆ̃um(τ)
∥∥2

2 dτ

� C

+∞∫
−∞

∥∥ ˆ̃um(τ)
∥∥2

2 dτ + C

+∞∫
−∞

‖ˆ̃um(τ)‖H 1

1 + |τ |1−2γ
dτ + C

+∞∫
−∞

‖ˆ̃um(τ)‖β+1

1 + |τ |1−2γ
dτ. (2.12)

Thanks to the Parseval equality and Lemma 2.2, the first integral on the right-hand side of (2.12) is bounded uniformly
on m.

By the Schwartz inequality, the Parseval equality and Lemma 2.2, we have

+∞∫
−∞

‖ˆ̃um(τ)‖H 1

1 + |τ |1−2γ
dτ �

( +∞∫
−∞

dτ

(1 + |τ |1−2γ )2

) 1
2
( T∫

0

∥∥um(τ)
∥∥2

H 1 dτ

) 1
2

� C (2.13)

for 0 < γ < 1
4 ,

Similarly, when 0 < γ < 1
2(β+1)

, we have

+∞∫
−∞

‖ˆ̃u(τ)‖β+1

1 + |τ |1−2γ
dτ �

( +∞∫
−∞

dτ

(1 + |τ |1−2γ )
β+1
β

) β
β+1

( +∞∫
−∞

∥∥ ˆ̃um(τ)
∥∥β+1

β+1 dτ

) 1
β+1

� C

( +∞∫
−∞

∥∥ũm(τ )
∥∥ β+1

β

β+1 dτ

) β
β+1

� CT
β−1
β+1

( T∫
0

∥∥um(τ)
∥∥β+1

β+1 dτ

) 1
β

. (2.14)

It follows from (2.12) that

+∞∫
−∞

|τ |2γ
∥∥ ˆ̃um(τ)

∥∥2
2 dτ � C. (2.15)

Thanks to Lemma 2.2, there exists a function u(x, t) such that

u ∈ L∞(
0, T ;L2

σ

(
R3)) ∩ L2(0, T ;W 1,2

0,σ

(
R3)) ∩ Lβ+1(0, T ;Lβ+1(R3)), (2.16)

and there exists a subsequence of {um}∞m=1, still denoted by itself, such that um ⇀ u weakly-* in L∞(0, T ;L2
σ (R3))

and weakly in L2(0, T ;W 1,2
0,σ (R3)) and um ⇀ u in Lβ+1(0, T ;Lβ+1(R3)). Moreover, we choose Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ · · ·

with smooth boundary, satisfying
⋃∞

i=1 Ωi = R3. For any fixed i = 1,2, . . . , we take X0 = W
1,2

(Ωi),X = L2(Ωi) in
0
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Lemma 2.1. Then in view of Lemmas 2.1 and 2.2, and (2.15), we obtain that there exists a subsequence of {um}∞m=1,
still denoted by itself, such that um → u strongly in L2(0, T ;L2(Ωi)). By the diagonal principle, there exists a
subsequence {umj

}∞j=1 of {um}∞m=1, such that umj
→ u strongly in L2(0, T ;L2(Ωi)) for any i = 1,2, . . . and hence in

L2(0, T ;L2
loc(R

3)). Noting that
∫ T

0

∫
R3 |um|β+1 dx dt � C, we obtain that umj

→ u strongly in Lp(0, T ;Lp

loc(R
3))

for 2 � p < β + 1 if β > 1. These convergence guarantee that u(x, t) is a weak solution of (1.1). Furthermore, (2.2) is
a direct consequence of (2.16) and (2.3) is clearly satisfied due to Lemma 2.2. The proof of Theorem 1 is finished. �
3. Existence and uniqueness of strong solution

We call the function pair (u(x, t),p(x, t)) the strong solution of the problem (1.1) if it is a weak solution of (1.1)
satisfying

u ∈ L∞(
0, T ;W 1,2

0,σ

(
R3)) ∩ L2(0, T ;H 2(R3)) ∩ L∞(

0, T ;Lβ+1(R3)).
It should be remarked that just as the case of the classical Navier–Stokes equations, if (u(x, t),p(x, t)) is a strong

solution of (1.1), then the pressure function p(x, t) can be determined uniquely (up to a constant) by the velocity field
u(x, t).

As a preliminary, we recall the known Gagliardo–Nirenberg inequality as follows.

Lemma 3.1 (Gagliardo–Nirenberg inequality). Assume that q and r satisfy 1 � q, r � ∞, and j,m are arbitrary
integers satisfying 0 � j < m. Assume u ∈ C∞

0 (Rn), then∥∥Dju
∥∥

Lp � C
∥∥Dmu

∥∥a

Lr ‖u‖1−a
Lq , (3.1)

where 1
p

= j
n

+ a( 1
r

− m
n
) + (1 − a) 1

q
,

j
m

� a � 1, and the constant C only depends on n,m, j, q, r, a. If m − j − n
r

is a nonnegative integer, the above inequality holds for j
m

� a < 1.

Our main result of this section is stated as

Theorem 2. Suppose that β � 7
2 and u0 ∈ W

1,2
0,σ ∩ Lβ+1. Then there exists a strong solution (u(x, t), p(x, t)) to the

problem (1.1) satisfying

u ∈ L∞(
0, T ;W 1,2

0,σ

(
R3)) ∩ L∞(

0, T ;Lβ+1(R3)) ∩ L2(0, T ;H 2(R3)),
∇u|u| β−1

2 ∈ L2(0, T ;L2(R3)); ut ∈ L2(0, T ;L2(R3)).
Moreover when 7

2 � β � 5, the strong solution is unique.

Proof. The existence of strong solution is based on the following a priori estimates.

Lemma 3.2. Suppose that (u(x, t),p(x, t)) is a smooth solution of the problem (1.1). Then for any β � 7
2 , we have

sup
0�t�T

(∥∥∇u(t)
∥∥2

2 + ∥∥u(t)
∥∥β+1

β+1

) + ‖ut‖2
2,2;T + ‖�u‖2

2,2;T + ∥∥|∇u||u| β−1
2

∥∥2
2,2;T

+ α(β − 1)

2

T∫
0

∫
R3

|u|β−3
∣∣∇|u|2∣∣2

dx dt � C. (3.2)

Proof. Multiply the first equation of (1.1) by ut , −�u and integrate the resulting equations on R3, respectively, to
obtain

μ

2

d

dt

∫
3

|∇u|2 dx + α

β + 1

d

dt

∫
3

|u|β+1 dx +
∫

3

|ut |2 dx = −
∫

3

utu · ∇udx, (3.3)
R R R R
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1

2

d

dt

∫
R3

|∇u|2 dx + μ

∫
R3

|�u|2 dx + α

∫
R3

|u|β−1|∇u|2 dx

+ α(β − 1)

4

∫
R3

|u|β−3
∣∣∇|u|2∣∣2

dx =
∫
R3

(u · ∇u)�udx. (3.4)

Adding (3.3), (3.4) and using Hölder inequality, Young inequality yield

μ + 1

2

d

dt

∫
R3

|∇u|2 dx + α

β + 1

d

dt

∫
R3

|u|β+1 dx + 3μ

4

∫
R3

|�u|2 dx

+ 1

2

∫
R3

|ut |2 dx + α

∫
R3

|u|β−1|∇u|2 dx + α(β − 1)

4

∫
R3

|u|β−3
∣∣∇|u|2∣∣2

dx � C

∫
R3

|u · ∇u|2 dx ≡ J. (3.5)

The estimates of J are divided into the following two cases.

Case I. Using Gagliardo–Nirenberg inequality (3.1), we have

‖∇u‖ 2(β+1)
β−1

� C‖�u‖a
2‖u‖1−a

β+1 (3.6)

where β satisfies

1

2
� a = 11 − β

β + 7
� 1, (3.7)

that is,

2 � β � 5. (3.8)

Using Hölder inequality, (3.6) and Young inequality, we have

J � C‖u‖2
β+1‖∇u‖2

2(β+1)
β−1

� C‖u‖2
β+1‖�u‖

2(11−β)
β+7

2 ‖u‖
4(β−2)
β+7

β+1

� C‖�u‖
2(11−β)

β+7
2 ‖u‖

6(β+1)
β+7

β+1

� μ

4
‖�u‖2

2 + C‖u‖
3(β+1)
β−2

β+1 . (3.9)

If 3(β+1)
β−2 � β + 1, that is, 2 < β � 5, it directly follows that

J � μ

4
‖�u‖2

2 + C‖u‖β+1
β+1‖u‖

4β−β2+5
β−2

β+1 . (3.10)

In (3.10) we demand that{
4β − β2 + 5 � 0 ⇒ −1 � β � 5,

4β − β2 + 5 � (β − 2)(β + 1) ⇒ β � 7
2 .

(3.11)

Combining (3.8) with (3.11), we obtain the restrictions on β:

7 � β � 5. (3.12)

2
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Substituting (3.10) into (3.5), we have

(μ + 1) sup
0�t�T

∥∥∇u(t)
∥∥2

2 + 2α

β + 1
sup

0�t�T

∥∥u(t)
∥∥β+1

β+1 + μ‖�u‖2
2,2;T

+ 2‖ut‖2
2,2;T + 2α

∥∥|u| β−1
2 |∇u|∥∥2

2,2;T + α(β − 1)

2

T∫
0

∫
R3

|u|β−3
∣∣∇|u|2∣∣2

dx dt

� C exp
(‖u‖

4β−β2+5
β−2

β+1,β+1;T T
2β−7
β−2

) × (‖∇u0‖2
2 + ‖u0‖β+1

β+1

)
, (3.13)

where β satisfies (3.12).

Case II. Using Gagliardo–Nirenberg inequality, we have

‖∇u‖ 2(β+1)
β−1

� C‖�u‖a
2‖u‖1−a

2 , (3.14)

1

2
� a = β + 4

2(β + 1)
� 1, (3.15)

that is,

β � 2. (3.16)

Using Hölder inequality, (3.14) and Young inequality, we obtain

J � C‖u‖2
β+1‖∇u‖2

2(β+1)
β−1

� C‖u‖2
β+1‖�u‖

β+4
β+1
2 ‖u‖

β−2
β+1
2

� μ

4
‖�u‖2

2 + C‖u‖
4(β+1)
β−2

β+1 ‖u‖2
2. (3.17)

Now we divide the index 4(β+1)
β−2 into two cases and then we discuss them.

If 4(β+1)
β−2 � β + 1, that is,

β � 6, (3.18)

substituting (3.17) into (3.5), we have

(μ + 1) sup
0�t�T

∥∥∇u(t)
∥∥2

2 + 2α

β + 1
sup

0�t�T

∥∥u(t)
∥∥β+1

β+1 + μ‖�u‖2
2,2;T

+ ‖ut‖2
2,2;T + 2α

∥∥|u| β−1
2 |∇u|∥∥2

2,2;T + α(β − 1)

2

T∫
0

∫
R3

|u|β−3
∣∣∇|u|2∣∣2

dx dt

� C
(‖u‖2

2,∞;T ‖u‖
4(β+1)
β−2

β+1,β+1;T T
β−6
β−2

) + (‖∇u0‖2
2 + ‖u0‖β+1

β+1

)
, (3.19)

where β satisfies (3.18).

If 4(β+1)
β−2 � β + 1, that is,

β � 6, (3.20)

it directly follows that

J � μ‖�u‖2
2 + C‖u‖β+1

β+1‖u‖
5β−β2+6

β−2
β+1 ‖u‖2

2. (3.21)

4
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In (3.21) we demand that{
5β − β2 + 6 � 0 ⇒ −1 � β � 6,

5β − β2 + 6 � (β − 2)(β + 1) ⇒ β � 4.
(3.22)

Combining (3.20) and (3.22), we obtain

4 � β � 6. (3.23)

Substituting (3.17) into (3.5), we have

(μ + 1) sup
0�t�T

∥∥∇u(t)
∥∥2

2 + 2α

β + 1
sup

0�t�T

∥∥u(t)
∥∥β+1

β+1 + μ‖�u‖2
2,2;T

+ 2‖ut‖2
2,2;T + 2α

∥∥|u| β−1
2 |∇u|∥∥2

2,2;T + α(β − 1)

2

∫
R3

|u|β−3
∣∣∇|u|2∣∣2

dx

� C exp
(‖u‖2

2,∞;T ‖u‖
(β+1)(6−β)

β−2
β+1,β+1;T T

2β−8
β−2

) × (‖∇u0‖2
2 + ‖u0‖β+1

β+1

)
(3.24)

where β satisfies (3.23).
Combining (3.5), (3.13), (3.19) and (3.24), we obtain that, for any β � 7

2 ,

sup
0�t�T

(∥∥∇u(t)
∥∥2

2 + ∥∥u(t)
∥∥β+1

β+1

) + ‖ut‖2
2,2;T + ‖�u‖2

2,2;T + ∥∥|∇u||u| β−1
2

∥∥2
2,2;T

+ α(β − 1)

2

2∫
0

∫
R3

|u|β−3
∣∣∇|u|2∣∣2

dx dt � C. (3.25)

The proof of Lemma 3.2 is finished. �
Now we proceed to proving the uniqueness of the strong solution of Theorem 2. Assume that under the same initial

data, there exist two strong solutions (u,p),(ū, p̄) of (1.1) satisfying

(ut ,Φ) + μ

∫
R3

∇u : ∇Φ dx −
∫
R3

(u · ∇)uΦ dx + α

∫
R3

|u|β−1uΦ dx = 0, (3.26)

(ūt ,Φ) + μ

∫
R3

∇ū : ∇Φ dx −
∫
R3

(ū · ∇)ūΦ dx + α

∫
R3

|ū|β−1ūΦ dx = 0 (3.27)

for Φ ∈ C∞
0,σ ([0, T ] × R3) and by the density argument (3.26) and (3.27) hold actually for Φ ∈ L2(0, T ;H 1).

Subtracting (3.26) from (3.27) and taking Φ = u − ū in the resulting equations, we obtain

1

2

d

dt
‖u − ū‖2

2 + μ
∥∥∇(u − ū)

∥∥2
2 + α

∥∥|u| β−1
2 |u − ū|∥∥2

2

�
∫
R3

|u − ū|2|∇ū|dx + α

∫
R3

|u − ū||ū|∣∣|u|β−1 − |ū|β−1
∣∣dx

≡ I1 + I2, (3.28)

where we have used the fact that ((u · ∇)v, v) = 0, u ∈ W
1,2
0,σ , v ∈ W 1,2.

Apply Hölder and Sobolev inequalities to yield

I1 � ‖u − ū‖2
4‖∇ū‖2

� C
(∥∥∇(u − ū)

∥∥ 3
4
2 ‖u − ū‖

1
4
2

)2‖∇u‖2

� C
∥∥∇(u − ū)

∥∥ 3
2
2 ‖u − ū‖

1
2
2 ‖∇ū‖2

� ε
∥∥∇(u − ū)

∥∥2 + C‖u − ū‖2
2‖∇ū‖4

2 (3.29)
2
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and

I2 � α

∫
R3

|u − ū||ū|∣∣|u|β−1 − |ū|β−1
∣∣dx

� C(β − 1)

∫
R3

|u − ū|∣∣|u|β−2 + |ū|β−2
∣∣|u − ū||ū|dx

� C‖u − ū‖2
4‖ū‖6

∥∥|u|β−2 + |ū|β−2
∥∥

3

� C
(∥∥∇(u − ū)

∥∥ 3
4
2 ‖u − ū‖

1
4
2

)2‖ū‖6
∥∥|u| + |ū|∥∥β−2

3(β−2)

� C
∥∥∇(u − ū)

∥∥ 3
2
2 ‖u − ū‖

1
2
2 ‖ū‖6

∥∥|u| + |ū|∥∥β−2
3(β−2)

� ε
∥∥∇(u − ū)

∥∥2
2 + C‖u − ū‖2

2‖ū‖4
6

∥∥|u| + |ū|∥∥4(β−2)

3(β−2)
. (3.30)

In the second inequality of I2, we used the fact that∣∣xp − yp
∣∣ � Cp

(|x|p−1 + |y|p−1)|x − y|
for any x, y � 0, where C is an absolute constant.

Substituting the estimates of I1, I2 into inequality (3.28), choosing ε = μ
4 , we obtain

d

dt
‖u − ū‖2

L2 + μ
∥∥∇(u − ū)

∥∥2
L2 + 2α

∥∥|u| β−1
2 |u − ū|∥∥2

2

� C‖u − ū‖2
L2

(‖∇ū‖4
2 + ‖ū‖4

6

[‖u‖4(β−2)

3(β−2) + ‖ū‖4(β−2)

3(β−2)

])
. (3.31)

Note that
T∫

0

∥∥|u|∥∥4(β−2)

3(β−2)
�

T∫
0

‖u‖
4(β2+β)

β+7
β+1 ‖�u‖

8(2β−7)
β+7

2 � sup
0�t�T

‖u‖
4(β2+β)

β+7
β+1 ‖�u‖

8(2β−7)
β+7

2,2;T T
35−7β
β+7 (3.32)

and similar estimate holds true for ū instead of u in (3.32). In (3.32), we have a restriction of β such that
0 � 8(2β−7)

β+7 � 2, that is,

7

2
� β � 5. (3.33)

Substituting (3.32) into (3.31) and applying the Gronwall inequality, we obtain that u = ū for a.e. (x, t) ∈
R3 × [0, T ] under (3.33). This completes the proof of Theorem 2. �
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