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Abstract

For a bivariate Lévy process (ξt , ηt )t≥0 the generalised Ornstein–Uhlenbeck (GOU) process is defi-
ned as

Vt := eξt

(
z +

∫ t

0
e−ξs−dηs

)
, t ≥ 0,

where z ∈ R. We present conditions on the characteristic triplet of (ξ, η) which ensure certain ruin for the
GOU. We present a detailed analysis on the structure of the upper and lower bounds and the sets of values
on which the GOU is almost surely increasing, or decreasing. This paper is the sequel to Bankovsky and
Sly (2008) [2], which stated conditions for zero probability of ruin, and completes a significant aspect of
the study of the GOU.
c© 2009 Elsevier B.V. All rights reserved.

MSC: primary 60H30; secondary 60J25; 91B30

Keywords: Lévy processes; Generalised Ornstein–Uhlenbeck process; Exponential functionals of Lévy processes; Ruin
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1. Notation and theoretical background

For a review of publications for the GOU see [2]. In Section 2 of the present paper, we state
results on certain ruin for the GOU. Theorem 3.1 of Paulsen [10] gives conditions for certain
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ruin for the GOU in the special case in which ξ and η are independent. In [2] it is shown that
this theorem does not hold for the general case. Theorems 1 and 3 of Section 2 give the required
generalisation, stated in terms of the characteristic triplet of (ξ, η). Section 3 begins with results,
in particular Proposition 6 and Theorem 9, which describe the structure of the upper and lower
bounds and the sets of values on which the GOU is almost surely increasing, or decreasing.
Section 3 then outlines the ruin probability implications of these structural results, in particular
with Theorems 13 and 14, which state conditions for certain ruin in terms of upper and lower
bound structures. Section 4 contains technical propositions used to prove the major theorems.
Sections 5–7 contain proofs of the results in Sections 4, 3 and 2 respectively. Section 6 also con-
tains examples which illustrate and extend results from Section 3. We now set up some notation,
which builds on that of [2], and outline some basic results.

Let (ξ, η) be a bivariate Lévy process on a filtered complete probability space (Ω ,F ,F, P)
and define the GOU process V , and the associated stochastic integral process Z , as

Vt := eξt

(
z +

∫ t

0
e−ξs−dηs

)
, (1)

and

Z t :=

∫ t

0
e−ξs−dηs . (2)

To avoid trivialities, assume that neither ξ nor η is identically zero. It was shown in [2] that

1Vt = e1ξt (1ηt − Vt−(e−1ξt − 1)). (3)

The characteristic triplet of (ξ, η) is written ((γ̃ξ , γ̃η),Σξ,η,Πξ,η). The characteristic triplet of ξ
as a one-dimensional Lévy process is written (γξ , σ 2

ξ ,Πξ ), where

γξ = γ̃ξ +

∫
{|x |<1}∩{x2+y2≥1}

xΠξ,η(d(x, y)), (4)

and σ 2
ξ is the upper left entry in the matrix Σξ,η. The characteristic triplet of η is similar. The

random jump measure and Brownian motion components of (ξ, η) are denoted respectively by
Nξ,η,t and (Bξ , Bη). For a Lebesgue set Λ define the hitting time of Λ by V to be Tz,Λ := inf{t >
0 : Vt ∈ Λ|V0 = z}, where Tz,Λ := ∞ whenever Vt 6∈ Λ for all t > 0 and V0 = z. When the
context makes it obvious we will simply write TΛ. Define the infinite horizon ruin probability for
the GOU by

ψ(z) := P

(
inf
t>0

Vt < 0|V0 = z

)
= P

(
inf
t>0

Z t < −z

)
= P

(
Tz,(−∞,0) <∞

)
.

For all t > 0, Vt is increasing as a function of the initial value z and hence, if 0 ≤ z1 ≤ z2,
then ψ(z1) ≥ ψ(z2). For further explanation of the above terms, as well as extra definitions and
results for Lévy processes, see Section 1 of [2]. We now outline notation and theory needed for
the present paper, which were not dealt with in Section 1 of [2].

The total variation of an Rd -valued function over the interval [a, b] is defined by

V f ([a, b]) := sup
n∑

i=1

| f (ti )− f (ti−1)| ,
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where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn = b. A Lévy
process X on Rd , with characteristic triplet (γX ,ΣX ,ΠX ) and random jump measure NX,t , is of
finite variation if, with probability 1, its sample paths X t (ω) are of finite total variation on [0, t]
for every t > 0. By [5, p. 86], this occurs iff ΣX = 0 and

∫
|z|≤1 |z|ΠX (dz) < ∞. If this occurs

then

X t = dX t +
∫
Rd

zNX,t (·, dz) = dX t +
∑

0<s≤t

1Xs,

where

dX = γX −

∫
|z|<1

zΠX (dz) = E

(
X1 −

∫
Rd

zNX,1(·, dz)

)
(5)

is called the drift vector of X . A one-dimensional Lévy process X is a subordinator if X t (ω) is
an increasing function of t , a.s. By [5, p. 88], the following are equivalent:

(1) X is a subordinator.
(2) X t ≥ 0 a.s. for some t > 0.
(3) X t ≥ 0 a.s. for every t > 0.
(4) The characteristic triplet satisfies

σ 2
X = 0,

∫
(−∞,0]

ΠX (dx) = 0,
∫
(0,1)

xΠX (dx) <∞, and dX ≥ 0.

That is, there is no Brownian component, no negative jumps, the positive jumps are of finite
variation and the drift is non-negative.

A one-dimensional Lévy process X will drift to∞, drift to −∞ or oscillate between∞ and
−∞, namely, one of the following must hold:

lim
t→∞

X t = ∞ a.s.; (6)

lim
t→∞

X t = −∞ a.s.; (7)

−∞ = lim inf
t→∞

X t < lim sup
t→∞

X t = ∞ a.s. (8)

Exact conditions for these cases are given in [6]. Whenever E(X1) is a well-defined member of
the extended reals, cases (6)–(8) equate respectively to E(X1) > 0, E(X1) < 0, and E(X1) = 0.
When E(X1) does not exist, we need more notation. For x > 0, define

Π
+

X (x) := ΠX ((x,∞)), Π
−

X (x) := ΠX ((−∞,−x)),

Π X (x) := Π
+

X (x)+Π
−

X (x).

Define, for x ≥ 1,

A+X (x) := max
{
Π
+

X (1), 1
}
+

∫ x

1
Π
+

X (u)du,

A−X (x) := max
{
Π
−

X (1), 1
}
+

∫ x

1
Π
−

X (u)du

and define the integrals
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J+X :=
∫
∞

1

(
x

A−X (x)

)
|Π
+

X (dx)| and J−X :=
∫
∞

1

(
x

A+X (x)

)
|Π
−

X (dx)|.

In [6] it is shown that if E(X1) is not well defined, that is, if∫
∞

1
xΠX (dx) =

∫
−1

−∞

|x |ΠX (dx) = ∞,

then (6)–(8) respectively occur iff J−X <∞, J+X <∞ and J−X = J+X = ∞.
By [4], the GOU is a time homogeneous strong Markov process. In [7], iff conditions are

stated for a.s. convergence of Z t to a finite random variable Z∞ as t approaches ∞. In [8], iff
conditions are stated for stationarity of V . To describe these conditions, let (X, Y ) be a bivariate
Lévy process and define

IX,Y :=

∫
(e,∞)

ln(y)

A+X (ln(y))
|Π Y (dy)|,

and the auxiliary Lévy process K X,Y by

K X,Y
t := Yt +

∑
0<s≤t

(
e1Xs − 1

)
1Ys + t Cov(BX,1, BY,1),

where Cov denotes the covariance. Theorem 2 of [7] states that Z t converges a.s. to a finite
random variable Z∞ as t →∞ iff limt→∞ ξt = ∞ a.s. and Iξ,η <∞. There is a special case in
which, for some c ∈ R,

Z t = c
(
e−ξt − 1

)
and Vt = eξt (z − c)+ c, (9)

a.s. for all t ≥ 0. Exact conditions for this degenerate situation, given in terms of the characteris-
tic triplet of (ξ, η), are stated in Proposition 8. In this situation, limt→∞ ξt = ∞ a.s. implies that
Z t converges a.s. to the constant random variable Z∞ = −c as t → ∞, and in [3] it is shown
that this is the only case in which Z∞ is not continuous. Regardless of the asymptotic behaviour
of ξ , if (9) holds then V is strictly stationary iff V0 = c. If (9) does not hold for any c ∈ R,
then Theorem 2.1 of [8] states that V is strictly stationary iff

∫
∞

0 eξs−dK ξ,η
s converges a.s. or,

equivalently, iff limt→∞ ξt = −∞ a.s. and I−ξ,K ξ,η < ∞. In this case the stationary random

variable V∞ satisfies V∞=D
∫
∞

0 eξs−dK ξ,η
s .

2. Conditions for certain ruin

In Theorem 1 of [2], exact conditions were given on the characteristic triplet of (ξ, η) for
the existence of u ≥ 0 such that ψ(u) = 0, and a precise value was given for the value
inf{u ≥ 0 : ψ(u) = 0}. For this result, and our forthcoming results, we use the convention that

inf{∅ ∩ [0,∞)} = ∞, inf{∅ ∩ (−∞, 0]} = 0,

whilst

sup{∅ ∩ [0,∞)} = 0, sup{∅ ∩ (−∞, 0]} = −∞.

It is a consequence of Theorem 1 below, that when the relevant assumptions are satisfied, there
exists z ≥ 0 such that ψ(z) < 1 iff there exists u ≥ 0 such that ψ(u) = 0. Thus, even though
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they are not stated explicitly, Theorem 1 implies exact conditions on the characteristic triplet of
(ξ, η) for certain ruin. Statements (1) and (2) of Theorem 1 are generalisations to the dependent
case of Paulsen’s Theorem 3.1, parts (a) and (b), respectively. Statement (1) of Theorem 1 also
removes Paulsen’s assumption of finite mean for ξ , and replaces his moment conditions with
the precise iff conditions for stationarity of V . For statement (2) of Theorem 1, a finite mean
assumption and moment conditions remain necessary.

Theorem 1. Let m := inf{u ≥ 0 : ψ(u) = 0}.

(1) Suppose limt→∞ ξt = −∞ a.s. and I−ξ,K ξ,η <∞. Then 0 < ψ(z) < 1 iff 0 ≤ z < m <∞.

(2) Suppose E(ξ1) = 0, E(|ξ1|
2+δ) < ∞ for some δ > 0 and there exist p, q > 1 with

1/p+1/q = 1 such that E(e−pξ1) <∞ and E(|η1|
q) <∞. If, for all c ∈ R, the degenerate

case (9) does not hold, then 0 < ψ(z) < 1 iff 0 ≤ z < m < ∞. If there exists c ∈ R such
that Eq. (9) holds, then ψ(z) < 1 iff ψ(z) = 0, which occurs iff 0 ≤ c ≤ z.

Remark 2. (1) In proving [10, Theorem 3.1(b)], Paulsen discretizes the GOU at integer time
points and uses the inequality P(V1 < 0|V0 = z) > 0 for all z ≥ 0. This holds in the
independent case if either ξ or η has a Brownian component, or can have negative jumps.
However, even in the independent case, this inequality can fail to hold when Vt decreases
due to a deterministic drift. For example, let N and M be independent Poisson processes
with parameter 1 and define ξt := −t + Nt and ηt := −t + Mt . Let Tz := inf{t > 0 :
Vt < 0|V0 = z}. Then Vt ≥ (z + 1)e−t

− 1 := V ′t on t ≤ Tz and P(V ′1 < 0|V ′0 = z) = 0
whenever z > e1

− 1. In proving statement (2) of Theorem 1 we avoid this difficulty by
discretizing the GOU at random times Ti and then showing that the stated conditions result
in P(VT1 < 0|V0 = z) > 0 for all z ≥ 0 in the general case.

(2) Assume ξ and η are independent and η is not a subordinator. Whenever ξ drifts to−∞ a.s. or
ξ oscillates between∞ and −∞ a.s. Theorem 1 in [2] implies that ψ(u) > 0 for all u ≥ 0,
and hence m = ∞. Thus, by (1) of Theorem 1, if limt→∞ ξt = −∞ a.s. and I−ξ,K ξ,η <∞,
then ψ(z) = 1 for all z ≥ 0. This is a slight strengthening of Paulsen’s Theorem 3.1(a).
Further, statement (2) simplifies exactly to Paulsen’s Theorem 3.1(b). Since ξ and η are
independent the conditions in (2) simplify to E(ξ1) = 0, E(|ξ1|

2+δ) < ∞, E
(
e−ξ1

)
< ∞

and E(η1) <∞. Since m = ∞, ψ(z) = 1 for all z ≥ 0 whenever these conditions hold. This
simplification occurs because Hölder’s inequality is not needed in the proof, and an argument
using independence suffices. When transferred onto the Lévy measure, these conditions are
equivalent to those in Paulsen’s Theorem 3.1(b).

We now present Theorem 3, which is the generalisation to the dependent case of Paulsen’s
Theorem 3.1, part (c). In addition, Paulsen’s assumption of finite mean for ξ is removed, and
his moment conditions are replaced with the precise iff conditions for a.s. convergence of Z t to
a finite random variable Z∞, as t →∞. A formula for the ruin probability in this situation was
given in Theorem 4 of [2], however no conditions for certain ruin were found. Theorem 3 gives
exact conditions on the characteristic triplet of (ξ, η) for certain ruin. Let A1 := {(x, y) ∈ R2

:

x ≥ 0, y ≥ 0}, and similarly, let A2, A3 and A4 be the quadrants in which {x ≥ 0, y ≤ 0},
{x ≤ 0, y ≤ 0} and {x ≤ 0, y ≥ 0} respectively. For each i = 1, 2, 3, 4 and u ∈ R let

Bu
i :=

{
(x, y) ∈ Ai : y − u(e−x

− 1) > 0
}
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and define

θ ′1 :=

{
inf
{
u ≤ 0 : Πξ,η(Bu

1 ) > 0
}

0 if Πξ,η(A1 \ A2) = 0,
θ ′3 :=

{
sup

{
u ≤ 0 : Πξ,η(Bu

3 ) > 0
}

−∞ if Πξ,η(A3 \ A2) = 0,

θ ′2 :=

{
inf
{
u ≥ 0 : Πξ,η(Bu

2 ) > 0
}

∞ if Πξ,η(A2 \ A3) = 0,
θ ′4 :=

{
sup

{
u ≥ 0 : Πξ,η(Bu

4 ) > 0
}

0 if Πξ,η(A4 \ A3) = 0.

Theorem 3. Suppose limt→∞ ξt = ∞ a.s. and Iξ,η < ∞. Then ψ(0) = 1 if and only iff −η
is a subordinator, or there exists z > 0 such that ψ(z) = 1. The latter occurs if and only if
Πξ,η(A1) = 0, θ ′4 ≤ θ

′

2, and there exists u ∈ [θ ′4, θ
′

2] such that

Σξ,η =
[

1 −u
−u u2

]
σ 2
ξ , (10)

and

g(u) := γ̃η + uγ̃ξ −
1
2

uσ 2
ξ −

∫
{x2+y2<1}

(ux + y)Πξ,η(d(x, y)) ≤ 0. (11)

If there exists z ≥ 0 such that ψ(z) = 1 and, for all c ∈ R, Eq. (9) does not hold, then the
following hold:

(1) If σ 2
ξ = 0 then ψ(z) = 1 for all z ≤ m := sup{u ∈ [θ ′4, θ

′

2] : g(u) ≤ 0}, and 0 ≤ ψ(z) < 1
for all z > m;

(2) If σ 2
ξ 6= 0 then ψ(z) = 1 for all z ≤ m := −σξ,η

σ 2
ξ

, and 0 < ψ(z) < 1 for all z > m.

If there exists z ≥ 0 such that ψ(z) = 1 and there exists c ∈ R such that (9) holds, then
0 < c = θ ′4 = θ

′

2, ψ(z) = 1 for all z < c, and ψ(z) = 0 for all z ≥ c.

Remark 4. (1) It may be that θ ′2 = ∞, and if so we consider [θ ′4, θ
′

2] to be [θ ′4,∞). To avoid
unwieldy statements, we adopt similar conventions throughout the paper. Namely, if we
define parameters ε, δ ∈ [−∞,∞] where ε ≤ δ, then the interval [ε, δ] is considered to
be (−∞, δ] when ε = −∞, and [ε,∞) when δ = −∞. If ε = ∞ or δ = −∞ then we
consider [ε, δ] to be the empty set.

(2) When Πξ,η(A1) = 0, θ ′4 ≤ θ
′

2 and u ∈ [θ ′4, θ
′

2] the function g(u) is a well-defined member
of the extended reals. The existence and finiteness of g is fully analysed in point (1) of
Remark 19.

(3) Assume ξ and η are independent, so σξ,η = 0 and all jumps occur at the axes of the
Ai . Theorem 3 simplifies to the following statement: Suppose limt→∞ ξt = ∞ a.s. and
Iξ,η < ∞. Then ψ(0) = 1 iff −η is a subordinator, or ψ(z) = 1 for some z > 0. The latter
occurs iff ξ and η are each of finite variation and have no positive jumps, and g(z) ≤ 0. Note
that when (ξ, η) is finite variation, g simplifies to g(u) = dη + udξ , as explained in Eq. (13).
Since ξ drifts to∞ a.s., it must be that dξ > 0. Thus, g(z) ≤ 0 for some z > 0 iff dη < 0. In
particular, −η is a subordinator.

(4) Theorem 3.1(c) of Paulsen [10] states that when ξ and η are independent, E(ξ1) > 0, and a
set of moment conditions hold, then ψ(z) = 1 iff ξt = αt , ηt = βt and β < −αz for real
constants α and β. This contradicts the independence version of Theorem 3 stated above, and
is false. A counterexample is (ξ, η)t := (t,−t−Nt ) where N is a Poisson process. Paulsen’s
moment conditions are satisfied trivially. However, Theorem 3 implies that ψ(z) = 1 for
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all z ≤ 1, and this is confirmed by calculations. If we denote the jump times of Nt by
0 = T0 < T1 < T2 < · · · then

Vt = 1+ et

(
z − 1−

Nt∑
i=1

e−Ti

)
.

Thus, if z = 1, then VT2 = −eT2−T1 < 0 a.s. and so ψ(1) = 1.

The following proposition fully explains the ruin probability function for the degenerate situation
(9). It will be used to prove that Theorems 1 and 3 correctly allow for this case.

Proposition 5. Suppose that there exists c ∈ R such that Vt = eξt (z − c) + c. If c ≥ 0 then
ψ(z) = 0 for all z ≥ c, and the following statements hold for all 0 ≤ z < c:

(1) If ξ drifts to −∞ a.s. then 0 < ψ(z) < 1;
(2) If ξ oscillates between∞ and −∞ a.s. then ψ(z) = 1;
(3) If ξ drifts to∞ a.s. then ψ(z) = 1.

If c < 0 then the following statements hold for all z ≥ 0:

(4) If ξ drifts to −∞ a.s. then ψ(z) = 1;
(5) If ξ oscillates between∞ and −∞ a.s. then ψ(z) = 1;
(6) If ξ drifts to∞ a.s. then 0 < ψ(z) < 1.

3. Structure of the upper and lower bounds, and relationship with certain ruin

Define the lower bound function δ and the upper bound function Υ by

δ(z) := inf
{

u ∈ R : P

(
inf
t≥0

Vt ≤ u|V0 = z

)
> 0

}
and

Υ(z) := sup

{
u ∈ R : P

(
sup
t≥0

Vt ≥ u|V0 = z

)
> 0

}
.

When V0 = z, the probability that the sample paths Vt will ever rise above Υ(z), or below δ(z),
is zero. In particular, the ruin probability function ψ satisfies ψ(z) = 0 iff δ(z) ≥ 0. Define the
sets L and U by

L := {u ∈ R : δ(u) = u} and U := {u ∈ R : Υ(u) = u}.

It will be an important consequence of Proposition 17 that L and U must each, for some a, b ∈ R,
be of the form

∅, {a}, [a, b], [a,∞), or (−∞, b]. (12)

This section contains an analysis of δ,Υ ,U and L and their relationship with the ruin func-
tion. We examine the possible combinations of L and U and for each combination we examine
the possible asymptotic behaviour of ξ . This asymptotic behaviour is closely linked with the
conditions for convergence of Z t and stationarity of V , as discussed in Section 1. As well as
being of independent interest, the results contained in this section are essential for the proofs of
Theorems 1 and 3.
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We begin with comments on δ, and L . The analogues for Υ and U are obvious. Note that
δ(z) ≤ z for all z ∈ R, whilst the fact that Vt is increasing in z for all t ≥ 0 implies that
δ(z1) ≤ δ(z2) whenever z1 < z2. The next result explains the behaviour of δ outside L , and
states that L is precisely the set of starting parts V0 = z for which almost all sample paths Vt are
increasing for some time period. Recall that Tz,Λ := inf{t > 0 : Vt ∈ Λ}, and define Lc

:= R\L .

Proposition 6. The following statements hold for L and δ, and the symmetric statements hold
for U and Υ :

(1) If z ≥ sup L then δ(z) = sup L;
(2) If z < inf L then δ(z) = −∞;
(3) For z ∈ L , P(Vt is increasing on 0 < t ≤ Tz,Lc | V0 = z) = 1;
(4) For z ∈ Lc, P(Vt is increasing on 0 < t ≤ Tz,L | V0 = z) < 1.

In Section 1 we assumed that neither ξ nor η is identically zero in order to avoid trivialities. The
following proposition explains these trivialities.

Proposition 7. (1) L = R iff ξt = 0 a.s. for all t > 0 and η is a subordinator.
(2) U = R iff ξt = 0 a.s. for all t > 0 and −η is a subordinator.
(3) L = U = R iff ξt = ηt = 0 a.s. for all t > 0.

We again assume that neither ξ nor η is zero. The next proposition explains the degenerate
situation described in Eq. (9). Note that (ξ, η)t := (α, β)t for non-zero constants α and β satisfies
the conditions of this proposition for c = −β/α. Recall that a Borel set Λ ( R is an absorbing
set for V , if for all 0 ≤ s ≤ t , P(Vt ∈ Λ|Vs = x) = 1 for all x ∈ Λ. That is, whenever a sample
path Vt hits Λ, it never leaves. The stochastic exponential is denoted by ε.

Proposition 8. The following are equivalent for c 6= 0:

(1) L ∩U 6= ∅;
(2) L ∩U = {c};
(3) Vt = eξt (z − c)+ c and Z t = c(e−ξt − 1);
(4) {c} is an absorbing set;
(5) Σξ,η satisfies (10) for u = c, Πξ,η = 0 or is supported on the curve {(x, y) : y−c(e−x

−1) =
0}, and g(c) = 0;

(6) e−ξt = ε(η/c)t .

If the above conditions hold and Σξ,η 6= 0 then L = U = {c} and there exist Lévy processes
(ξ, η) for this situation such that ξ drifts to∞ a.s., ξ drifts to −∞ a.s. or ξ oscillates a.s. If the
above conditions hold and Σξ,η = 0 then:

(a) U = (−∞, c] and L = [c,∞) iff ξ is a subordinator;
(b) L = (−∞, c] and U = [c,∞) iff −ξ is a subordinator;
(c) L = U = {c} iff neither ξ or −ξ is a subordinator. There exist Lévy processes (ξ, η) for this

situation such that ξ drifts to∞ a.s., ξ drifts to −∞ a.s. or ξ oscillates a.s.

We present a theorem which describes all possible combinations of L and U and the associated
asymptotic behaviour of ξ , for the case in which L ∩U = ∅.

Theorem 9. Suppose that L ∩U = ∅. If Σξ,η 6= 0 then only the following cases can exist:

(1) L = U = ∅;
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(2) L = {a} for some a ∈ R and U = ∅;
(3) U = {a} for some a ∈ R and L = ∅.

If Σξ,η = 0 then only the following cases can exist:

(a) If L = ∅ then U is of the form ∅, {a}, [a, b], [a,∞), or (−∞, b] for some a, b ∈ R;
(b) If U = ∅ then L is of the form ∅, {a}, [a, b], [a,∞), or (−∞, b] for some a, b ∈ R;
(c) If L 6= ∅ and U 6= ∅ then there exist a < b such that L = (−∞, a] and U = [b,∞), or

U = (−∞, a] and L = [b,∞).

If U = (−∞, a] or L = [b,∞) (or both with a < b) then ξ is a subordinator. If L = (−∞, a]
or U = [b,∞) (or both with a < b) then−ξ is a subordinator. For all of the other combinations
of L and U above, there exist Lévy processes (ξ, η) such that ξ drifts to∞ a.s., ξ drifts to −∞
a.s. or ξ oscillates a.s.

An absorbent set Λ ( R is a maximal absorbing set if it is not properly contained in another ab-
sorbing set. If Λ is a maximal absorbing set, then R\Λ contains no absorbing sets since the union
of Λ with the absorbing set is an absorbing set properly containing Λ. The following corollary is
immediate. For each statement (1)–(4), the claim that the sets Λ are maximal absorbing follows
from Proposition 6. The remaining statements follow from Theorem 9.

Corollary 10. There exist Lévy processes (ξ, η) with L ∩ U = ∅ such that the associated GOU
has the following maximal absorbing sets Λ:

(1) Λ = U ∪ L, where U = (−∞, a] and L = [b,∞);
(2) Λ = U, where U = (−∞, a] and L = ∅;
(3) Λ = L, where L = [b,∞) and U = ∅;
(4) Λ = (a, b) where L = (−∞, a] and U = [b,∞).

If (ξ, η) has L ∩U = ∅ and does not have U and L satisfying one of (1)–(4), then no absorbing
sets exist.

We examine two striking cases of L and U structure, and state iff conditions on the charac-
teristic triplet of (ξ, η) for such behaviour. Similar conditions exist for the other structures in
Theorem 9, however, the statements are unwieldy.

Proposition 11. Suppose L ∩U = ∅. Then U = (−∞, a] and L = [b,∞) for −∞ < a < b <
∞ iff (ξ, η) is of finite variation and the following hold:

• There is no Brownian component (Σξ,η = 0);
• The drift of ξ is non-negative (dξ ≥ 0);
• The Lévy measure satisfies Πξ,η(A3) = Πξ,η(A4) = 0, θ ′1 > −∞, and θ2 <∞.

If these conditions hold, ξ is a subordinator and for any finite starting random variable V0 we
have limt→∞ |Vt | = ∞ a.s.

Similarly L = (−∞, a] and U = [b,∞) for −∞ < a < b < ∞ iff (ξ, η) is of finite
variation and the following hold:

• There is no Brownian component (Σξ,η = 0);
• The drift of ξ is non-positive (dξ ≤ 0);
• The Lévy measure satisfies Πξ,η(A1) = Πξ,η(A2) = 0, θ ′4 <∞ and θ3 > −∞.

If these conditions hold, ξ is a subordinator and there is a random variable V∞ with support
(a, b) such that V , starting with V0=D V∞, is strictly stationary.
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We state a theorem describing the relationship between the sets L and U , and the upper and
lower bounds of the limit random variable Z∞ of Z t as t →∞.

Theorem 12. Let a, b ∈ R and suppose Z t → Z∞ a.s. as t →∞, where Z∞ is a finite random
variable. If, for all c ∈ R, the degenerate case (9) does not hold, then a ≤ sup U iff Z∞ < −a
a.s., whilst b ≥ inf L iff Z∞ > −b a.s. Further, − sup U = inf{u ∈ R : Z∞ < u a.s.} and
− inf L = sup{u ∈ R : Z∞ > u a.s.}. Alternatively, if there exists c ∈ R such that Eq. (9) holds,
then Z∞ = −c a.s. and inf L = sup U = c.

The next theorem presents results on certain ruin which occur when L and U are of a particular
structure.

Theorem 13. Suppose that L ∩U = ∅. Then the following statements hold:

(1) If sup U ≥ 0 and L ∩ [0, sup U ] = ∅, then ψ(z) = 1 for all z ≤ sup U;
(2) If sup L ≥ 0 and U ∩ [0, sup L] = ∅, then 0 < ψ(z) < 1 for all 0 ≤ z < inf L. If sup L ≥ 0

and U ∩ [0, sup L] 6= ∅, then ψ(z) < 1 for all z > sup U.

Note that in statement (2) above, when sup L ≥ 0 and L ∩ U 6= ∅, Theorem 9 ensures that
sup U < inf L , and statement (1) above ensures that ψ(z) = 1 for all z ≤ sup U . Also, by
definition of L , ψ(z) = 0 whenever z ≥ inf L .

We state a major theorem which uses Theorems 9, 12 and 13, and is used to prove Theorems 1
and 3. For the non-degenerate case, and for (ξ, η)which satisfies various asymptotic and stability
criteria, this theorem presents iff conditions for certain ruin, stated in terms of L and U structure.
In particular, it completely describes the L and U structures for which certain ruin occurs.

Theorem 14. Suppose L ∩U = ∅.

(1) Suppose limt→∞ ξt = −∞ a.s. and I−ξ,K ξ,η <∞. There exists z ≥ 0 such that ψ(z) < 1 iff
L ∩ [0,∞) 6= ∅. If this occurs then 0 < ψ(z) < 1 for all 0 ≤ z < inf L , ψ(z) = 0 for all
z ≥ inf L, and one of the following must hold:
(a) L = [a, b] and U = ∅, where −∞ ≤ a ≤ b <∞, and b ≥ 0;
(b) L = (−∞, a] and U = [b,∞) where 0 ≤ a < b <∞.

(2) Suppose E(ξ1) = 0, E(|ξ1|
2+δ) < ∞ for some δ > 0 and there exist p, q > 1 with

1/p + 1/q = 1 such that E(e−pξ1) < ∞ and E(|η1|
q) < ∞. There exists z ≥ 0 such

that ψ(z) < 1 iff L ∩ [0,∞) 6= ∅. If this occurs then L = [a, b] and U = ∅, where
−∞ < a ≤ b <∞ and b ≥ 0, in which case 0 < ψ(z) < 1 for all 0 ≤ z < a and ψ(z) = 0
for all z ≥ a;

(3) Suppose limt→∞ ξt = ∞ a.s. and Iξ,η < ∞. There exists z ≥ 0 such that ψ(z) = 1 iff
U ∩ [0,∞) 6= ∅. If this occurs then one of the following must hold:
(c) U = [a, b] and L = ∅, where −∞ ≤ a ≤ b < ∞ and b ≥ 0, in which case ψ(z) = 1

for all z ≤ b and 0 < ψ(z) < 1 for all z > b;
(d) U = (−∞, a] and L = [b,∞) where 0 ≤ a < b < ∞, in which case ψ(z) = 1 for all

z ≤ a, 0 < ψ(z) < 1 for all a < z < b and ψ(z) = 0 for all z ≥ b.

Remark 15. The characteristic triplet conditions which equate to the iff result in statement (3)
above, are given in Theorem 3, and are obtained using the forthcoming Proposition 20. Exact
characteristic triplet conditions for U = (−∞, a] and L = [b,∞) in case (d) above, are given
in Proposition 11.
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4. Technical results on the upper and lower bounds

We state some propositions on δ, L ,Υ and U which are essential in proving the previous
theorems. The first proposition combines and restates Proposition 6, Theorem 7 and Theorem 9
of [2]. No proof is given. This proposition completely describes the relationship between Πξ,η
and δ. For Ai as in Section 2, define Au

i := {(x, y) ∈ Ai : y−u(e−x
−1) < 0}. For u ≤ 0 define

θ1 :=

{
sup

{
u ≤ 0 : Πξ,η(Au

1) > 0
}

−∞ if Πξ,η(A1 \ A4) = 0,
θ3 :=

{
inf
{
u ≤ 0 : Πξ,η(Au

3) > 0
}

0 if Πξ,η(A3 \ A4) = 0,

and for u ≥ 0 define

θ2 :=

{
sup

{
u ≥ 0 : Πξ,η(Au

2) > 0
}

0 if Πξ,η(A2 \ A1) = 0,
θ4 :=

{
inf
{
u ≥ 0 : Πξ,η(Au

4) > 0
}

∞ if Πξ,η(A4 \ A1) = 0.

Throughout, let W be the Lévy process such that e−ξt = ε(W )t .

Proposition 16 (Lower Bound). The following statements are equivalent:

(1) The lower bound function satisfies δ(z) > −∞ for some z ∈ R;
(2) There exists u ∈ R such that δ(u) = u;
(3) There exists u ∈ R such that the Lévy process η − uW is a subordinator.

Statement (2) holds for a particular value u ∈ R iff (3) holds for the same u, and vice versa.
Statements (2) and(3) hold for a particular value u 6= 0 iff the following three conditions are
satisfied: (i) the Gaussian covariance matrix satisfies Eq. (10); (ii) one of the following is true:

(a) Πξ,η(A3) = 0,Πξ,η(A2) 6= 0, θ2 ≤ θ4 and u ∈ [θ2, θ4];
(b) Πξ,η(A2) = 0,Πξ,η(A3) 6= 0, θ1 ≤ θ3 and u ∈ [θ1, θ3];
(c) Πξ,η(A3) = Πξ,η(A2) = 0 and u ∈ [θ1, θ4];

and, (iii), in addition, u satisfies g(u) ≥ 0 for the function g in Eq. (11).

From the definition of L it is an immediate corollary, firstly, that L = ∅ iff none of conditions
(1)–(3) of Proposition 16 hold, and secondly, that η is a subordinator iff 0 ∈ L . The next propo-
sition adds further information concerning L . Most importantly, it shows that the set L is always
connected, and gives concrete values for the endpoints.

Proposition 17. If σ 2
ξ 6= 0 and any of conditions (1)–(3) of Proposition 16 hold, then L =

{−
σξ,η

σ 2
ξ

}. If σ 2
ξ = 0 and any of (1)–(3) hold, then σ 2

η = 0 and one of the following holds:

• η is a subordinator and condition (ii) of Proposition 16 does not hold for any u 6= 0, in which
case L = {0};
• Condition (ii) is satisfied for some u 6= 0, in which case there exists −∞ ≤ a ≤ b ≤ ∞ such

that L = [a, b].

In the latter case, if condition (a) of Proposition 16 holds then 0 ≤ a = max{θ2,m1} and
b = min{θ4,m2} for m1 := inf{u ∈ R : g(u) ≥ 0} and m2 := sup{u ∈ R : g(u) ≥ 0}.
If (b) holds then a = max{θ1,m1} and b = min{θ3,m2} ≤ 0. If (c) holds then a = max{θ1,m1}

and b = min{θ4,m2}.
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Define L∗ to be the set of starting values on which the GOU has no negative jumps, namely

L∗ := {u ∈ R : ∀t > 0P (1Vt < 0|Vt− = u) = 0} .

It is a consequence of Proposition 6 that L ⊆ L∗. The next proposition describes L∗. In particular,
it shows that the set L∗ is always connected, and gives concrete values for the endpoints. It also
shows that whenever Vt− > sup L∗ and a negative jump 1Vt occurs, then the jump cannot be so
negative as to cause Vt ≤ sup L∗. Thus, L∗ acts as a barrier for negative jumps of V .

Proposition 18. (1) If L∗ 6= ∅ then, for any t ≥ 0, Vt− > sup L∗ implies Vt > sup L∗ a.s.;
(2) L∗ = {u ∈ R : η − uW has no negative jumps};
(3) L∗ 6= ∅ iff condition (ii) of Proposition 16 is satisfied for some u 6= 0, or η has no negative

jumps;
(4) L∗ = {0} iff η has no negative jumps and condition (ii) does not hold for any u 6= 0;
(5) If condition (ii) of Proposition 16 holds for some u 6= 0 then L∗ = [θ2, θ4], [θ1, θ3] or
[θ1, θ4], corresponding to conditions (a),(b) or (c) of Proposition 16.

Remark 19. (1) If (ξ, η) is an infinite variation Lévy process then, as noted in Section 1,∫
{x2+y2<1} |(x, y)|Πξ,η(d(x, y)) = ∞. Thus, for some u ∈ R the integral

∫
{x2+y2<1}(ux +

y)Πξ,η(d(x, y)), and hence the function g(u) in (11), may not exist as a well-defined member
of the extended real numbers. However, it is a consequence of the proof of Theorem 9
in [2], that if u ∈ L∗ then g(u) is a well-defined member of the extended reals, and
g(u) ∈ [−∞,∞). Under such conditions, it is also shown that

Πξ,η
(
{y − u(e−x

− 1) < 0}
)
= 0

and so the domain of integration for the integral component of g can be decreased to
{x2
+ y2 < 1} ∩ {y − u(e−x

− 1) ≥ 0}.
(2) Note that g is a linear function on R iff the Lévy measure of (ξ, η) is of finite variation,

namely∫
{x2+y2<1}

|(x, y)|Πξ,η(d(x, y)) <∞.

In this case the drift vector (dξ , dη) is finite, and we can write

g(u) = γη −
∫
(−1,1)

yΠη(dy)+ u

(
γξ −

1
2
σ 2
ξ −

∫
(−1,1)

xΠξ (dx)

)
= dη + u

(
dξ −

1
2
σ 2
ξ

)
, (13)

where the first equality follows by converting (γ̃ξ , γ̃η) to (γξ , γη) using Eq. (4) and the sym-
metric version for η, and the second equality follows by converting (γξ , γη) to (dξ , dη) using
Eq. (5). It will be a consequence of the proof of Proposition 17, that if a, b ∈ L and a 6= b
then g is a linear function on R.

(3) Section 1 stated exact conditions for a Lévy process to be a subordinator. When u 6= 0
the conditions in Proposition 16 are exactly the requirements for η − uW to be a subor-
dinator. Eq. (10) is equivalent to ση−uW = 0. The requirement that one of the conditions
(a), (b) and (c) holds is equivalent to the requirement that there exists u 6= 0 such that
Πη−uW ((−∞, 0)) = 0. This implies that L∗ \ {0} is the set of all u 6= 0 such that η − uW
has no negative jumps. Finally, if u ∈ L∗ then g(u) = dη−uW , and hence condition (11) is
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equivalent to the requirement that η− uW has positive drift. The fact that η− uW is of finite
variation actually follows from the two conditions Πη−uW ((−∞, 0)) = 0 and dη−uW ≥ 0.
To see this, note that when Πη−uW ((−∞, 0)) = 0, Eq. (5) simplifies to

dη−uW = γη−uW −

∫
(0,1)

xΠη−uW (dx),

and hence dη−uW is a member of the extended reals regardless of whether η − uW is finite
variation. In particular, dη−uW ∈ [−∞,∞), and dη−uW = −∞ iff

∫
(0,1) xΠη−uW (dx) = ∞

which occurs iff η − uW is infinite variation.

We state, without proof, the parallel version for U and Υ , to Proposition 16. This statement is
needed to prove Theorem 3 and will be combined with Proposition 16 to prove Theorems 9, 13
and 14. If we define

U∗ := {u ∈ R : ∀t > 0 P (1Vt > 0|Vt− = u) = 0} ,

then the parallel versions of Propositions 17 and 18 and Remark 19 hold. We use these results,
however the parallels are obvious so we do not state explicitly.

Proposition 20 (Upper Bound). The following are equivalent:

(1) The upper bound function satisfies Υ(z) <∞ for some z ∈ R;
(2) There exists u ∈ R such that Υ(u) = u;
(3) There exists u ∈ R such that the Lévy process −(η − uW ) is a subordinator.

Statement (2) holds for a particular value u ∈ R iff (3) holds for the same u, and vice versa.
Statements (2) and (3) hold for a particular value u 6= 0 iff the following three conditions are
satisfied: (i) the Gaussian covariance matrix satisfies Eq. (10); (ii) one of the following is true:

(a) Πξ,η(A1) = 0,Πξ,η(A4) 6= 0, θ ′4 ≤ θ
′

2 and u ∈ [θ ′4, θ
′

2];
(b) Πξ,η(A4) = 0,Πξ,η(A1) 6= 0, θ ′3 ≤ θ

′

1 and u ∈ [θ ′3, θ
′

1];
(c) Πξ,η(A1) = Πξ,η(A4) = 0 and u ∈ [θ ′3, θ

′

2];

and, (iii), in addition, u satisfies g(u) ≤ 0 for the function g in Eq. (11).

Remark 21. Symmetric statements to those for L and L∗ in Remark 19, hold for U and U∗. The
following remarks relate to the combination of L and U , and L∗ and U∗.

(1) Parallel to 1 and 2 of Remark 19, whenever u ∈ U∗, g(u) from (11) is a well-defined mem-
ber of the extended reals, g(u) ∈ (−∞,∞], and −g(u) = d−(η−uW ). Since d−(η−uW ) =

−dη−uW , we know that if u ∈ U∗ ∪ L∗ then g(u) is a well-defined member of the extended
reals and g(u) = dη−uW .

(2) If a ∈ L , b ∈ U and a 6= b then g is linear and (ξ, η) is finite variation. This statement is
proved easily using similar arguments to those in the proof of Proposition 17.

We state a proposition, describing the possible combinations of L∗ and U∗, which will be essen-
tial for proving Theorem 9.

Proposition 22. The following statements hold for L∗, and the symmetric statements hold for
U∗:

(1) If L∗ = R then U∗ = ∅ or U∗ = R;
(2) If L∗ = [a, b] for some −∞ < a ≤ b <∞, then U∗ = ∅ or U∗ = L∗ = {a} = {b};
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(3) If L∗ = [b,∞) for some b ∈ R, then U∗ = ∅ or U∗ = (−∞, a] for some −∞ < a ≤ b <
∞;

(4) If L∗ = (−∞, a] for some a ∈ R, then U∗ = ∅ or U∗ = [b,∞) for some −∞ < a ≤ b <
∞.

We end the section with two lemmas. No proof will be given. The first follows by considering
the definitions of θi and θ ′i . It will be used several times as a calculation tool. The second gives
conditions on the Lévy measure of ξ and η which ensure that sup0≤t≤1 |Z t | has finite mean. It
will be needed to prove statement (2) of Theorem 1. The proof is similar to that of Lemma 11
in [2] and uses the Burkholder–Davis–Gundy inequalities, and various Doob’s inequalities.

Lemma 23. (1) If Πξ,η(A1) 6= 0 then θ ′1 ≤ θ1 ≤ 0;
(2) If Πξ,η(A2) 6= 0 then 0 ≤ θ ′2 ≤ θ2;
(3) If Πξ,η(A3) 6= 0 then θ3 ≤ θ

′

3 ≤ 0;
(4) If Πξ,η(A4) 6= 0 then 0 ≤ θ4 ≤ θ

′

4.

Further:

(a) Πξ,η(A1) = 0 iff θ1 = −∞ and θ ′1 = 0;
(b) Πξ,η(A2) = 0 iff θ2 = 0 and θ ′2 = ∞;
(c) Πξ,η(A3) = 0 iff θ3 = 0 and θ ′3 = −∞;
(d) Πξ,η(A4) = 0 iff θ4 = ∞ and θ ′4 = 0.

Lemma 24. Suppose there exist r > 0 and p, q > 1 with 1/p + 1/q = 1 such that
E(e−max{1,r}pξ1) <∞ and E(|η1|

max{1,r}q) <∞. Then

E

(
sup

0≤t≤1

∣∣∣∣∫ t

0
e−ξs−dηs

∣∣∣∣max{1,r}
)
<∞. (14)

5. Proofs for Section 4

Throughout the remaining sections, with the exception of the proof of Proposition 7, we retain
the assumption that neither ξ nor η is identically zero. We also note that Proposition 16 will not
be proved, but will be used repeatedly.

Proof (Proposition 18). We prove statements (2), (3) then (1). The proof of (4) and (5) follows
trivially from the proof of (2) and (3).

(2) Proposition 6 in [2] implies that 1(ηt − uWt ) = 1ηt − u(e−1ξt − 1). Thus, Eq. (3)
implies that whenever Vt− = u, a jump (1ξt ,1ηt ) causes a negative jump1Vt iff1(ηt − uWt )

is negative. Hence L∗ is precisely the set of all u such that ηt − uWt has no negative jumps.
(3) By (2), L∗ 6= ∅ iff η − uW has no negative jumps for some u ∈ R. If u = 0, this occurs

iff η has no negative jumps. If u 6= 0, it is noted in point (3) of Remark 19, that this occurs iff
u 6= 0 satisfies condition (ii) of Proposition 16.

(1) Suppose L∗ 6= ∅. If 0 ∈ L∗ then (1) is trivial. If 0 6∈ L∗ then (ii) of Proposition 16 holds
for some u 6= 0. We assume (a) of Proposition 16 holds. If (b) or (c) of Proposition 16 holds the
proof is similar. Since (a) holds, property (5) implies that L∗ = [θ2, θ4]. Suppose Vt− > θ4 and
recall that Eq. (3) states

1Vt = (e1ξt − 1)Vt− + e1ξt1ηt .
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By the definitions of θ4 and Au
4 , and Eq. (3), there exists (x, y) ∈ AVt−

4 such that (ex
− 1)θ4 +

ex y ≥ 0 and (ex
− 1)Vt− + ex y < 0. Thus,

Vt = Vt− + (ex
− 1)Vt− + ex y

= Vt− + (ex
− 1)(Vt− − θ4)+ (ex

− 1)θ4 + ex y

≥ Vt− + (ex
− 1)(Vt− − θ4)

> θ4. �

Proof (Proposition 17). Assume σ 2
ξ 6= 0 and (2) and (3) of Proposition 16 hold for some u 6= 0.

Then Eq. (10) holds for u, which implies that u = −σξ,η
σ 2
ξ

, and hence is the unique non-zero

number satisfying (2) and (3) of Proposition 16. Since−σξ,η
σ 2
ξ

satisfies condition (2), L = {−σξ,η
σ 2
ξ

}

by definition.
Assume σ 2

ξ 6= 0 and (2) and (3) of Proposition 16 hold for u = 0. By (2), 0 ∈ L . By (3), η is

a subordinator, and hence σ 2
η = σξ,η = 0. Thus, by the above, no non-zero number can satisfy

statements (2), (3), and so L = {0} = {−σξ,η
σ 2
ξ

}.

Assume σ 2
ξ = 0. If (2) and (3) of Proposition 16 hold for u = 0 then η is a subordinator by

(3) and hence σ 2
η = 0. Alternatively, if (1)–(3) of Proposition 16 hold for some u 6= 0 then Eq.

(10) holds for u, which implies that σ 2
η = u2σ 2

ξ , and so σ 2
η = 0.

Assume σ 2
ξ = 0 and condition (ii) of Proposition 16 does not hold for any u 6= 0. This implies

that L ∩ (R \ {0}) = ∅. If, further, η is a subordinator, then 0 ∈ L , and hence L = {0}.
Assume σ 2

ξ = 0 and (ii) of Proposition 16 holds for some u 6= 0. This occurs precisely when
one of conditions (a), (b) or (c) of Proposition 16 holds, and Eq. (11) holds. Thus, inf L = a and
sup L = b for the values of a and b given in the proposition statement. Since L∗ is connected, L
is connected iff {u ∈ R : g(u) ≥ 0} is connected, which follows from the analysis below.

As noted in point (1) of Remark 19, whenever u ∈ L∗ we know g(u) ∈ [−∞,∞). There are
three possibilities for behaviour of g on L∗. Firstly, it may be that g(u) = −∞ for all u ∈ L∗.
Secondly there may exist v ∈ L∗ such that g(v) is finite and g(u) = −∞ for all u ∈ L∗ with
u 6= v. We show that the only other possibility is that g is linear on R. Suppose there exists
u1, u2 ∈ L∗ with u1 6= u2, such that g(u1) and g(u2) are both finite. Then

g(u1)− g(u2) =

(
γ̃ξ −

1
2
σ 2
ξ −

∫
{x2+y2<1}

xΠξ,η(d(x, y))

)
(u1 − u2)

is finite, which implies that
∫
{x2+y2<1} xΠξ,η(d(x, y)) exists, and is finite. Since g(u1) is finite,

this implies that
∫
{x2+y2<1} yΠξ,η(d(x, y)) exists and is finite. Thus, g is a linear function on

R. �

Proof (Proposition 22). We prove statements (1), (2), and (3). The proof of (4) is similar to the
proof of (3).

(1) Assume L∗ = R. Then condition (c) of Proposition 16 must hold, and so Πξ,η(A2) =

Πξ,η(A3) = 0, and L∗ = [θ1, θ4]. Since θ1 = −∞ and θ4 = ∞, it must be that Πξ,η(A1\A4) = 0
and Πξ,η(A4 \ A1) = 0, respectively. Thus, if Πξ,η(A1 ∩ A4) = 0 then Πξ,η(R2) = 0, in which
case condition (c) of Proposition 20 holds, and U∗ = R. Alternatively, if Πξ,η(A1 ∩ A4) 6= 0
then η has positive jumps and so 0 6∈ U∗, and (ii) of Proposition 20 cannot hold. Hence U∗ = ∅.
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(2) Assume L∗ = [a, b] for some −∞ < a ≤ b < ∞. There are four ways in which this is
possible, namely, when (a), (b) or (c) of Proposition 16 hold, or when L∗ = {0}. For each case
we show U∗ = ∅ or U∗ = L∗ = {a} = {b}.

Suppose (a) of Proposition 16 holds, and U∗ 6= ∅. The case in which (b) holds and U∗ 6= ∅,
is similar. Propositions 16 and 18 imply that Πξ,η(A3) = 0,Πξ,η(A2) 6= 0, θ2 ≤ θ4 and
L∗ = [θ2, θ4]. Since θ4 < ∞, it must be that Πξ,η(A4 \ A1) 6= 0. Since Πξ,η(A3) = 0, this
implies that −η is not a subordinator, and so 0 6∈ U∗. Thus, since U∗ 6= ∅, condition (a) of
Proposition 20 holds, and so Πξ,η(A1) = 0, θ ′4 ≤ θ

′

2, and U∗ = [θ ′4, θ
′

2]. However, statements
(2), (4) of Lemma 23 state that θ ′2 ≤ θ2 and θ4 ≤ θ

′

4. Hence θ ′2 = θ2 = θ4 = θ
′

4.
Suppose (c) of Proposition 16 holds. Then Πξ,η(A2) = Πξ,η(A3) = 0, and L∗ = [θ1, θ4].

Since θ4 < ∞ and θ1 > −∞ it must be that Πξ,η(A4 \ A1) 6= 0 and Πξ,η(A1 \ A4) 6= 0,
respectively. Hence, (ii) of Proposition 20 cannot hold, and so U∗ \ {0} = ∅. Further, −η is not
a subordinator, and so U∗ = ∅.

Suppose L∗ = {0}, and U∗ 6= ∅. By (4) of Proposition 18, L∗ = {0} iff η has no negative
jumps and at the same time Πξ,η(A3 ∩ A4) 6= 0 and Πξ,η(A2 ∩ A1) 6= 0. Hence, (ii) of
Proposition 20 fails to hold, which implies U∗ \ {0} = ∅. Thus, since U∗ 6= ∅, it must be
that U∗ = L∗ = {0}.

(3) Assume L∗ = [b,∞) for some b ∈ R and U∗ = ∅. We prove U∗ = (−∞, a] for
some −∞ < a ≤ b < ∞. By the symmetric version of (2) of Proposition 22, we have
U∗ 6= {0}. Since L∗ = [b,∞), condition (a) or (c) of Proposition 16 holds, with θ4 = ∞.
Thus, Πξ,η(A3) = 0, which implies θ ′3 = −∞. Also, since θ4 = ∞, we have Πξ,η(A4 \ A1) = 0.
Since U∗ 6= ∅, we have Πξ,η(A1 ∩ A4) = 0, and so Πξ,η(A4) = 0. This implies that (b) or
(c) of Proposition 20 holds, and so U∗ = (−∞, θ ′1] or U∗ = (−∞, θ ′2] respectively. Now,
if condition (a) of Proposition 16 holds, then L∗ = [θ2,∞). Note that Lemma 23 states that
θ ′1 ≤ 0 ≤ θ ′2 ≤ θ2, and hence the result is proved for either form of U∗. Alternatively, if (c) of
Proposition 16 holds, then L∗ = [θ1,∞) where θ1 > −∞, which implies Πξ,η(A1 \ A4) 6= 0.
Hence, (b) of Proposition 20 holds and U∗ = (−∞, θ ′1]. Now, Lemma 23 states that θ ′1 ≤ θ1. �

6. Proofs for Section 3 and associated examples

Proof (Proposition 6). Proposition 16 implies that δ(δ(z)) = δ(z) and

δ(z) = sup{u ≤ z : δ(u) = u}. (15)

Statement (1) of Proposition 6 follows from (15). To prove (2), assume z < inf L . Suppose
−∞ < m := δ(z). Since δ(z) ≤ z, we have −∞ < m ≤ z < inf L . However, (15) implies that
m ∈ L . Hence δ(z) = −∞. Statements (3) and (4) follow from the definitions of δ and L . �

Proof (Proposition 7). Assume L = R. This implies, using Proposition 16 and point (2) of
Remark 19, that Σξ,η = 0 and g is linear. Further, Πξ,η(A3) = Πξ,η(A2) = 0 and L∗ =
[θ1, θ4] = (−∞,∞). Now θ1 = −∞ iff Πξ,η((0,∞) × [0,∞)) = 0, whilst θ4 = −∞ iff
Πξ,η((−∞, 0) × [0,∞)) = 0. Hence ξ has no jumps and η has no negative jumps. By Propo-
sition 16, g(u) ≥ 0 on R. Since g(u) = dη + udξ , this implies that dξ = 0 and dη ≥ 0, thus
proving one direction of (1). The converse is trivial since V simplifies to Vt = z + ηt . The proof
of (2) is similar and (3) follows from (1) and (2). �

Proof (Proposition 8).
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(1)⇔ (2) Assume L∩U 6= ∅ and let z1, z2 ∈ L∩U . We show z1 = z2 6= 0. By Proposition 16,
z ∈ L iff η− zW is increasing and by Proposition 20, z ∈ U iff η− zW is decreasing.
Thus, η − z1W = η − z2W = 0, which implies z1W = z2W . Since ξ is not zero, W
is not zero, and thus z1 = z2. Further, if z1 = z2 = 0, then η must be both increasing
and decreasing, which requires that η be identically zero. Thus, z1 = z2 6= 0.

(2)⇔ (3) Suppose L ∩ U = {c}. Then Vt = c for all t ≥ 0 whenever V0 = c, which implies
eξt (c + Z t ) = c, which implies Vt = eξt (z− c)+ c, as required. Conversely, suppose
Vt = eξt (z−c)+c. Clearly, c ∈ L∩U and so L∩U 6= ∅, which implies L∩U = {c}
by the above.

(2)⇔ (4) By definition of δ and Υ , c is an absorbing point iff δ(c) = Υ(c) = c. The definitions
of L and U imply that this occurs iff c ∈ L ∩U .

(2)⇒ (5) Assume L ∩U = {c} where c 6= 0. Propositions 16 and 20 imply Eq. (10) is satisfied
for u = c, and imply respectively that g(c) ≥ 0 and g(c) ≤ 0, thus giving g(c) = 0.
Finally, since (2)⇒ (3), the equation Z t :=

∫ t
0 e−ξs−dηs = c

(
e−ξt − 1

)
holds, which

implies that e−ξt−1ηt = c
(
e−ξt − 1

)
− c

(
e−ξt− − 1

)
and so 1ηt = c(e−1ξt − 1).

(5)⇒ (2) Assume (5) holds for c 6= 0. We prove c ∈ L , and a symmetric argument proves
c ∈ U . Since (10) is satisfied for u = c, and g(c) = 0 holds, conditions (i) and
(iii) of Proposition 16 are respectively satisfied for u = c. Thus it suffices to prove
condition (ii) of Proposition 16 is satisfied for u = c, or equivalently, show c ∈ L∗.
If Πξ,η = 0 then this is trivial since L∗ = R. Suppose that Πξ,η is supported on
the curve {(x, y) : y − c(e−x

− 1) = 0} for c ∈ R. If c > 0,Πξ,η(A2) 6= 0 and
Πξ,η(A4) 6= 0, then θ2 = θ4 = c and so L∗ = {c}. If c ≥ 0,Πξ,η(A2) = 0 and
Πξ,η(A4) 6= 0, then θ2 = 0 and θ4 = c, and so L∗ = [0, c]. If c ≥ 0,Πξ,η(A2) 6= 0
and Πξ,η(A4) = 0, then θ2 = c and θ4 = ∞, and so L∗ = [c,∞). In each of these
three cases, c ∈ L∗. The proof for c < 0 is similar. Hence, c ∈ L ∩ U which, by the
equivalence of statements (1), (2), implies that L ∩U = {c}, as required.

(2)⇔ (6) L ∩U = {c} iff η − cW = 0 where e−ξt = ε(W )t which occurs iff e−ξt = ε(η/c)t .

Now assume statements (1)–(6) hold. If Σξ,η 6= 0 and both L and U are non-empty, then
Propositions 16 and 20 imply that L = U = {c} where c = −σξ,η

σ 2
ξ

. For examples of Lévy

processes (ξ, η) satisfying statements (1)–(6) and such that ξ drifts to∞ a.s., ξ drifts to−∞ a.s.
or ξ oscillates a.s., see Example 26.

If Σξ,η = 0 then the statements (a), (b) and (c) follow from the equation for V in statement (3)
above. For examples of (ξ, η) satisfying statement (c) and satisfying each of the three asymptotic
behaviours, see Example 27. �

Proof (Theorem 9). Assume L ∩U = ∅. Suppose, firstly, that Σξ,η 6= 0. We prove (ξ, η) exists
such that (1), (2) or (3) occurs, and for each case, we show that ξ can satisfy each of the three
asymptotic behaviours. For (1), this is obvious. Choosing (ξ, η) such that Σξ,η does not satisfy
Eq. (10) implies that (ξ, η) fails both propositions, and so L = U = ∅, regardless of the choice
of (γ̃ξ , γ̃η) and Πξ,η. Clearly, we can make suitable choices for these objects to obtain the desired
asymptotic behaviour of ξ . For (2), our existence claims are proven by Example 25, and (3) is
symmetric. It follows from Proposition 17, and the symmetric version for U , that whenever L
and U are non-zero, they equal {−σξ,η/σ 2

ξ }. Hence, no cases, other than (1), (2), and (3) can
exist.

Now suppose Σξ,η = 0. We prove (ξ, η) exists such that (a), (b) or (c) occurs, and for case, we
show that ξ can satisfy the specified asymptotic behaviours. Examples 28 and 29 present (ξ, η)
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such that L = ∅, whilst U may be of form ∅, {a} or [a, b] for−∞ < a < b <∞, and for each of
these combinations, it is shown that ξ can satisfy the three asymptotic behaviours. In Example 30,
L = ∅,U is of form [b,∞) for b ∈ R, and ξ drifts to −∞ a.s. In Example 32, L = ∅,U is
of form (−∞, a] for a ∈ R, and ξ drifts to ∞ a.s. These four examples prove the existence
claims for (a), and the case (b) is symmetric. In Example 31, L = (−∞, a],U = [b,∞) for
−∞ < a < b < ∞ and ξ drifts to −∞ a.s. In Example 33, U = (−∞, a], L = [b,∞) for
−∞ < a < b <∞, and ξ drifts to∞ a.s. These two examples prove the existence claims for (c).

Now assume Σξ,η = 0, L 6= ∅,U 6= ∅ and L ∩ U = ∅. We prove that no cases, other than
those listed in (c), can exist. As noted in point (2) of Remark 21, it follows from our assumptions
that (ξ, η) is finite variation and g is linear.

Suppose L = [a, b] for some −∞ < a ≤ b < ∞. We obtain a contradiction. If L∗ = [c, d]
for some −∞ < c ≤ a ≤ b ≤ d < ∞, then (2) of Proposition 22 states that U∗ = ∅ or U∗ =
L∗ = {c} = {d}. Thus, U = ∅ or U = L = {a} = {b}, both of which contradict our assumptions.
Hence, L∗ = [c,∞) for some −∞ < c ≤ a, or L∗ = (−∞, d] for some b ≤ d <∞.

Thus, suppose L = [a, b] and L∗ = [c,∞) for some −∞ < c ≤ a ≤ b < ∞. The case
L∗ = (−∞, d] for some b ≤ d < ∞ is symmetric. We know g(u) = dη + udξ . If dξ ≥ 0

then b = ∞, which we have rejected. Hence dξ < 0, and so b = − dη
dξ
≥ a. Thus, since U

is non-empty, L ∩ U = ∅, and g(u) ≤ 0 on U , we must have U ⊂ [b,∞). However, (3) of
Proposition 22 implies that U∗ ∩ [b,∞) = ∅. Hence U is empty, which is a contradiction. This
completes the proof that L 6= [a, b] for some −∞ < a ≤ b <∞.

Now assume L = [b,∞) for b ∈ R. We prove ξ is a subordinator. Proposition 17 and point
(2) of Remark 19, imply respectively, that (ξ, η) has no Brownian component, and (ξ, η) is of
finite variation. Thus, g(u) = dη + udξ . Proposition 16 implies that g(u) ≥ 0 on [b,∞) and
hence dξ ≥ 0. Finally, L∗ = [c,∞) for some −∞ ≤ c ≤ b. It is a consequence of the proofs of
statements (1), (3) of Proposition 22, that ξ has no negative jumps. Thus ξ is a subordinator.

Now, assume L = [b,∞) for b ∈ R and U = ∅. We prove U = (−∞, a] for some −∞ <

a < b < ∞. Note that L∗ = [c,∞) for some −∞ ≤ c ≤ b, so statement (3) of Proposition 22
implies that U∗ = (−∞, d] for some −∞ < d ≤ c. Since g(u) = dη + udξ and dξ ≥ 0, we
have U = (−∞, a] for some−∞ < a ≤ d . Since we have assumed L ∩U = ∅, we have a < b.

If we assume that U = (−∞, a] for a ∈ R, it can be shown, using a method of proof similar to
the one above, that ξ is a subordinator, and L = ∅ or L = [b,∞) for some −∞ < a < b <∞.
We omit the details.

If L = (−∞, a] for a ∈ R, then symmetric proofs to the above, show that −ξ is a subor-
dinator, and U = ∅ or U = [b,∞) for −∞ < a < b < ∞. Similarly, if U = [b,∞) for
b ∈ R, then symmetric proofs show that −ξ is a subordinator, and L = ∅ or L = (−∞, a] for
−∞ < a < b <∞. �

Proof (Proposition 11). Assume L ∩ U = ∅. In the proof of Theorem 9, it was shown that
if L = [b,∞) for b ∈ R then (ξ, η) is of finite variation, Σξ,η = 0, dξ ≥ 0,Πξ,η(A3) =

0,Πξ,η(A4 \ A1) = 0, and θ2 < ∞. By Propositions 16 and 17 the converse also holds. A
similar proof shows that U = (−∞, a] for a ∈ R iff (ξ, η) is of finite variation, Σξ,η = 0, dξ ≥
0,Πξ,η(A4) = 0,Πξ,η(A3 \ A2) = 0, and θ ′1 > −∞. Combining these two sets of iff conditions
gives iff conditions for the case U = (−∞, a] and L = [b,∞) with −∞ < a < b <∞. Since
V is increasing on L and decreasing on U , and V is a strong Markov process, it is clear that
limt→∞ |Vt | = ∞ a.s. for any finite starting random variable V0.

It follows by symmetric methods that L = (−∞, a] and U = [b,∞) for −∞ < a < b <∞
iff the conditions in Proposition 11 hold. We must show that in this situation V can be strictly



D. Bankovsky / Stochastic Processes and their Applications 120 (2010) 255–280 273

stationary. In [8] it is shown that

Vt =D eξt z +
∫ t

0
eξs−dK ξ,η

s .

Theorem 2 in [7] states that if limt→∞ ξt = −∞ and I−ξ,K ξ,η = ∞ then
∣∣∣∫ t

0 eξs−dK ξ,η
s

∣∣∣→P∞

as t → ∞. As noted, if L = (−∞, a] and U = [b,∞) with −∞ < a < b < ∞ then −ξ
is a subordinator, so limt→∞ ξt = −∞ a.s. Now if I−ξ,K ξ,η = ∞ then by the above, and since
limt→∞ eξt = −∞ a.s, we have |Vt |→D∞. However this is impossible since V is increasing
on L and decreasing on U . Thus, I−ξ,K ξ,η < ∞. Hence, by Theorem 2.1 in [8], there is a finite

random variable V∞ :=
∫
∞

0 eξs−dK ξ,η
s such that V , starting with V0 = V∞, is strictly stationary.

Since V is increasing on L and decreasing on U , and V is a strong Markov process, it is clear
that V∞ has support (a, b). �

Proof (Theorem 12). Assume Z t → Z∞ a.s. as t → ∞, where Z∞ is finite. Suppose that for
all c ∈ R, Eq. (9) does not hold. This implies that Z∞ is continuous. As noted in Section 1, a
necessary condition for convergence of Z t , is limt→∞ ξt = ∞ a.s., which implies that eξt →∞

a.s. Since Z∞ is finite a.s., and eξt → ∞ a.s., it is clear from the definition Vt := eξt (z + Z t ),
that

P
(

lim
t→∞

Vt = ∞|V0 = z
)
= P(Z∞ > −z). (16)

Now let a ≤ sup U . By definition of U, P(limt→∞ Vt = ∞|V0 = a) = 0 which implies, by Eq.
(16), that Z∞ < −a a.s., as required.

Conversely, let a > sup U . We prove P(Z∞ > −a) > 0. Since we have assumed that
|Z∞| <∞ a.s., we can choose x > a such that P(Z∞ > −x) > 0. Note that Υ(a) = ∞ and so
there exists a fixed time T > 0 such that P(VT ≥ x |V0 = a) > 0.

Hence, using (16), the law of conditional probability and the Markov property,

P(Z∞ > −a) = P
(

lim
t→∞

Vt = ∞|V0 = a
)

≥ P
(

lim
t→∞

Vt = ∞|VT ≥ x
)

P(VT ≥ x |V0 = a)

≥ P
(

lim
t→∞

Vt = ∞|V0 = x
)

P(VT ≥ x |V0 = a)

which is greater than zero by (16) and the choice of x and T . Thus,

a ≤ sup U iff Z∞ < −a a.s. (17)

Now we prove − sup U = m where m := inf{u ∈ R : Z∞ < u a.s.}. By (17), Z∞ < − sup U ,
so − sup U ≥ m. By assumption, Z∞ has no atoms and so Z∞ < m a.s. Thus, (17) implies
−m ≤ sup U . The proofs for L are similar.

Now assume there exists c ∈ R such that Eq. (9) holds, and assume Z t → Z∞ a.s. as t →∞.
By (9), Z∞ = −c a.s. Further, since ξ drifts to∞ a.s., Proposition 8 implies that L = U = {c},
or U = (−∞, c] and L = [c,∞). In both these cases, inf L = sup U = c. �

Proof (Theorem 13). (1) Assume L ∩ U = ∅, sup U ≥ 0, L ∩ [0, sup U ] = ∅, and let
0 ≤ u ≤ sup U . We prove ψ(u) = 1. There exists z ≥ u such that z ∈ U , and so Υ(z) = z.
Since ψ(u) ≥ ψ(z), it suffices to prove that ψ(z) = 1. Since L ∩ [0, sup U ] = ∅, we know
δ(z) < 0, which implies that Pz(inft>0 Vt < 0) > 0. Thus, there exists a fixed time T ∈ R such
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that Pz(inf0<t≤T Vt < 0) := m > 0. Let n ∈ N and let A be the distribution of VnT conditional
on both V0 = z and inf0<t≤nT Vt ≥ 0. Since Υ(z) = z we know A ≤ z a.s. Now

Pz

(
inf

nT<t≤(n+1)T
Vt < 0

∣∣∣∣ inf
0<t≤nT

Vt ≥ 0
)
= PA

(
inf

0<t≤T
Vt < 0

)
≥ m,

where the equality follows from the Markov property and the inequality follows from the fact
that A ≤ z and Vt is increasing in z. Define Pn

:= Pz
(
inf0<t≤nT Vt < 0

)
for all n ∈ N. By the

law of total probability

Pn+1
= Pn

+ Pz

(
inf

nT<t≤(n+1)T
Vt < 0

∣∣∣∣ inf
0<t≤nT

Vt ≥ 0
) (

1− Pn)
and so Pn+1

≥ Pn
+ (1− Pn)m where P1

= m ∈ (0, 1). This implies that Pn
≥ 1− (1−m)n

which implies that limn→∞ Pn
= 1, and hence Pz (inf0<t Vt < 0) = 1 by the continuity property

of measures.
(2) Assume L ∩ U = ∅, sup L ≥ 0, and U ∩ [0, sup L] = ∅. We let z ≥ 0 and prove that

ψ(z) < 1. If z ≥ inf L then ψ(z) = 0 by definition. Thus, it suffices to assume 0 ≤ z < inf L .
Suppose ψ(z) = 1. By assumption, Υ(z) > inf L and so, by definition, P(C) > 0 where
C := {supt≥0 Vt ≥ inf L}. By definition of L , limt→∞ Vt ≥ inf L a.s. for all ω ∈ C . Let
T1 := inf{t > 0 : Vt < 0} and Tn := inf{t > Tn−1 : Vt < VTn−1} for integers n > 1. By
assumption, ψ(z) = 1 and so T1 is finite a.s. Further, the strong Markov property of V implies
that {Tn} is a sequence of stopping times increasing towards infinity as n → ∞, and each Ti is
a.s. finite. In particular, each Ti is a.s. finite on C . However VTn < 0 a.s. which contradicts the
fact that limt→∞ Vt > inf L a.s. on C . Hence ψ(z) < 1. The proof of the case U ∩[0, sup L] 6= ∅
is similar. �

Proof (Theorem 14). (1): Assume L ∩ U = ∅, limt→∞ ξt = −∞ a.s. and I−ξ,K ξ,η < ∞.
Suppose that L ∩[0,∞) 6= ∅. Since ξ drifts to−∞ a.s., Proposition 8 and Theorem 9 imply that
condition (a) or (b) holds. Further, by statement (2) of Theorem 13 and the definition of L , we
have 0 < ψ(z) < 1 for all 0 ≤ z < inf L , and ψ(z) = 0 for all z ≥ inf L .

Suppose L ∩ [0,∞) = ∅. We let z ≥ 0 and prove ψ(z) = 1. Let N be a Poisson process with
parameter λ, let Di be an iid sequence of one-dimensional exponential random variables and let
Ci = 1 for all i . Suppose N , Di and (ξ, η) are mutually independent and define the compound
Poisson process (X t , Yt ) :=

∑Nt
i=1(Ci , Di ). Define a Lévy process (ξ�t , η

�
t ) := (ξt , ηt )+(X t , Yt ),

and denote the associated GOU by V �. For V �, denote the upper and lower bound functions, the
sets of upper and lower bounds, and the ruin probability function by Υ�, δ�,U�, L� and ψ�

respectively.
Recall Tz := inf{t > 0 : Vt < 0|V0 = z}. Since sup L < 0, we know δ(z) < 0 and hence

Tz is finite a.s. Note that V0 = V �0 = z. Also, whenever Vt− ≥ 0, every jump 1(X, Y )t causes
a non-negative 1Vt . Hence Vt ≤ V �t a.s. on t ≤ Tz . This implies that ψ(z) ≥ ψ�(z). Thus it
suffices to show ψ�(z) = 1. We first prove that V � can be strictly stationary.

We show that λ > 0 can be chosen small enough such that limt→∞ ξ
�
t = −∞. Since

limt→∞ ξt = −∞, either E(ξ1) ∈ [−∞, 0) or E(ξ1) does not exist. If E(ξ1) ∈ [−∞, 0)
then E(ξ�1 ) = E(ξ1) + λ and so we can choose λ small enough that E(ξ�1 ) < 0, which
implies limt→∞ ξ

�
t = −∞. If E(ξ1) does not exist then E(ξ�1 ) does not exist. We show that

limt→∞ ξ
�
t = −∞ holds for any λ > 0. Note that ξ� = ξ + N and, by Section 1, J+ξ <∞ since

E(ξ1) does not exist and limt→∞ ξt = −∞. Also, Π
−

ξ� = Π
−

ξ and so A−ξ� = A−ξ . Since ξ and N
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are independent we have Π
+

ξ� = Π
+

ξ +Π
+

N . Further Π
+

N (x) = 0 for all x ≥ 1. Hence J+ξ� = J+ξ
and so is finite. By Section 1, this implies that limt→∞ ξ

�
t = −∞.

We now show that (ξ�, η�) satisfies I
−ξ�,K ξ�,η� < ∞. Since (ξ, η) and (X, Y ) are

independent, the definitions in Section 1 imply that K ξ�,η�

t = K ξ,η
t + K X,Y

t and Π K ξ�,η� (y) =
Π K ξ,η (y)+Π K X,Y (y). And, as above, A+

−ξ� = A+
−ξ . Hence

I
−ξ ′,K ξ�,η� = I−ξ,K ξ,η +

∫
(e,∞)

(
ln(y)

A+
−ξ (ln(y))

)
|Π K X,Y (dy)|.

By the choice of (X, Y ) it is clear that K X,Y
1 has a finite expected value which implies that∫

(e,∞) y|Π K X,Y (dy)| < ∞. Hence I
−ξ ′,K ξ�,η� < ∞. Thus V � can be assumed to be strictly

stationary.
For a Lebesgue set Λ define T �Λ := inf{t > 0 : V �t ∈ Λ}. Since θ ′�1 = −∞, Proposition 20

implies that Υ�(u) = ∞ for all u ∈ R, or equivalently, U� = ∅. Also, θ�1 = 0, and so
Proposition 16 implies that L� ∩ (−∞, 0) = ∅, whilst the fact that L ∩ (0,∞) = ∅ clearly
implies that L ′ ∩ (0,∞) = ∅.

These facts imply that, for all a and u in R, P(T �(−∞,a] < ∞|V
�

0 = u) > 0 and P(T �
[a,∞] <

∞|V �0 = u) > 0. Since D is an exponential random variable, V �t has a continuous density with
respect to Lebesgue measure. Hence P(T �Λ < ∞) > 0 for any set Λ with positive Lebesgue
measure. This result, and the fact that V � is strictly stationary, allows us to mimic the argument
of Theorem 3.1(a) in Paulsen [10]. Let S be an independent standard exponential variable and
define the resolvent kernel

K (z,Λ) :=
∫
∞

0
Pz(V

�
t ∈ Λ)e−t dt = Pz(V

�

S ∈ Λ).

Proposition 2.1 of [9] implies that V � is φ-irreducible for the measure φ = λK . Using the
language of [9, p. 495 and 496], it is clear that K has a continuous nontrivial component for all
z and hence is a T-process. Since V � is strictly stationary it is clear that V � is non-evanescent,
as defined in [9, p. 494]. Thus Theorem 3.2 of [9, p. 494] implies that V � is Harris recurrent, as
defined in [9, p. 490], which implies that ψ�(z) = 1.

(2) Assume that L ∩ U = ∅, E(ξ1) = 0, E(e|ξ1|) < ∞ and there exist p, q > 1 with
1/p + 1/q = 1 such that E(e−pξ1) <∞ and E(|η1|

q) <∞.
Suppose that L ∩ [0,∞) 6= ∅. Since ξ oscillates a.s., Theorem 9 implies that L = [a, b]

and U = ∅ where −∞ < a ≤ b < ∞ and b ≥ 0. Hence, it follows from statement (2) of
Theorem 13 and the definition of L , that 0 < ψ(z) < 1 for all 0 < z < a and ψ(z) = 0 for all
z ≥ a.

Now suppose that L ∩ [0,∞) = ∅. We let z ≥ 0 and prove that ψ(z) = 1. We know that
P (inft>0 Vt < 0|V0 = z) > 0. However, it is possible that for some z > 0, P(V1 < 0|V0 =

z) = 0. For example, this would happen if (ξ, η) has no Brownian component and sup L∗ > 0.
Let 0 = T0 < T1 < T2 < · · · be random times such that Ti − Ti−1 are iid with exponential
distribution and parameter λ. Since T1 has infinite support it is clear that sup L < 0 implies
P(VT1 < 0|V0 = z) > 0 for all z ≥ 0. Eq. (1) implies that a.s.

VTn = eξTn−ξTn−1

(
eξTn−1

(
z +

∫ Tn−1

0
e−ξs−dηs

))
+ eξTn

∫ Tn

Tn−1+

e−ξs−dηs .
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Thus, if we define An := eξTn−ξTn−1 , Bn := eξTn
∫ Tn

Tn−1+
e−ξs−dηs and the stochastic difference

equation Yn := AnYn−1 + Bn with Y0 := V0 = z then Yn = VTn a.s. for all n ∈ N. The term
eξTn in Bn cannot be brought under the integral sign because it is not predictable. Since a Lévy
process has independent increments it is clear that (An, Bn) is an independent sequence. Now,

(A2, B2) =

(
eξT2−ξT1 , eξT2−ξT1 eξT1

∫ T2

T1+

e−ξs−dηs

)
=

(
eξT2−ξT1 , eξT2−ξT1

∫ T2

T1+

e−
(
ξs−−ξT1

)
dηs

)
=

(
eξT2−ξT1 , eξT2−ξT1

∫ T2

T1+

e−
(
ξs−−ξT1

)
d(ηs − ηT1)

)
=D

(
eξT1 , eξT1

∫ T1

0
e−ξs−dηs

)
= (A1, B1),

where the second equality holds because eξT1 is predictable and the fourth equality holds because
a Lévy process has identically distributed increments. The argument for general n is identical,
and thus (An, Bn) is an iid sequence.

Now Proposition 1.1 and Corollary 4.2 of [1] state that if P(A1z + B1 = z) < 1 for all
z ∈ R, E(ln A1) = 0, A1 6≡ 1 and there exists δ > 0 such that

E
((
| ln A1| + ln+ |B1|

)2+δ)
<∞ (18)

then W has an invariant unbounded Radon measure µ unique up to a constant factor such that
the sample paths Wn , with W0 = z, visit every open set of positive µ-measure infinitely often
with probability 1, for every z ∈ R. The first of these conditions follows from the assumption
L ∩ U = ∅, using Proposition 8. The second and third conditions follow respectively from
our assumption that E(ξ1) = 0, and ξ1 is not identically zero. We show later that our moment
conditions on ξ and η ensure Eq. (18) holds. Note that the Babillot result implies that ψ(z) = 1
if µ((−∞, 0)) > 0. However by invariance,

µ ((−∞, 0)) =
∫

z∈R
P(A1z + B1 < 0)µ(dz) ≥

∫
z∈R

P(VT1 < 0|V0 = z)µ(dz).

Thus if µ([0,∞)) > 0 then µ((−∞, 0)) > 0 since P(VT1 < 0|V0 = z) > 0 for all z ≥ 0.
And if µ([0,∞)) = 0 then µ((−∞, 0)) > 0 since µ(R) > 0. Thus we are done if we can prove
Eq. (18).

To do this, it suffices to assume T1 = 1 and (A1, B1) := (eξ1 , eξ1
∫ 1

0 e−ξs−dηs) since we can
choose the parameter λ of the increments to be arbitrarily small. Note that if x, y > 0 and α > 0
then there exists c1 > 0 such that

(x + y)α ≤ c1
(
xα + yα

)
. (19)

Hence, to prove (18), it suffices to prove that E(|ξ1|
2+δ) <∞ and

E

(ln+
∣∣∣∣∣eξ1

∫ 1

0
e−ξs−dηs

∣∣∣∣∣
)2+δ

 <∞. (20)
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Note that the former inequality is assumed as a condition. If x, y > 0 then ln+(xy) ≤
ln+(x)+ ln+(y), and hence, using (19), Eq. (20) holds if

E

(ln+
∣∣∣∣∣
∫ 1

0
e−ξs−dηs

∣∣∣∣∣
)2+δ

 <∞. (21)

Whenever 0 < δ ≤ 1 and x > 0, there exists c2 > 0 such that (ln+ x)2+δ ≤ c2xδ . It suffices
to assume 0 < δ ≤ 1, and hence (21) holds if E(|

∫ 1
0 e−ξs−dηs |

δ) < ∞. However, with our
assumptions on p and q , this follows from Lemma 24.

(3) Assume limt→∞ ξt = ∞ a.s. and Iξ,η < ∞. Suppose −∞ ≤ sup U < z. Assume, for
contradiction, that ψ(z) = 1. Theorem 12 implies that P(C) > 0 where C := {Z∞ > −z}.
Since limt→∞ ξt = ∞, we have limt→∞ Vt = ∞ a.s. on C . The same strong Markov property
argument used in the proof of statement (2) of Theorem 13, gives a contradiction. Hence
ψ(z) < 1.

Now suppose U ∩ [0,∞) 6= ∅. Since ξ drifts to ∞ a.s., Theorem 9 implies that either
U = [a, b] and L = ∅ where −∞ ≤ z ≤ b < ∞ and b ≥ 0, or U = (−∞, a] and
L = [b,∞) for some 0 ≤ a < b < ∞. In both cases, statement (1) of Theorem 13 implies
that ψ(z) = 1 for all z ≤ sup U . By the definition of L and the above result, 0 < ψ(z) < 1 for
all sup U < z < inf L and ψ(z) = 0 for all z ≥ sup L . �

Propositions 8 and 11 and Theorem 9 claim that Lévy processes (ξ, η) exist which satisfy
particular combinations of L and U , and particular asymptotic behaviour for ξ . We present
examples to prove these claims. The Lévy measures will always be finite activity, namely
Πξ,η(R2) < ∞. Hence, (ξ, η)t = (dξ , dη)t + (Bξ,t , Bη,t ) +

∑Nt
i=1 Yi where (Bξ,t , Bη,t ) is

Brownian motion with covariance matrix Σξ,η, N is a Poisson process with parameter Λ and
{Yi }
∞

i=1 is an iid sequence of two-dimensional random variables with distribution Y .

Examples with Brownian component. The first example has L = {a},U = ∅ and the second
example has L = U = {a}. For each, we choose parameters so that ξ drifts to∞ a.s., ξ drifts to
−∞ a.s. or ξ oscillates a.s.

Example 25. Let (ξ, η)t := (dξ , 2)t + (Bt , Bt ) +
∑Nt

i=1 Yi where B is a one-dimensional
Brownian motion with variance 1, P(Y = (10, 10)) = 1/2 and P(Y = (−10, 10)) = 1/2.
The covariance matrix Eq. (10) holds for u = −1. Condition (ii) of Proposition 16 holds for
u = −1, whilst condition (ii) of Proposition 20 fails to hold. By Eq. (13), g(−1) = 3/2 − dξ .
Thus, if dξ ≤ 3/2 then L = {−1} and U = ∅. However E(ξ1) = dξ so if 0 < dξ < 3/2 then ξ
drifts to∞ a.s., if dξ < 0 then ξ drifts to −∞ a.s., and if dξ = 0 then ξ oscillates a.s.

Example 26. Let (ξ, η)t := (dξ , dη)t + (Bt ,−Bt ). Eq. (10) holds for u = 1, whilst condition
(ii) of Proposition 16 and condition (ii) of Proposition 20 hold trivially. Eq. (13) implies
g(1) = dη + dξ − 1/2. Thus, if dξ = 1/2 − dη, then L = U = {1}. Note E(ξ1) = dξ , so
if dη < 1/2 then ξ drifts to∞ a.s., if dη > 1/2 then ξ drifts to −∞ a.s., and if dη = 1/2 then ξ
oscillates a.s.

Examples with no Brownian component. We present seven examples of Lévy processes (ξ, η)
with no Brownian component. In Example 27, L = U = {a} and we indicate how the parameters
can be changed in order to obtain each of the three asymptotic behaviours for ξ . In Examples 28
and 29, L = ∅, whilst U may be of form ∅, {a} or [a, b] for −∞ < a < b < ∞. We indicate
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how parameters can be changed in order to obtain these different sets, and for each set, to obtain
the three possible asymptotic behaviours for ξ . In Example 30, L = ∅ whilst U is of form [b,∞)
for b ∈ R. In Example 31, L = (−∞, a] and U = [b,∞) for −∞ < a < b < ∞. For both
these examples we show that ξ drifts to −∞ a.s. In Example 32, L = ∅ whilst U is of form
(−∞, a] for a ∈ R. In Example 33, U = (−∞, a] and L = [b,∞) for −∞ < a < b <∞. For
both these examples we show that ξ drifts to∞ a.s.

Example 27. Let (ξ, η)t := (dξ , dη)t +
∑Nt

i=1 Yi where P(Y = (3, 2e−3
− 2)) = 1/2 and

P(Y = (−3, 2e3
− 2)) = 1/2. Then θ2 = θ ′2 = θ4 = θ ′4 = 2, L∗ = U∗ = {2} and

g(u) = dη + udξ . If dη = −2dξ then g(2) = 0 and hence L = U = {2}. Since E(ξ1) = dξ ,
choosing dξ > 0, dξ < 0, and dξ = 0, implies respectively that ξ drifts to∞ a.s., ξ drifts to−∞
a.s. and ξ oscillates a.s.

Example 28. Let (ξ, η)t := (dξ , dη)t +
∑Nt

i=1 Yi where P(Y = (4,−2)) = 1/3, P(Y =
(−2,−3)) = 1/3 and P(Y = (−2, 1)) = 1/3. Then L = ∅ since Πξ,η(A2) and Πξ,η(A3) are

both non-zero, whilst U∗ = [θ ′4, θ
′

2] =

[
1

e2−1
, −2

e−4−1

]
∼= [0.2, 2]. Now U = {u ∈ U∗ : g(u) ≤ 0}

and g simplifies to g(u) = dη + udξ . Note that E(ξ1) = dξ .
Choosing dξ = 0 and dη > 0 implies that U = ∅ and ξ oscillates a.s. Choosing dξ > 0 and

dη > −θ ′4dξ implies that U = ∅ and ξ drifts to∞ a.s. Choosing dξ < 0 and dη > −θ ′2dξ implies
that U = ∅ and ξ drifts to −∞ a.s.

Choosing dξ = 0 and dη < 0 implies that U = U∗ ∼= [0.2, 2] and ξ oscillates a.s. Choosing
dξ > 0 and dη < −θ ′2dξ implies that U = U∗ ∼= [0.2, 2] and ξ drifts to∞ a.s. Choosing dξ < 0
and dη < −θ ′4dξ implies that U = U∗ ∼= [0.2, 2] and ξ drifts to −∞ a.s.

Choosing dξ > 0 and dη = −θ ′4dξ implies that U = {θ ′4}
∼= {0.2} and ξ drifts to ∞ a.s.

Choosing dξ < 0 and dη = −θ ′2dξ implies that U = {θ ′2}
∼= {2} and ξ drifts to −∞ a.s.

Note that for Example 32, no adjustment of dξ and dη can result in U = {a} with ξ oscillating
a.s. We now present a different example with this behaviour.

Example 29. Let (ξ, η)t := (0,−2)t +
∑Nt

i=1 Yi where P(Y = (2, e−2
− 1)) = 1/3 and

P(Y = (−1, e−1)) = 1/3 and P(Y = (−1,−2)) = 1/3. Then L = ∅, θ2 = θ
′

2 = θ4 = θ
′

4 = 1,
and U∗ = {1}. Since g simplifies to g(u) = −2 for all u ∈ R we obtain U = {1}. Since
E(ξ1) = 0, ξ oscillates a.s.

Example 30. Let (ξ, η)t := (0,−2)t +
∑Nt

i=1 Yi where P(Y = (−1, 2)) = 1/3 and P(Y =
(−2,−3)) = 1/3 and P(Y = (0,−5)) = 1/3. Then L∗ = ∅ whilst U∗ = [θ ′4, θ

′

2] =[
2

e−1 ,∞
)
∼= [1.2,∞). Since g(u) = −2 for all u ∈ R we obtain L = ∅ and U = U∗ Since

E(ξ1) = −1.5, ξ drifts to −∞ a.s.

Example 31. Let (ξ, η)t := (dξ , dη)t +
∑Nt

i=1 Yi where P(Y = (−1, 2)) = 1/2 and P(Y =

(−2,−3)) = 1/2. Then L∗ = [θ1, θ3] =

(
−∞, −3

e2−1

]
∼= (−∞,−0.5] and U∗ = [θ ′4, θ

′

2] =[
2

e−1 ,∞
)
∼= [1.2,∞). Note that g simplifies to g(u) = dη + udξ and hence choosing dξ ≤ 0

and dη = 0 gives L = L∗ and U = U∗. Since E(ξ1) = −1.5+ dξ , ξ drifts to −∞ a.s.

Example 32. Let (ξ, η)t :=
∑Nt

i=1 Yi where P(Y = (1, 2)) = 1/3 and P(Y = (1, 8)) = 1/3 and

P(Y = (0,−5)) = 1/3. Then L∗ = ∅ whilst U∗ = [θ ′3, θ
′

1] =

(
−∞, 8

e−1−1

]
∼= (−∞,−12.6].

Note that g(u) = 0 for all u ∈ R so L = L∗ and U = U∗. Since E(ξ1) = 1, ξ drifts to∞ a.s.
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Example 33. Let (ξ, η)t :=
∑Nt

i=1 Yi where P(Y = (1, 2)) = 1/2 and P(Y = (1, 8)) = 1/2.

Then L∗ = [θ1, θ4] =

[
2

e−1−1
,∞

)
∼= [−3.2,∞) and U∗ = [θ ′3, θ

′

1] =

(
−∞, 8

e−1−1

]
∼=

(−∞,−12.6]. Note that g(u) = 0 for all u ∈ R so L = L∗ and U = U∗. Since E(ξ1) = 1, ξ
drifts to∞ a.s.

7. Proofs for Section 2

Proof (Proposition 5). Assume that Vt = eξt (z − c) + c. By definition of L , if c ≥ 0 then
ψ(z) = 0 for all z ≥ c.

Let 0 ≤ z < c. If ξ drifts to −∞ a.s. then limt→∞ Vt = c a.s. Thus, the strong Markov
property of V implies that ψ(z) < 1, using a proof similar to that used for statement (2) of
Theorem 13. If ξ oscillates a.s. then −∞ = lim inft→∞ Vt < lim supt→∞ Vt = c, and so
ψ(z) = 1. If ξ drifts to∞ a.s. then limt→∞ Vt = −∞ a.s. which implies ψ(z) = 1.

Let c < 0 ≤ z. If ξ drifts to −∞ a.s. then limt→∞ Vt = c a.s. and so ψ(z) = 1. If ξ oscillates
a.s. then c = lim inft→∞ Vt < lim supt→∞ Vt = ∞, and so ψ(z) = 1. If ξ drifts to∞ a.s. then
limt→∞ Vt = ∞ a.s. which implies ψ(z) < 1, using a strong Markov property argument. �

Proof (Theorem 1). Suppose that for all c ∈ R the degenerate case (9) does not hold. Then,
by Proposition 8, L ∩ U = ∅. It follows immediately from Theorem 14 that 0 < ψ(z) < 1
iff 0 ≤ z < m < ∞ whenever the assumptions for statement (1), or statement (2), of
Theorem 1 are satisfied. Now suppose that there exists c ∈ R such that Eq. (9) holds. Then
it follows immediately from Proposition 5 that 0 < ψ(z) < 1 iff 0 ≤ z < m < ∞ whenever
the assumptions for statement (1), or statement (2), of Theorem 1 are satisfied. In both these
situations, m = c. �

Proof (Theorem 3). Assume limt→∞ ξt = ∞ a.s. and Iξ,η < ∞. Assume that for all c ∈ R
Eq. (9) does not hold, or equivalently, L ∩ U = ∅. Theorem 3 claims that ψ(0) = 1 iff −η is
a subordinator, or there exists z > 0 such that ψ(z) = 1. This claim follows from two results:
firstly, ψ(z) = 1 iff sup U ≥ 0 and z < sup U , which is implied by statement (3) of Theorem 13;
secondly, 0 ∈ U iff −η is a subordinator, which is stated in Proposition 20.

Theorem 3 states conditions on the characteristic triplet of (ξ, η) and claims these are equiv-
alent to the fact that there exists z > 0 such that ψ(z) = 1. By statement (3) of Theorem 13,
there exists z > 0 such that ψ(z) = 1 iff sup U > 0. And Proposition 20 gives iff conditions
on the characteristic triplet of (ξ, η) for the case sup U > 0. These conditions are precisely the
conditions stated in Theorem 3.

Finally, statements (1) and (2) of Theorem 3 contain values for sup{z ≥ 0 : ψ(z) = 1}.
These follow from the unstated parallel version of Proposition 17 which gives exact values for
the endpoints of U .

Now, assume that there exists c ∈ R such that the degenerate Eq. (9) holds, and L = U = {c}.
Since ξ drifts to∞ a.s., Proposition 8 implies that sup U = c. Thus, Proposition 5 implies that
ψ(z) = 1 iff sup U ≥ 0 and z < sup U . Theorem 3 is proved for the degenerate case by combin-
ing this statement with Proposition 20 and the parallel version of Proposition 17, in an identical
manner to the above. The only difference is that the set {z ≥ 0 : ψ(z) = 1} does not contain its
supremum in the degenerate case, since sup{z ≥ 0 : ψ(z) = 1} = U = L , and is an absorbing
point. �
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