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0. Introduction

The results of this paper are a crucial part of the proof for the classification of contragredient
Lie superalgebras with finite growth, and in particular, for the classification of finite-growth Kac–
Moody superalgebras [2,3]. Previously, such a classification was known only for contragredient Lie
superalgebras with either symmetrizable Cartan matrices [11,12], or Cartan matrices with no zeros on
the main diagonal, i.e. contragredient Lie superalgebras without simple isotropic roots [5]. Several of
the results of this paper are surveyed in [10].

A contragredient Lie superalgebra g(A) is a Lie superalgebra defined by a Cartan matrix A [4,6].
A Lie superalgebra usually has more than one Cartan matrix. However, an odd reflection at a regular
simple isotropic root allows one to move from one base to another (see Definitions 1.4, 1.5) [9]. An odd
reflection yields a new Cartan matrix A′ such that g(A′) and g(A) are isomorphic as Lie superalgebras.

A matrix which satisfies certain numerical conditions is called a generalized Cartan matrix (see
Definition 1.9). If A is a generalized Cartan matrix then all simple isotropic roots are regular. A con-
tragredient Lie superalgebra g(A) is said to be regular Kac–Moody if A and any matrix A′ , obtained
by a sequence of odd reflections of A, are generalized Cartan matrices. If A is a generalized Cartan
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matrix and g(A) has no simple isotropic roots, then g(A) is regular Kac–Moody by definition. Hence,
we restrict our attention to regular Kac–Moody superalgebras which have a simple isotropic root.
Remarkably, there are only a finite number of such families.

It is shown in [3] that if g(A) is a finite-growth contragredient Lie superalgebra and the defining
matrix A has no zero rows, then simple root vectors of g(A) act locally nilpotently on the adjoint
module. This implies certain conditions on A which are only slightly weaker than the conditions
for the matrix to be a generalized Cartan matrix. For a finite-growth Lie superalgebra, these matrix
conditions should still hold after odd reflections, which leads to the definition of a regular Kac–Moody
superalgebra. Remarkably, these superalgebras almost always have finite growth. The exception is the
family: Q ±(m,n, t) with m,n, t ∈ Z�−1 and not all equal to −1.

By comparing the classification of regular Kac–Moody superalgebras given in this paper to the
classification of symmetrizable finite-growth contragredient Lie superalgebras in [11,12] we obtain
the following formulation of our classification theorem.

Theorem 2.27. If A is a symmetrizable indecomposable matrix and the contragredient Lie superalgebra g(A)

has a simple isotropic root, then g(A) is a regular Kac–Moody superalgebra if and only if it has finite growth.
If A is a non-symmetrizable indecomposable matrix and the contragredient Lie superalgebra g(A) has a

simple isotropic root, then g(A) is a regular Kac–Moody superalgebra if and only if it belongs to one of the
following three families: q(n)(2) , S(1,2,α) with α ∈ C \ Z, Q ±(m,n, t) with m,n, t ∈ Z�−1 .

The non-symmetrizable contragredient Lie superalgebra S(1,2,α) appears in the list of confor-
mal superalgebras [7]. It has finite growth, but is not regular Kac–Moody when α ∈ Z. The non-
symmetrizable regular Kac–Moody superalgebra Q ±(m,n, t) was discovered during this classification
(see Section 3). If m,n, t = −1 then Q ±(m,n, t) is just q(3)2, which has finite growth. Otherwise,
Q ±(m,n, t) has infinite growth, but is hyperbolic for small (absolute) values of m, n, and t . An ex-
plicit realization of Q ±(m,n, t) is still unknown and would be interesting.

For the proof of Theorem 2.27, we classify the corresponding connected regular Kac–Moody dia-
grams (see Section 1.3) by using induction on the number of vertices (i.e. simple roots). A subdiagram
of a regular Kac–Moody diagram is regular Kac–Moody, however if the subdiagram does not have an
isotropic vertex then it is not part of the classification. We work around this difficulty by using odd
reflections.

We say that a regular Kac–Moody diagram is subfinite if it is connected, has an isotropic vertex,
and satisfies the condition that all connected proper subdiagrams which have an isotropic vertex are
of finite type. In Section 2, we find all subfinite regular Kac–Moody diagrams by extending connected
finite type diagrams which have an isotropic vertex. A diagram of a finite-dimensional or affine Kac–
Moody superalgebra is subfinite regular Kac–Moody. In Section 4, we prove that every connected
regular Kac–Moody diagram with an isotropic vertex is subfinite by using integrable modules and
some explicit computations.

A highest weight module V of a regular Kac–Moody superalgebra g(A) is called integrable if
for each real root α the element Xα ∈ g(A)α is locally nilpotent on V . This is consistent with the
original definition of integrable modules for affine Lie superalgebras. It is shown in [8] that most non-
twisted affine Lie superalgebras do not have non-trivial irreducible integrable highest weight mod-
ules. The only exceptions are B(0,n)(1) , A(0,m)(1) and C(n)(1) . By the same method, one can show
that the twisted affine Lie superalgebras, including q(n)(2) , but excluding A(0,2n − 1)(2) , A(0,2n)(4)

and C(n)(2) , have only trivial irreducible integrable highest weight modules.
A regular Kac–Moody superalgebra is integrable under the adjoint action, hence, so are its sub-

modules. A non-trivial extension of a regular Kac–Moody diagram Γ yields a non-trivial integrable
highest weight module of g(AΓ ). Thus, if the Kac–Moody superalgebra corresponding to Γ does not
have non-trivial irreducible integrable highest weight modules, then Γ is not extendable. Thus, it
remains to show that the diagrams for A(0,m)(1) , C(n)(1) , S(1,2,α), and Q ±(m,n, t) are not extend-
able, which we do by direct computation.

Integrable irreducible highest weight modules for affine Lie superalgebras were described in [8]. If
L(λ) is an irreducible highest weight module a regular Kac–Moody superalgebra which does not have
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an isotropic root, then L(λ) is integrable if and only if λi ∈ 2p(i)Z�0. We describe the integrable irre-
ducible highest weight modules for the remaining regular Kac–Moody superalgebras which have an
isotropic root: S(1,2,α) with α ∈ C \ Z, and Q ±(m,n, t) with m,n, t ∈ Z�−1 and not all equal to −1.
We show that these superalgebras have non-trivial irreducible integrable highest weight modules, and
give explicit conditions on the weights for an irreducible highest weight module to be integrable.

1. Preliminaries

1.1. Contragredient Lie superalgebras

Let A be an n × n matrix over C, I = {1, . . . ,n} and p : I → Z2 be a parity function. Fix a vector
space h over C of dimension 2n−rk(A). Let α1, . . . ,αn ∈ h∗ and h1, . . . ,hn ∈ h be linearly independent
elements satisfying α j(hi) = aij , where aij is the i j-th entry of A. Define a Lie superalgebra ḡ(A) by
generators X1, . . . , Xn, Y1, . . . , Yn and h, and by relations

[h, Xi] = αi(h)Xi, [h, Yi] = −αi(h)Yi, [Xi, Y j] = δi jhi, (1)

where the parity of Xi and Yi is p(i), and the elements of h are even.
The contragredient Lie superalgebra given by the matrix A is defined to be the quotient of ḡ(A) by

the unique maximal ideal that intersects h trivially, and it is denoted by g(A). We call A the Cartan
matrix of g(A). If B = D A for some invertible diagonal matrix D , then g(B) ∼= g(A). Hence, we may
assume without loss of generality that aii ∈ {0,2} for i ∈ I .

The matrix A is said to be symmetrizable if there exists an invertible diagonal matrix D such
that B = D A is a symmetric matrix, i.e. bij = b ji for all i, j ∈ I . In this case, we also say that g(A)

is symmetrizable. A contragredient Lie superalgebra is symmetrizable if and only if there exists a
nondegenerate invariant symmetric bilinear form. Hence, symmetrizability does not depend on the
choice of Cartan matrix.

The matrix A is indecomposable if the set I cannot be decomposed into the disjoint union of non-
empty subsets J , K such that a j,k = ak, j = 0 whenever j ∈ J and k ∈ K . A proof of the following
lemma can be found in [3].

Lemma 1.1. For any subset J ⊂ I the subalgebra a J in g(A) generated by h, Xi and Yi , with i ∈ J , is isomorphic
to h′ ⊕ g(A J ), where A J is the submatrix of A with coefficients (aij)i, j∈ J and h′ is a subspace of h. More
precisely, h′ is a maximal subspace in

⋂
i∈ J Kerαi which trivially intersects the span of hi , i ∈ J .

A superalgebra g = g(A) has a natural Z-grading g = ⊕
gm , called the principal grading, which

is defined by g0 = h and g1 = gα1 ⊕ · · · ⊕ gαn . We say that g is of finite growth if dimgn grows
polynomially depending on n. This means that the Gelfand–Kirillov dimension of g is finite.

We recall a result from [3].

Theorem 1.2 (Hoyt, Serganova). Suppose A is a matrix with no zero rows. If g(A) has finite growth, then adXi

are locally nilpotent for all i ∈ I .

A proof of the following lemma can be found in [3].

Lemma 1.3. Let g(A) be a contragredient Lie superalgebra. Then adXi are locally nilpotent for all i ∈ I if and
only if A satisfies the following conditions (after rescaling the rows of A such that aii ∈ {0,2} for all i ∈ I):

1. if aii = 0 and p(i) = 0, then aij = 0 for all j ∈ I;
2. if aii = 2, then aij ∈ 2p(i)Z�0 for all j ∈ I;
3. if ai j = 0 and a ji 	= 0, then aii = 0.
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1.2. Roots and reflections

The Lie superalgebra g = g(A) has a root space decomposition

g = h ⊕
⊕
α∈�

gα.

Every root is either a positive or a negative linear combination of the simple roots, α1, . . . ,αn . Accord-
ingly, we have the decomposition � = �+ ∪ �− , and we call α ∈ �+ positive and α ∈ �− negative.
One can define p :� → Z2 by letting p(α) = 0 or 1 whenever α is even or odd, respectively. By �0
(resp. �1) we denote the set of even (resp. odd) roots.

Let Π := {α1, . . . ,αn} be the set of simple roots of g(A). There are four possibilities for each simple
root αi :

1. if aii = 2 and p(αi) = 0, then Xi , Yi and hi generate a subalgebra isomorphic to sl(2);
2. if aii = 0 and p(αi) = 0, then Xi , Yi and hi generate a subalgebra isomorphic to the Heisenberg

algebra;
3. if aii = 2 and p(αi) = 1, then Xi , Yi and hi generate a subalgebra isomorphic to osp(1|2), and in

this case 2αi ∈ �;
4. if aii = 0 and p(αi) = 1, then Xi , Yi and hi generate a subalgebra isomorphic to sl(1|1).

Definition 1.4. A simple root αi is isotropic if aii = 0 and p(αi) = 1, and otherwise αi is non-isotropic.

Definition 1.5. A simple root αi is regular if for any other simple root α j , aij = 0 implies a ji = 0.

If αk is a simple root with akk 	= 0, we define the (even) reflection rk at αk by

rk(αi) = αi − αi(hk)αk, αi ∈ Π.

If αk is a regular isotropic root, we define the odd reflection rk at αk as follows:

rk(αi) =
{−αk, if i = k;

αi, if aik = aki = 0, i 	= k;
αi + αk, if aik 	= 0 or aki 	= 0, i 	= k;

X ′
i :=

{ Yi, if i = k;
Xi, if i 	= k, and aik = aki = 0;
[Xi, Xk], if i 	= k, and aik 	= 0 or aki 	= 0;

Y ′
i :=

{ Xi, if i = k;
Yi, if i 	= k, and aik = aki = 0;
[Yi, Yk], if i 	= k, and aik 	= 0 or aki 	= 0;

and

h′
i := [

X ′
i, Y ′

i

]
.

Then

h′
i =

⎧⎨⎩ (−1)p(αi)(aikhk + akihi), if i 	= k, and aik or aki 	= 0;
hi, if i 	= k, and aik = aki = 0;
hk, if i = k.

Set α′
i := rk(αi) for i ∈ I .
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A proof of the following lemma can be found in [3].

Lemma 1.6. Let g(A) be a contragredient Lie superalgebra with base Π = {α1, . . . ,αn}. Suppose that Π ′ =
{α′

1, . . . ,α
′
n} is obtained from Π by an odd reflection with respect to a regular isotropic root. Then α′

1, . . . ,α
′
n

are linearly independent. The corresponding elements (defined above) X ′
1, . . . , X ′

n, Y ′
1, . . . , Y ′

n together with
h′

1, . . . ,h′
n satisfy (1). Moreover, h and X ′

1, . . . , X ′
n, Y ′

1, . . . , Y ′
n generate g(A).

It then follows that given a matrix A and a regular isotropic root αk , one can construct a new
matrix A′ such that g(A′) ∼= g(A) as superalgebras. Explicitly, the entries of A′ can be defined by
A′

i j = α′
j(h

′
i). After possibly rescaling the elements h′

i , we find that (i 	= k and j 	= k):

a′
kk := akk; a′

kj := akj; a′
ik := −akiaik;

a′
i j :=

⎧⎨⎩
aij, if aik = aki = 0;
akiai j, if aik or aki 	= 0, and akj = a jk = 0;
akiai j + aikakj + akiaik, if aik or aki 	= 0, and a jk or akj 	= 0.

Remark 1.7. We can rescale the rows of A′ by rescaling the elements h′
i . So after rescaling, we may

assume that a′
ii = α′

i(h
′
i) = 0 or 2. In the case that a′

ii = 0 for some i, it is our convention to rescale A′
so that a′

i j = 1 for some j.

We say that A′ is obtained from A (and Π ′ := {α′
1, . . . ,α

′
n} is obtained from Π ) by an odd reflec-

tion with respect to αk . If �′+ is the set of positive roots with respect to Π ′ , then

�′+ = (
�+ \ {αk}

) ∪ {−αk}.

A root α is called real if α or 1
2 α is simple in some base Π ′ , which is obtained from Π by a sequence

of even and odd reflections. Otherwise, it is called imaginary otherwise.

Remark 1.8. A reflection with respect to a regular isotropic simple root αk is indeed a reflection. If
A′′ is obtained from A by successively applying the reflection at αk twice, then there is an invert-
ible diagonal matrix D such that A′′ = D A and scalars bi , ci such that X ′′

i = bi Xi and Y ′′
i = ci Yi .

It is possible to define an “odd reflection” at a simple isotropic root which is not regular, but in
this case the subalgebra generated by X ′

1, . . . , X ′
n, Y ′

1, . . . , Y ′
n and h is necessarily a proper subalgebra

of g(A).

The notion of finite growth does not depend on the choice of a base for g(A) [3]. It thus follows
from Theorem 1.2 that if g(A) has finite growth and A has no zero rows, then A and any matrix A′
obtained from A by a sequence of odd reflections satisfies the matrix conditions of Lemma 1.3.

Definition 1.9. A matrix A is called a generalized Cartan matrix if it satisfies the matrix conditions of
Lemma 1.3, where the third condition is strengthened to the following:

3′ . if aij = 0, then a ji = 0.

If a matrix satisfies the conditions of Lemma 1.3, then condition 3′ is equivalent to the condition
that all simple isotropic roots are regular. We call g(A) a regular Kac–Moody superalgebra if A and any
matrix obtained from A by a sequence of odd reflections is a generalized Cartan matrix.

We call a root α ∈ � principal if either α is even and belongs to some base Π ′ obtained from Π

be a sequence of odd reflections, or if α = 2β where β is odd and belongs to some base Π ′ obtained
from Π be a sequence of odd reflections. For a principal root, the subalgebra generated by Xα , Yα
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and hα := [Xα, Yα] is isomorphic to sl2, and we may choose Xα , Yα such that α(hα) = 2. Note that if
α = 2β , then Xα = [Xβ, Xβ ].

Let Π0 ⊂ � denote the set of principal roots. It is clear that Π0 ⊂ �+
0 . In general this set can be

infinite, but this is not the case whenever g(A) has finite growth [3]. For any finite subset S ⊂ Π0, we
can define a matrix B by setting bij = α j(hi).

A proof of the following lemma can be found in [3].

Lemma 1.10. If a Lie superalgebra g(A) has finite growth, then for any finite subset S of Π0 the Lie algebra g(B)

also has finite growth. In particular, B is a generalized Cartan matrix for a finite-growth Kac–Moody algebra.

1.3. Matrix diagrams

Given a Cartan matrix A, we can associate a matrix diagram, denoted ΓA (or simply Γ when A is
fixed), as follows. Recall that we may assume that ai i = 0 or 2. The vertices of ΓA correspond to the
simple roots of g(A) and are given by the following table.

g(A) A p(1) Diagram

A1 (2) 0 ©
B(0,1) (2) 1 �
A(0,0) (0) 1

⊗
Heisenberg (0) 0 �

We join vertex vi to vertex v j by an arrow if aij 	= 0, and we label this arrow with the number aij .
This correspondence between Cartan matrices and matrix diagrams is a bijection. The condition that
the matrix A is indecomposable corresponds to the requirement that the diagram ΓA is connected.
We say that a vertex is isotropic if it is of the type

⊗
. We use the notation of the following table to

denote the possible vertex types.

Notation Vertex types

• © or
⊗⊙ © or �

©v © or
⊗

or �
Let A be a Cartan matrix with aii = 0. Then rescaling the i-th row of the matrix A (i.e. multiplying

by a non-zero constant) corresponds to rescaling all labels of arrows exiting the vertex vi of the
diagram ΓA . This defines is an equivalence relation on matrix diagrams, where ΓA′ ∼ ΓA if A′ = D A
for some invertible diagonal matrix D , and in this case g(A′) ∼= g(A). We consider matrix diagrams
modulo this equivalence.

A diagram ΓA is called a regular Kac–Moody (or regular Kac–Moody diagram) if the corresponding
contragredient Lie superalgebra g(A) is regular Kac–Moody. An odd reflection of a matrix diagram ΓA

at an isotropic vertex vi is defined to be the diagram ΓA′ , where A′ is obtained from A by an odd
reflection at the corresponding isotropic root αi of g(A). Note that the set of all regular Kac–Moody
diagrams is closed under odd reflections. Denote by C(Γ ) the collection of all diagrams obtained from
sequences of odd reflections of a regular Kac–Moody diagram Γ . When αi is a simple odd isotropic
root, we denote by ri the odd reflection with respect to αi .

By a subdiagram Γ ′ of the diagram Γ , we mean a full subdiagram, i.e. if the vertices vi and v j are
in Γ ′ then the arrows with labels aij and a ji also belong to Γ ′ . We say that a connected regular Kac–
Moody diagram is extendable if it is a proper subdiagram of a connected regular Kac–Moody diagram.
For a 3-vertex subdiagram Γ ′ = {vi, v j, vk}, with v j isotropic, we refer to the fractions

a ji
a jk

and
a jk
a ji

as

the ratios of the isotropic vertex v j in Γ ′ .
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2. Classification of connected subfinite regular Kac–Moody diagrams

In order to classify regular Kac–Moody superalgebras, we classify the corresponding regular Kac–
Moody diagrams. A diagram for a finite-dimensional or affine Kac–Moody superalgebra is regular
Kac–Moody.

Definition 2.1. We call a regular Kac–Moody diagram subfinite if it is connected, it contains an
isotropic vertex, and it satisfies the following condition for all reflected diagrams: all connected proper
subdiagrams which contain an isotropic vertex are of finite type.

In Section 5, we will show that all regular Kac–Moody diagrams are subfinite.
In this section, we classify subfinite regular Kac–Moody diagrams, by using induction on the

number of vertices. A subdiagram of a subfinite regular Kac–Moody diagram is regular Kac–Moody,
however if it does not contain an isotropic vertex then it is not part of our classification. We will
work around this difficulty by using odd reflections.

Note that we only need to find the extensions of one diagram Γ belonging to a collection of re-
flected diagrams C(Γ ), and then include all reflections of each extended diagram in our classification.

2.1. Regular Kac–Moody diagrams: 2 or 3 vertices

In this section, we find all connected diagrams with two or three vertices which are regular Kac–
Moody and contain an isotropic vertex.

We say that an n-vertex diagram is a cycle if it is a connected diagram and each vertex is con-
nected to exactly two other vertices. We say that an n-vertex diagram is a chain if the vertices can be
enumerated by the set {1,2, . . . ,n} such that aij = 0 if and only if j 	= i + 1 and i 	= j + 1. A proper
connected subdiagram of a cycle is a chain.

Lemma 2.2. The connected regular Kac–Moody 2-vertex diagrams which contain an isotropic vertex are
A(1,0) and B(1,1).

Proof. Recall that in the case that aii = 0 for some i, it is our convention to rescale so that aij = 1 for
some j.

⊗ 1

a
©v

� If a 	= −1, then reflecting at v1, we have a, −a
a+1 ∈ Z<0 which implies a = −2. Then −a

a+1 = −2
and this is B(1,1).

⊗ 1

a

⊙ −→r1
⊗ 1

− a
1+a

⊙

� If a = −1, then by reflecting at v1 we have A(1,0).

⊗ 1

−1
© −→r1

⊗ 1

1

⊗ �

We note that all 2-vertex diagrams of regular Kac–Moody superalgebras are of finite type.
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Lemma 2.3. The regular Kac–Moody extensions of A(1,0) to three vertices are the following: A(0,2), A(1,1),
B(1,2), B(2,1), C(3), G(3), D(2,1,α), A(1,2)(2) , A(0,1)(1) , B(1,1)(1) , S(1,2,α), q(3)(2) , Q ±(m,n, t).

Proof. We consider each case for attaching a vertex to an A(1,0) diagram.

Case 1:

⊗
1

1

1

⊗
2

a

b
©v 3 a,b 	= 0

� If v3 is
⊗

, then by reflecting at v2 we have 1 + a,1 + 1
a ∈ Z�0, which implies a = −1. This is

A(1,1).

⊗ 1

1

⊗ a

1

⊗ −→r2
⊗

1

−1 a

−1

©
1+a

1+ 1
a

©

a=−1⇒ ©
−1

1

⊗ −1

−1
©

� If v3 is
⊙

and b = −2, then by reflecting at v2 we have 1 + a,2 + 2
a ∈ Z�0, which implies

a = −1. This is B(1,2).

⊗ 1

1

⊗ a

−2

⊙ −→r2
⊗

1

−1 a

−2

©
1+a

2+ 2
a

⊙

a=−1⇒ ©
−1

1

⊗ −1

−2

⊙

� If v3 is © and a,b = −1, then this is A(0,2).

⊗ 1

1

⊗ a

−1
© −→r2 ©

−1

1

⊗ −1

−1
©

� If v3 is ©, b = −1 and a 	= −1, then by reflecting at v2 we have 1 + a ∈ {−1,−2}, which
implies a ∈ {−2,−3}. If a = −2, then 1 + a = −1 and this is C(3). If a = −3, then 1 + a = −2 and this
is G(3).
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⊗ 1

1

⊗ a

−1
© −→r2

⊗

1

−1 a
a

©
1+a

−(1+a)

⊗
Case 2:

©v 2

b

a d
c

⊗
1

1

1

⊗
3

a,b, c,d 	= 0

� If v2 is
⊗

, then after rescaling we have

⊗

1

c b

1

⊗ 1

a

⊗

−→r2
⊗

1

−1 b
−1

©
1+b+ 1

c

1+a+ 1
b

©

Then 1 + a + 1
b ,1 + b + 1

c ∈ Z<0 or both zero. By symmetry it follows that

1 + a + 1

b
= m

1 + b + 1

c
= n

1 + c + 1

a
= t

∈ Z<0, or all equal to zero.

(2)

If they all equal zero, then this is D(2,1,α). If they all equal −1, then a,b, c = −1 and this is q(3)(2) .
If they are in Z<0 and not all equal to −1, then this is Q ±(m,n, t).

� If v2 is
⊙

and b,d = −2, then by reflecting at v1 we have 4 + 2
a ,4 + 2

c ,1 + a + c ∈ Z<0 or
all zero, which implies a, c = − 1

2 . If v2 is © then this is A(1,2)(2) , and if v2 is � then this is
B(1,1)(1) .
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⊙

−2
a −2

c

⊗ 1

1

⊗

−→r1
⊙

−2
a 4+ 2

a

Q

⊗ 1

−1
©

Q = 1 + a + c

� If v2 is ©, b = −2 and d = −1, then by reflecting at v1 we have

©

−2
a −1

c

⊗ 1

1

⊗

−→r1 �

−2
a 3+ 2

a

Q

⊗ 1

−1
©

Q = 1 + a + c

(3)

Then either 1 + a + c ∈ Z<0 and 3 + 2
a ∈ 2Z<0, or both equal zero. If they are both zero, then a = − 2

3 ,

c = − 1
3 and this is G(3).

So now assume that 1 + a + c 	= 0. Then by reflecting at v3 we have

©

−2
a −1

c

⊗ 1

1

⊗

−→r3
⊗

−1−3c

1+a+c c
c

©
−1

1

⊗
(4)

This implies 1 + a + c ∈ {−1,−2}. Since 3 + 2
a � −2, it follows that c ∈ (−2,−1 3

5 ] in the first case

(1 + a + c = −1) and c ∈ (−3,−2 3
5 ] in the second case.

If 1 + a + c = −1, then by reflecting the last diagram of (4) at v2 we have

−→r2
⊗

P
P c

−1

⊗ 2+5c

−2
©

−→r1 ©

−1

−1−3c −1
R

⊗ 2+5c

−2
�

P = −1 − 3c

R = 4 + 9c

2 + 5c

Then R = 4+9c
2+5c ∈ 2Z<0, which contradicts c ∈ (−2,−1 3

5 ].
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If 1 + a + c = −2, then by reflecting the last diagram of (4) at v2 we have⊗

P

−2 c
c

©
−1

1

⊗

−→r2
⊗

P

−2 c

−1

� S

−2
©

P = −1 − 3c

S = 3 + 7c

1 + 3c

Then S = 3+7c
1+3c ∈ 2Z<0, which contradicts c ∈ (−3,−2 3

5 ].
� If v2 is © and b,d = −1, then by reflecting at v1 we have

©

−1
a −1

c

⊗ 1

1

⊗

−→r1
⊗

a
a −1−2a

Q

⊗ 1

−1
©

Q = 1 + a + c

Then either 1 + a + c = 0 and 1 + 2a = 0, or 1 + a + c ∈ {−1,−2}. If 1 + a + c = 0, then this is C(3).
We have that 1 + a + c 	= −2 by the previous case, since the first diagram is not a diagram for G(3).

Suppose now that 1 + a + c = −1. If c = −1, then this is A(0,1)(1) . For c 	= −1 the substitution
c = 1−α

α is reversible. After substituting and rescaling, we have

©

−1

α−1 −1

α+1

⊗ −α

−α

⊗
This diagram is S(1,2,α), and is regular Kac–Moody precisely when α is not an integer. Indeed, by
reflecting the following diagram at v1 we have

©

−1

Q −1 Q +1

−1

⊗ −Q

−Q

⊗
Q = α + n

−→r1

⊗

−R

−R R−1
−1

⊗ R+1

−1
©

R = Q − 1 = α + (n − 1)
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Reflecting at v3 gives us

©

−1

Q −1 Q +1

−1

⊗ −Q

−Q

⊗
Q = α + n

−→r3

⊗

R+1
−1 −R

−R

©
−1

R−1

⊗
R = Q + 1 = α + (n + 1)

By induction, two diagrams given by labels α1 and α2 are connected by a sequence of odd reflections
precisely when α1 − α2 ∈ Z. Hence, S(1,2,α) is regular Kac–Moody if and only if α is not an integer.

We have found all regular Kac–Moody extensions of A(1,0) by one vertex. �
Lemma 2.4. The regular Kac–Moody extensions of B(1,1) to three vertices that are not extensions of A(1,0)

are the following: A(2,2)(4) , D(2,1)(2) .

Proof. We consider each case for attaching a vertex to a B(1,1) diagram.

Case 1:

⊗
1

1

−2
�2

a

b
©v 3 a,b 	= 0

Reflecting at v1 we have

⊗ 1

−2
� a

b
©v −→r1

⊗ 1

−2
©

−a

b
©v

This implies a,−a ∈ Z<0, which is a contradiction.

Case 2:

⊙
1

−2 ⊗
2

a

1 �3−2
a 	= 0

By reflecting at v2 we have

⊙ −2

a

⊗ 1

−2
� −→r2

⊗

a
−2 1

−2

⊙ 2+ 2
a

2+2a
©
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which implies 2 + 2a,2 + 2
a ∈ Z<0. The unique solution is a = −1. If v1 is © then this is A(2,2)(4) ,

and if v1 is � then this is D(2,1)(2) .

Case 3: ⊙
2

−2

a b
c

⊗
1

1

−2
�3

a,b, c 	= 0

Now a 	= 0, b ∈ Z<0, and c ∈ 2Z<0. By reflecting at v1 we have

⊙

−2
a b

c

⊗ 1

−2
�

−→r1
⊙

−2
a P

Q

⊗ 1

−2
©

where P = 2 − b + 2
a , Q = 2 − c + 2a, and P , Q ∈ Z�0. But, the system of equations

b � −1, c � −2, 2 − c + 2a � 0, 2 − b + 2

a
� 0

has no real solution. This is a contradiction. �
We note that the only regular Kac–Moody diagram with three vertices which is not finite or of

finite growth is Q ±(m,n, t).

2.2. Preliminaries

Lemma 2.5. Suppose that Γ is a subfinite regular Kac–Moody n-vertex chain where the vertex vn is isotropic
and the vertices vi for 1 < i < n are not isotropic. Then there is a sequence of odd reflections of the vertices vi
with 3 � i � n such that in the reflected diagram Γ ′ the vertex v2 is isotropic. The vertex v1 is unchanged and
a′

12 = a12 .

Proof. If n = 2, then we are done. So suppose the lemma holds for such a chain with n − 1 vertices.
Let Γ be a chain with n vertices satisfying the hypothesis of the lemma. Now an,n = 0 because vn

is isotropic, and an−1,n−1 = 2 because vn−1 is not isotropic. Since Γ is a chain, an−1,n−2 	= 0 and
an−2,n = an,n−2 = 0. Since Γ is a subfinite regular Kac–Moody diagram, the subdiagram containing
the vertices vn−2, vn−1, vn is of finite type, which by the three vertex classification implies that
an−1,n = −1 and the vertex vn−1 is even.

By reflecting at vn we obtain a diagram Γ ′ where v ′
n−1 is isotropic. We observe that Γ ′ is again a

chain. Indeed, a′
in = a′

ni = 0 and a′
i j = aij for i < n − 1, j < n, because ain = ani = 0 for i 	= n − 1. Also,
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a′
n−1,i = an,n−1an−1,i = 0 for i < n −2. We can apply the induction hypothesis to Γ ′ − {vn} which gives

us the desired sequence of odd reflections of Γ ′ and hence of Γ . �
Lemma 2.6. Let Γ be a subfinite regular Kac–Moody diagram. Suppose Γ ′ is a connected m-vertex subdiagram
of Γ such that Γ ′ does not contain an isotropic vertex. Then there is a sequence of odd reflections R of Γ such
that R(Γ ′) = Γ ′ , and there is a connected (m + 1)-vertex subfinite regular Kac–Moody subdiagram of R(Γ )

which contains Γ ′ = R(Γ ′) as a subdiagram and an isotropic vertex.

Proof. First note that Γ contains an isotropic vertex because it is subfinite. So we may take a mini-
mal subdiagram Γ ′′ containing Γ ′ and an isotropic vertex. Then by the minimality of Γ ′′ the set of
vertices in Γ ′′ −Γ ′ form a chain with an isotropic vertex, and only one of these vertices is connected
to the subdiagram Γ ′ . Denote this vertex v2 and the rest of the vertices in the chain Γ ′′ − Γ ′ by
{v3, . . . , vn} so that vk is connected to vk−1 and vk+1. Then vn is isotropic by minimality. Choose any
vertex in Γ ′ that is connected to v2 and denote it v1.

Now apply Lemma 2.5 to the subdiagram given by {v1, v2, . . . , vn} to obtain a sequence of odd re-
flections R such that R(v2) is isotropic. By minimality of Γ ′′ each vertex vk for k � 3 is not connected
to Γ ′ , so each reflection does not change the subdiagram Γ ′ , i.e. a′

i j = aij if vi, v j ∈ Γ ′ . Then the sub-
diagram R(Γ ′ ∪ {v2}) of R(Γ ) is a subfinite regular Kac–Moody (m + 1)-vertex diagram containing
the diagram Γ ′ and an isotropic vertex. �
Lemma 2.7. If Γ is a subfinite regular Kac–Moody diagram with n � 4 vertices, then any odd non-isotropic
vertex of Γ has degree one.

Proof. First note that connected finite type 3-vertex regular Kac–Moody diagrams satisfy the condi-
tion that odd non-isotropic vertices have degree one. Suppose that the vertex v2 is odd non-isotropic
with degree greater than or equal to two. Let Γ ′ = {v1, v2, v3}, where a12,a21,a23,a32 	= 0. By the
3-vertex classification, Γ ′ does not contain an isotropic vertex since Γ is subfinite. By Lemma 2.6, we
are reduced to the case when Γ has four vertices.

If v4 is connected to an odd non-isotropic vertex vi , then vi has degree two in a 3-vertex subdia-
gram {v4, vi, v j}, which contradicts the assumption that Γ is subfinite. Thus, a24 = a42 = 0. We may
assume a14,a41 	= 0, which implies that v1 is even. By reflecting at v4 we obtain a diagram in which
R(v1) is isotropic, R(v2) = v2 and a′

2i = a2i for i = 1, . . . ,4. But then the subdiagram R({v1, v2, v3})
is not of finite type. This contradicts the assumption that Γ is subfinite. �
Lemma 2.8. If Γ is a subfinite regular Kac–Moody diagram with n � 4 vertices, and Γ ′ is a 3-vertex subdi-
agram with an isotropic vertex of degree two in Γ ′ such that the ratio of the vertex is not a negative rational
number, then Γ ′ is a D(2,1,α) diagram.

Proof. Since Γ ′ is finite type regular Kac–Moody, this follows from the 3-vertex classification. �
Corollary 2.9. If Γ is a subfinite regular Kac–Moody diagram with n � 4 vertices and Γ ′ is a 4-vertex subdi-
agram containing an isotropic vertex of degree three in Γ ′ , then Γ ′ contains a D(2,1,α) diagram containing
this vertex.

2.3. Subfinite regular Kac–Moody: 4 vertices

We introduce the following notation in order to simplify the presentation. If Γ is a diagram and
{vi}i∈I is a subset of the vertices of Γ , then we denote by Γ{i|i∈I} the subdiagram of Γ obtained by
removing the vertices {vi}i∈I . For example, Γ1,2 is the subdiagram of Γ obtained by removing the
vertices v1 and v2. Let F denote the set of all connected finite type regular Kac–Moody diagrams
which contain an isotropic vertex.

For each finite type 3-vertex diagram, we will consider each case for attaching an additional vertex
to the diagram. Let Γ denote the corresponding extended diagram.
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Lemma 2.10. The subfinite regular Kac–Moody extensions of D(2,1,α) to four vertices are D(3,1), D(2,2),
F4 , B(2,1)(2) , D(2,1,α)(1) , G(3)(1) , A(1,3)(2) , and A(2,3)(2) .

Proof. We consider each case for attaching a vertex to a D(2,1,α) diagram.

Case 1:

⊗
2

1

c b

1

©v 4

e

d

⊗
1

1

a

⊗
3

a,b, c,d, e 	= 0

a + 1

b
= −1

b + 1

c
= −1

c + 1

a
= −1

(5)

� If v4 is
⊗

, then Γ2 ∈ F implies d = −1 and Γ3 ∈ F implies c = −d. Then by (5) we have a = −1
2 ,

b = −2, c = 1, and d = −1. This is D(2,2).
� If v4 is

⊙
and e = −2, then Γ2 ∈ F implies d = −1 and Γ3 ∈ F implies c = −d. Then by (5) we

have a = −1
2 , b = −2, c = 1, and d = −1. If v4 is ©, then this is B(2,1)(1) . If v4 is �, then this is

A(2,3)(2) .
� If v4 is © and e = −1, then Γ2 ∈ F implies d ∈ {−1,−2,−3} and Γ3 ∈ F implies c ∈

{−d, −d
2 , −d

3 }. If d ∈ {−1,−2}, then c ∈ {−d, −d
2 }. This yields three distinct options, and we find that

Γ is one of the following: D(3,1), F4, A(1,3)(2) . If d = −3, then c ∈ {3, 3
2 ,1} and by reflecting at v1

we obtain

r1(Γ )
⊗

4

3−c

1− 3
c

2−2
−3

−3

©2

−1c

©3

−1

1

⊗
1

Then r1(Γ )1 ∈ F implies 3−c
2 � 0. Hence, c = 3. Then by (5) we have a = −1

4 , b = −4
3 . This is G(3)(1) .

Case 2:

⊗
2

b

1

1c

⊗
3

fg

⊗
1

1

a

d

e
©v 4

a,b, c,d, e, f , g 	= 0

a + 1

b
= −1

b + 1

c
= −1

c + 1

a
= −1

(6)
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� If v4 is
⊗

, then Γ3 ∈ F implies d = −c and Γ1 ∈ F implies f = −1. Then by substitution
and by (6), we have d + f

a = −(c + 1
a ) = 1. Now Γ2 must be a D(2,1,α) diagram, so (2) implies

d + f
a = −1. This is a contradiction.

� If v4 is ©, e = −1 and g = −2, then Γ2 ∈ F implies a = 3
2 , d = −1

2 . Now Γ3 ∈ F implies d
c < 0.

Hence, c > 0. Then c + 1
a > 0, which contradicts (6).

� If v4 is © and e = g = −1, then Γ2 ∈ F implies d = f
a = −1

2 , Γ1 ∈ F implies f < 0, and Γ3 ∈ F
implies d

c < 0. Since d, f < 0 we have a, c > 0. But then c + 1
a > 0, which contradicts (6).

Case 3: ⊗
2

a

a b

b

©v 4

g d

k

f h

e⊗
1

c

c

⊗
3

a,b, c,d, e, f , g,h,k 	= 0

a + b + c = 0
(7)

Suppose v4 is ©. Then d
b , a

d , c
e , e

b ,
f
a , c

f ∈ Q<0 implies a+c
b > 0, which contradicts (7). Hence, v4 is

⊗
.

Thus all subdiagrams are D(2,1,α) diagrams. So we have g = d, h = e, and k = f . We also have
a + b + c = 0, c + d + e = 0, a + e + f = 0, and b + d + f = 0. It follows that d = a, e = b and f = c.
Hence, this is D(2,1,α)(1) . �

Now that we have found all subfinite regular Kac–Moody extensions of D(2,1,α) by one vertex,
we may restrict our attention to diagrams that do not contain a D(2,1,α) subdiagram. In particular,
the ratio of an isotropic vertex must be a negative rational number by Lemma 2.8, and an isotropic
vertex has at most degree two by Corollary 2.9.

Lemma 2.11. The subfinite regular Kac–Moody 4-vertex extensions of C(3) that are not extensions of
D(2,1,α) are the following: C(4), C(3)(1) , B(1,2)(1) , and A(1,4)(2) .

Proof. Since an isotropic vertex has degree at most two, we are reduced to the following case.

⊗
2

1

−1 −2

−2

©v 4

a

b
©1

−1

1

⊗
3

a,b 	= 0

� If v4 is
⊗

, then Γ2 ∈ F implies b = −1. This is D(2,2).
� If v4 is �, then Γ2 ∈ F implies a = −2, b = −1. This is B(1,2)(1) .
� If v4 is ©, then Γ2 ∈ F implies a = −2, b = −1. This is A(1,4)(2) .



3324 C. Hoyt / Journal of Algebra 324 (2010) 3308–3354
� If v4 is ©, then Γ2 ∈ F implies a = −1, b ∈ {−1,−2,−3}. If b = −1, then this is C(4). If b = −2,
then this is C(3)(1) . If b = −3, then by reflecting at v2 and then at v1 we obtain

−→r2 ©4

−1

−3

⊗
1

1

1

⊗
2

−2

−1
©3

−→r1
⊗

4

−3

−3 2

−2

⊗
1

1

−1
©2

−2

−1
©3

But, r1(r2(Γ ))1 /∈ F . Hence, b 	= −3. �
Lemma 2.12. All subfinite regular Kac–Moody extensions of G(3) are extensions of D(2,1,α).

Proof. Since an isotropic vertex has degree at most two, we are reduced to the following case.

⊗
2

−2

−2 3

3

©v 4

a

b
©1

−1

−1

⊗
3

a,b 	= 0

But, Γ3 /∈ F . �
Lemma 2.13. The subfinite regular Kac–Moody extensions of B(1,2) that are not extensions of D(2,1,α),
C(3) or G(3) are the following: B(1,3), B(2,2), D(2,2)(2) , and A(2,4)(4) .

Proof. Since
⊗

has at most degree two and � has at most degree one, we are reduced to the
following case.

©v 4

a

b

⊗
1

1

1

⊗
2

−1

−2
�3−2

a,b 	= 0

� If v4 is
⊗

, then Γ3 ∈ F implies b = −1. This is B(2,2).
� If v4 is �, then Γ3 ∈ F implies a = −2, b = −1. This is D(2,2)(2) .
� If v4 is ©, then Γ3 ∈ F implies a ∈ {−1,−2} and b ∈ {−1,−2,−3}. By assumption, Γ3 is

not C(3) or G(3), which implies b = −1. If a = −1, then this is B(1,3). If a = −2, then this is
A(2,4)(4) . �
Lemma 2.14. The subfinite regular Kac–Moody extensions of B(2,1) that are not extensions of D(2,1,α),
C(3) or G(3) are the following: B(3,1), B(2,2), A(2,4)(4) , and D(1,3)(2) .
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Proof. We consider each case for attaching a vertex to a B(2,1) diagram.

Case 1:

⊗
2

11

−1

−2
©3

ab

⊗
1

d

c
©v 4

a,b 	= 0

Then Γ1 /∈ F even if c,d = 0.

Case 2:

©v 4

a

b

⊗
1

1

1

⊗
2

−1

−2
©3 a,b 	= 0

� If v4 is
⊗

, then Γ3 ∈ F implies b = −1. This is B(2,2).
� If v4 is �, then Γ3 ∈ F implies a = −2, b = −1. This is A(2,4)(4) .
� If v4 is ©, then Γ3 ∈ F implies a ∈ {−1,−2} and b ∈ {−1,−2,−3}. By assumption, Γ3 is

not C(3) or G(3), which implies b = −1. If a = −1, then this is B(3,1). If a = −2, then this is
D(1,3)(2) . �
Lemma 2.15. The subfinite regular Kac–Moody extensions of A(0,2) that are not extensions of D(2,1,α),
C(3) or G(3) are the following: A(0,3), A(1,2), B(1,3), B(3,1), A(0,2)(1) , and q(4)(2) .

Proof. We consider each case for attaching a vertex to an A(0,2) diagram.

Case 1:

©v 4

a

b

⊗
1

1

1

⊗
2

−1

−1
©3 a,b 	= 0

� If v4 is
⊗

, then Γ3 ∈ F implies b = −1. This is A(1,2).
� If v4 is �, then Γ3 ∈ F implies a = −2, b = −1. This is B(1,3).
� If v4 is ©, then Γ3 ∈ F implies a ∈ {−1,−2} and b ∈ {−1,−2,−3}. By assumption, Γ3 is not

C(3) or G(3), which implies b = −1. If a = −1, then this is A(0,3). If a = −2, then this is B(3,1).

Case 2:

⊗
1

1

1

⊗
2

−1

−1
©3

b

a
©v 4 a,b 	= 0

� If v4 is
⊗

, then Γ1 ∈ F implies b = −1. This is A(1,2).
� If v4 is �, then Γ1 ∈ F implies a = −2, b = −1. This is B(1,3).
� If v4 is ©, then Γ1 ∈ F implies a ∈ {−1,−2} and b ∈ {−1,−2,−3}. By assumption, Γ1 is not

C(3) or G(3), which implies b = −1. If a = −1, then this is A(0,3). If a = −2, then this is B(3,1).
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Case 3:

⊗
2

11

−1

−1
©3

ab

⊗
1

d

c
©v 4

a,b, c,d 	= 0

� If v4 is ©, then Γ2 ∈ F implies c = −1 and b ∈ {−1,−2,−3}. By assumption, Γ2 is not C(3)

or G(3), which implies b = −1. Since we assume that Γ3 is not C(3) or G(3), we have that Γ3 ∈ F im-
plies d = −1. Now Γ1 ∈ F implies a ∈ {−1,−2,−3} and since we assume that it is not C(3) or G(3),
we have a = −1. This is A(0,2)(1) .

� If v4 is
⊗

, then Γ1 ∈ F implies a = −1. Since we assume that Γ3 is not D(2,1,α), we have
that Γ3 ∈ F implies d = −1. Finally, Γ2 ∈ F and not equal to C(3) or G(3) implies b

c = −1. This
is q(4)(2) . �
Lemma 2.16. The subfinite regular Kac–Moody extensions of A(1,1) that are not extensions of D(2,1,α),
C(3) or G(3) are the following: A(1,2), B(2,2), A(1,1)(1) , and q(4)(2) .

Proof. We consider each case for attaching a vertex to an A(1,1) diagram.

Case 1:

⊗
1

1

1

⊗
2

−1

1

⊗
3

b

a
©v 4 a,b 	= 0

� If v4 is
⊗

, then Γ1 ∈ F implies b − 1. This is A(1,2).
� If v4 is �, then Γ1 ∈ F implies a = −2, b = −1. This is B(2,2).
� If v4 is ©, then Γ1 ∈ F implies a ∈ {−1,−2} and b ∈ {−1,−2,−3}. By assumption, Γ1 is not

C(3) or G(3), which implies b = −1. If a = −1, then this is A(1,2). If a = −2, then this is B(2,2).

Case 2:

⊗
1

11

−1

1

⊗
2

ab

⊗
3

d

c
©v 4

a,b, c,d 	= 0

� If v4 is
⊗

, then Γ1 ∈ F implies a = −1, Γ3 ∈ F implies d = −1, and Γ2 ∈ F implies b
c = −1.

This is A(1,1)(1) .
� If v4 is ©, then Γ1 ∈ F implies b = c = −1. Then Γ2,Γ3 ∈ F and not C(3) or G(3) imply

a = d = −1. This is q(4)(2) . �
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This completes the classification of connected subfinite regular Kac–Moody diagrams with four
vertices. We observe that all are either of finite type or have finite growth.

2.4. Subfinite regular Kac–Moody: 5 vertices

For each finite type 4-vertex diagram, we will consider each case for attaching a vertex to the
diagram. Let v5 denote the additional vertex, and let Γ denote the corresponding extended diagram.
Recall that aij denotes the label of the arrow from the vertex vi to the vertex v j . Also, aij = 0 if and
only if a ji = 0.

Lemma 2.17. The subfinite regular Kac–Moody extensions of D(2,2) are the following: D(2,3), D(3,2),
B(2,2)(1) , A(4,3)(2) , A(3,3)(2) , D(2,2)(2) .

Proof. ⊗
2

1

1 −2

−2

⊗
4

−1

−1

⊗
1

1

1

⊗
3

First observe that Γ4 ∈ F implies a52 = a53 = 0.
� If v5 is �, then Γ2 ∈ F implies a51 = 0, a54 = −2, a45 = −1. This is B(2,2)(1) .
� If v5 is ©, then Γ2 ∈ F implies a51 = 0 and a45,a54 ∈ {−1,−2}. If a54 = −2 and a45 = −1, then

this is A(4,3)(2) . If a54 = −1 and a45 = −2, then this is D(2,2)(2) . If a54 = a45 = −1, then this is
D(2,3).

� If v5 is
⊗

, then Γ2 ∈ F implies that either a51 = a15 = 0, a45 = −1, a54 = 1 and this is D(3,2),
or a51 = −1, a15 = 1, a45 = a54 = −2 and this is A(3,3)(2) . �
Lemma 2.18. The subfinite regular Kac–Moody extensions of D(3,1) are the following: D(2,3), D(4,1),
B(3,1)(1) , A(2,5)(2) , A(3,3)(2) , A(5,1)(2) .

Proof. ⊗
2

1

1 −2

−2

©4

−1

−1

⊗
1

1

1

⊗
3

First observe that Γ4 ∈ F implies a52 = a53 = 0.
� If v5 is �, then Γ3 ∈ F implies a51 = 0, a54 = −2, a45 = −1. This is A(2,5)(2) .
� If v5 is ©, then Γ3 ∈ F implies that Γ satisfies the following conditions. If a51 	= 0, then a51 =

a15 = −1, a54 = a45 = 0, and this is A(3,3)(2) . If a51 = 0, then a54,a45 ∈ {−1,−2}. If a51 = 0, a54 = −2
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and a45 = −1, then this is B(3,1)(1) . If a51 = 0, a54 = −1 and a45 = −2, then this is A(5,1)(2) . If
a51 = 0, a54 = −1 and a45 = −1, then this is D(4,1).

� If v5 is
⊗

, then Γ3 ∈ F implies a51 = 0, a45 = −1, a54 = 1. This is D(2,3). �
Lemma 2.19. The subfinite regular Kac–Moody extensions of C(4) are the following: C(5), D(2,3), B(1,3)(1) ,
D(1,3)(1) , A(5,1)(2) , A(6,1)(2) .

Proof.

⊗
2

1

−1 −2

−2

©4

−1

−1
©1

−1

1

⊗
3

First observe that Γ4 ∈ F implies a52 = a53 = 0.
� If v5 is �, then Γ3 ∈ F implies a51 = 0, a54 = −2, a45 = −1. This is B(1,3)(1) .
� If v5 is ©, then Γ3 ∈ F implies that Γ satisfies the following conditions. If a51 	= 0, then a51 =

a15 = −1, a54 = a45 = 0, and this is A(5,1)(2) . If a51 = 0, then a54,a45 ∈ {−1,−2}. If a51 = 0, a54 = −2
and a45 = −1, then this is A(6,1)(2) . If a51 = a15 = 0, a54 = −1 and a45 = −2, then this is D(1,3)(1) .
If a51 = a15 = 0, a54 = −1 and a45 = −1, then this is C(5).

� If v5 is
⊗

, then Γ3 ∈ F implies a51 = 0, a54 = 1, a45 = −1. This is D(2,3). �
Lemma 2.20. The only subfinite regular Kac–Moody extensions of F (4) is F (4)(1) .

Proof.

⊗
2

2

2 −3

−3

©4

−1

−2

⊗
1

1

1

⊗
3

First observe that Γ4 ∈ F implies a52 = a53 = 0. Then Γ2 ∈ F implies a51 = 0, a54 = a45 = −1. This
is F (4)(1) . �

Let K = {Γ ′ ∈ F | R(Γ ′) is a chain for every sequence R of odd reflections}.

Lemma 2.21. The subfinite regular Kac–Moody extensions of A(0,3), A(1,2), B(1,3), B(3,1) and B(2,2),
that are not extensions of C(4), D(3,1), D(2,2) or F4 , are the following: A(0,4), A(1,3), A(2,2), B(1,4),
B(2,3), B(3,2), B(4,1), A(0,3)(1) , A(1,2)(1) , A(4,4)(2) , A(6,2)(2) , D(2,3)(2) , D(3,2)(2) , D(4,1)(2) ,
q(5)(2) .
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Proof. Note that every connected 4-vertex subdiagram of Γ containing an isotropic vertex is an el-
ement of K. We find the extensions for each of the diagrams: A(0,3), A(1,2), B(1,3), B(3,1) and
B(2,2).

B(3,1)
⊗

1

1

1

⊗
2

−1

−1
©3

−1

−2
©4

First observe that since Γ1,Γ4 ∈ K we have a52 = a53 = a54 = 0.
� If v5 is

⊗
, then Γ4 ∈ K implies a15 = −1, a15 = 1. This is B(3,2).

� If v5 is �, then Γ4 ∈ K implies a15 = −1, a51 = −2. This is A(6,2)(2) .
� If v5 is ©, then Γ4 ∈ K implies a15 = −1, a51 ∈ {−1,−2}. If a51 = −1, then this is B(4,1). If

a51 = −2, then this is D(4,1)(2) .

B(1,3)
⊗

1

1

1

⊗
2

−1

−1
©3

−1

−2
�4

First observe that since Γ1,Γ4 ∈ K we have a52 = a53 = a54 = 0.
� If v5 is

⊗
, then Γ4 ∈ K implies a15 = −1, a15 = 1. This is B(2,3).

� If v5 is �, then Γ4 ∈ K implies a15 = −1, a51 = −2. This is D(2,3)(2) .
� If v5 is ©, then Γ4 ∈ K implies a15 = −1, a51 ∈ {−1,−2}. If a51 = −1, then this is B(1,4). If

a51 = −2, then this is A(6,2)(2) .

B(2,2)
⊗

1

1

1

⊗
2

−1

1

⊗
3

−1

−2
�4

First observe that since Γ1,Γ4 ∈ K we have a52 = a53 = a54 = 0.
� If v5 is

⊗
, then Γ4 ∈ K implies a15 = −1, a15 = 1. This is B(2,3).

� If v5 is �, then Γ4 ∈ K implies a15 = −1, a51 = −2. This is A(4,4)(2) .
� If v5 is ©, then Γ4 ∈ K implies a15 = −1, a51 ∈ {−1,−2}. If a51 = −1, then this is B(3,2). If

a51 = −2, then this is D(3,2)(2) .
Finally, we restrict our attention to diagrams satisfying: a connected 4-vertex subdiagram contain-

ing an isotropic vertex is a diagram for A(0,3) or A(1,2).

A(1,2)
⊗

1

1

1

⊗
2

−1

1

⊗
3

−1

1

⊗
4

First observe that since Γ1,Γ4 ∈ K we have a52 = a53 = 0. There are two distinct cases: a54 = 0 and
a51,a54 	= 0.

� If v5 is
⊗

and a54 = 0, then a51 = 1, a15 = −1. This is A(2,2).
� If v5 is © and a54 = 0, then a51,a15 = −1. This is A(1,3).
� If v5 is

⊗
and a54,a51 	= 0, then a51 = 1, a15,a54,a45 = −1. This is q(5)(2) .

� If v5 is © and a54,a51 	= 0, then a51,a15,a54,a45 = −1. This is A(1,2)(1) .

A(0,3) ©1

−1

1

⊗
2

−1

1

⊗
3

−1

−1
©4

Now we assume that a connected 4-vertex subdiagram is a diagram for A(0,3). First observe that
since Γ1,Γ4 ∈ K we have a52,a53 = 0. There are two distinct cases: a54 = 0 and a51,a54 	= 0.
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Table 1

•2

•3

•1

©2

−1

−2−1 •3

©1

©2

−1

−1

•3

©1

−1

−1

⊗
2

1

−2−1 •3

©1

•2

−2 •3

⊙
1

⊗
2

−1

−1

22 •3

⊗
1

−1

−1

� If v5 is
⊗

and a54 = 0, then a51 = 1, a15 = −1. This is A(1,3).
� If v5 is © and a54 = 0, then a51,a15 = −1. This is A(0,4).
� If v5 is

⊗
and a54,a51 	= 0, then a51 = 1, a15,a54,a45 = −1. This is q(5)(2) .

� If v5 is © and a54,a51 	= 0, then a51,a15,a54,a45 = −1. This is A(0,3)(1) . �
This completes the classification of connected subfinite regular Kac–Moody diagrams with five

vertices. We observe that all are either of finite type or have finite growth.

2.5. Subfinite regular Kac–Moody: n � 6 vertices

Now we handle the general case. We find all connected subfinite regular Kac–Moody diagrams
with six or more vertices. We will show in Theorem 5.5 that the subfinite regular Kac–Moody di-
agrams which are not of finite type are not extendable, completing the classification of regular
Kac–Moody diagrams.

Remark 2.22. A finite type diagram Γ ′ with n � 5 vertices has the following form:

•2

©v 1 •3 •n−2 •n−1

(8)

where Γ ′
1 is A(k, l) or Ak , and the subdiagram {v1, v2, v3} is one of the diagrams in Table 1.

Lemma 2.23. Let Γ be a subfinite regular Kac–Moody cycle with n � 4 vertices and let v j be a vertex of Γ

connected to vi and vk. Then either
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v j is © with a ji = a jk = −1; or

v j is
⊗

with
a ji

a jk
= −1. (9)

If Γ has an even number of odd roots, then g(A) is an A(k − 1, l)(1) diagram. If Γ has an odd number of odd
roots, then g(A) is a q(n)(2) diagram.

Proof. By the above classification, all subfinite regular Kac–Moody 4-vertex and 5-vertex cycles are
of type A(k, l)(1) or q(n)(2) , and satisfy (9). Let Γ be a subfinite regular Kac–Moody cycle with n � 6
vertices and let v j be a vertex which is connected to vi and vk . Since n � 6, v j is contained in a
proper 5-vertex subdiagram where v j is the middle vertex of the chain. By the 5-vertex classification,
we see that for every finite type chain diagram with five vertices, the middle vertex satisfies (9).
Hence, every vertex of Γ satisfies (9). If Γ has an even number of odd roots, then the corresponding
matrix A is symmetrizable and g(A) is an A(k, l)(1) diagram. If Γ has an odd number of odd roots,
then A is non-symmetrizable and g(A) is a q(n)(2) diagram. �
Lemma 2.24. If Γ contains a proper subdiagram Γ ′ which is a cycle with n � 4 vertices then Γ is not subfinite
regular Kac–Moody.

Proof. Suppose Γ is a subfinite regular Kac–Moody diagram which contains a cycle with n � 4
vertices. By Lemma 2.6, we are reduced to the case where Γ = Γ ′ ∪ {vn+1} is subfinite regular
Kac–Moody. By the above classification, a subfinite regular Kac–Moody 5-vertex diagram does not
contain a 4-vertex cycle subdiagram. So now suppose Γ ′ is a cycle with n vertices where n � 5
and that Γ = Γ ′ ∪ {vn+1} is subfinite regular Kac–Moody. If Γ ′ contains an isotropic vertex, then by
Lemma 2.23 the diagram Γ ′ is either A(m,n)(1) or q(n)(2) , which is not of finite type.

Suppose Γ ′ does not contain an isotropic vertex. Then the additional vertex vn+1 of Γ is isotropic.
Since Γ is connected we have the following subdiagram:

⊙ ⊙ ⊙ ⊙
⊗

n+1

where the double lines are necessarily connected, and the dotted lines are possibly connected. But by
the 5-vertex classification, we see that this is not a finite type subdiagram. �
Lemma 2.25. Let Γ be the following diagram

•1 •2 •3 •4 •5

©v 6

where Γ contains an isotropic vertex and Γ6 is a diagram for A(k, l) or Ak. Then Γ is not a subfinite regular
Kac–Moody diagram.

Proof. If v6 is isotropic, then Γ5 /∈ F , which is a contradiction. We may assume that v3 is isotropic,
by using odd reflections in the subdiagram Γ3,6. Then Γ1,Γ5 ∈ F implies that the vertices v2, v4,
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v6 are even. Moreover, Γ1 ∈ F implies that the ratio of v3 in the subdiagram {v2, v3, v6} is 1, while
Γ5 ∈ F implies that the ratio is −1, which is a contradiction. �
Proposition 2.26. If Γ is a subfinite regular Kac–Moody diagram with n � 6 vertices and Γ is not a cycle,
then Γ is of the form

•2 •n−1

•3 • · · · • •n−2

©v 1 ©v n

(10)

where the subdiagram Γ \ {v1, vn} is A(k, l) or Ak, and the subdiagrams {v1, v2, v3} and {vn, vn−1, vn−2}
are diagrams from Table 1.

Proof. First note that diagrams satisfying (10) reflect by odd reflections to diagrams that again sat-
isfy (10). So it suffices to prove the proposition for a diagram obtained by odd reflections from the
original diagram.

Let Γ be a subfinite regular Kac–Moody diagram with n � 6 vertices, which is not a cycle. Choose a
vertex vn such that Γ ′ := Γ \ {vn} is connected and contains an isotropic vertex. Then Γ ′ satisfies (8).
We may assume that the subdiagram {v1, v2, v3} contains an isotropic vertex, by using odd reflections
in the subdiagram {v4, . . . , vn−1}. If Γ ′ \ {v1} does not contain an isotropic vertex, then v1 is isotropic.
In this case, by Table 1, Γ ′ is the standard diagram for A(1,n − 2) and an odd reflection at v1 results
in a diagram with v2 isotropic. So we may assume that v2 or v3 is isotropic.

Suppose that vn is connected only to the vertex v1. If a12,a21 = 0, then a13,a31 	= 0 and
{vn, v1, v3, v2, v4} ∈ F implies that the subdiagram {vn, v1, v3} is A(k, l) or Ak . Then by Lemma 2.25,
the diagram {vn, v1, v2, v3, v4, v5} is not a subfinite regular Kac–Moody diagram. If a12,a21 	= 0, then
Γn−1 ∈ F implies a13,a31 = 0. The condition {vn, v1, v2, v3, v4} ∈ F yields two possibilities: either
{vn, v1, v2} is a diagram from Table 1 and {v1, v2, v3, v4} is A(k, l) or Ak , or {v4, v3, v2} is a diagram
from Table 1 and {vn, v1, v2, v3} is A(k, l) or Ak . In the first case, Γn is A(k, l) or Ak , and we are
done. In the second case, Γ is A(k, l) or Ak , and we are done.

Now we may assume that Γ \ {v1} is connected, and hence satisfies (8). Thus, the vertex vn is
not connected to vertices v j with 3 < j < n − 2. First suppose that vn is connected to vn−2 or vn−1.
Then Γ1 ∈ F implies that vn is not connected to v2 or v3 and Γ1 satisfies (8). By Lemma 2.24,
vn is not connected to v1. Thus, Γ satisfies (10). Now suppose that vn is not connected to vn−2
or vn−1. If vn is connected to v3 then {vn, v1, v2, v3, v4} satisfies (8), implying vn is not connected
to v1 or v2, a13,a31 = 0, and the subdiagram {v1, v2, v3} is A(k, l) or Ak . But then by Lemma 2.25,
{vn, v1, v2, v3, v4, v5} is not a subfinite regular Kac–Moody diagram. Hence, vn is not connected to v3.
Finally, since subdiagram Γ \ {vn−1} satisfies (8) with vn connected only to v1 or v2 we conclude that
Γ satisfies (10). �
2.6. Classification theorem

Theorem 2.27. If A is a symmetrizable matrix and g(A) has a simple isotropic root, then g(A) is regular Kac–
Moody if and only if it has finite growth. If A is a non-symmetrizable matrix and g(A) has a simple isotropic
root, then g(A) is regular Kac–Moody if and only if it is one of the following three classes:
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Algebra Dynkin diagrams

q(n)(2)

•

a

b

• • · · · • •

There are n •.
Each • is either © or

⊗
.

An odd number of them is
⊗

.
If • is ©, then a = b = −1.
If • is

⊗
, then a

b = −1.

S(1,2,α)

⊗
−1+α

1

⊗
1

−1−α

©
−1

−1 α 	= 0, 1
α ∈ C \ Z

⊗
b

1

⊗
c

1 ⊗
a

1

⊗
b

1

©

−1

1+b+ 1
c

©
1+a+ 1

b

−1

Q ±(m,n, t)
⊗

c

1

©

−1

1+c+ 1
a

©
1+b+ 1

c

−1

⊗
a

1

©

−1

1+a+ 1
b

©
1+c+ 1

a

−1

1 + a + 1
b = m

1 + b + 1
c = n

1 + c + 1
a = t

m,n, t ∈ Z�−1 and

not all equal to − 1,

a,b, c ∈ R \ Q.

Remark 2.28. This theorem follows from the classification of connected subfinite regular Kac–Moody
diagrams in Section 2 and Theorem 5.5. The fact that Q ±(m,n, t) is not symmetrizable and does not
have finite growth will be proven in Section 3. Note that Q ±(m,n, t) ∼= Q ±(n, t,m) as algebras (see
Remark 3.3).

3. The Lie superalgebra Q ±(m,n, t)

Q ±(m,n, t)

⊗

1

c b

1

⊗ 1

a

⊗

1 + a + 1
b = m

1 + b + 1
c = n

1 + c + 1
a = t

m,n, t ∈ Z�−1, not all equal to − 1.
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In this section, we describe the parameters of the defining matrices for Q ±(m,n, t), and then we
show that Q ±(m,n, t) is not symmetrizable and does not have finite growth.

Lemma 3.1. For each diagram Q ±(m,n, t), it follows that a,b, c ∈ R \ Q, and there are two solutions of the
above equations, namely Q −(m,n, t) with a,b, c < −1 and Q +(m,n, t) with −1 < a,b, c < 0.

Proof. First, we show that a solution exists. To simplify the calculations we let

M = 1 − m, N = 1 − n, T = 1 − t.

Then M, N, T ∈ Z�2. Solving Eq. (1) for b and Eq. (3) for c, and then substituting into Eq. (2) yields

−N = −1

a + M
+ −a

aT + 1
.

By clearing denominators and regrouping, we have f (a) = 0 where

f (a) = (NT − 1)a2 + (MNT − M + N − T )a + (MN − 1).

Since M, N, T � 2, one has NT − 1 > 0. The discriminant of f (a) is D = (MNT − M − N − T )2 − 4.
Now since M − 1, N − 1, T − 1 ∈ Z�1 and not all equal to 1, we have

3 � (M − 1)(N − 1)(T − 1) + 1

= MNT − (N − 1)M − (T − 1)N − (M − 1)T

< MNT − M − N − T ,

which implies D > 0. Hence, f (a) has two real roots. Moreover, these roots are not rational, since by
taking k = MNT − M − N − T and y2 = D , we obtain the equation y2 = k2 − 4, which has only two
solutions with integral k and rational y, namely k = ±2, y = 0. Since D 	= 0, we conclude that y is
not rational. Hence, a ∈ R \ Q, and it follows from the defining equations that b, c ∈ R \ Q.

Let a1 > a2 be the roots of the quadratic equation f (a) = 0. Since NT −1, MN −1 > 0, the function
f (a) is concave up with f (0) > 0. We can express f (−1) as

f (−1) = −(M − 1)(N − 1)(T − 1) − (M − 2)(T − 2) + 1,

where it is easy to see that f (−1) < 0 for M, N, T ∈ Z�2, not all equal to 2. Hence,

a2 < −1 < a1 < 0.

Denote by b1, b2, c1, c2 the corresponding values of b, c. From ai + b−1
i � −2 and similar formulas

we obtain

−1 < a1 < 0 ⇒ −1 < b1 < 0 ⇒ −1 < c1 < 0

and

a2 < −1 ⇒ c2 < −1 ⇒ b2 < −1. �
Corollary 3.2. The determinant of the Cartan matrix equals 1 + abc and is non-zero. Hence, the dimension of
the Cartan subalgebra is 3.
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Remark 3.3. It is clear that Q ±(m,n, t) ∼= Q ±(n, t,m) as algebras by cyclic permutation of the vari-
ables a, b, c. We also have Q ±(m,n, t) ∼= Q ∓(m, t,n) by transforming the equations: a → 1

b , b → 1
a ,

c → 1
c .

Lemma 3.4. Q ±(m,n, t) is not symmetrizable.

Proof. Suppose that we have a symmetrizable solution a, b, c. We show that this implies a ∈ Q,
which is a contradiction. If the matrix is symmetrizable then abc = 1. So, we substitute c = 1

ab into
the defining equations. This yields

1 + a + 1

b
= m,

1 + (a + 1)b = n,

1 + 1

ab
+ 1

a
= t.

From the first equation we have b = 1
m−a−1 . Substituting this into the second equation and solving

for a, we have a = mn−m−n
n ∈ Q. Hence, there is no symmetrizable solution. �

Lemma 3.5. Q ±(m,n, t) does not have finite growth.

Proof. The set of principal roots of Q ±(m,n, t) is Π0 = {α1 + α2,α2 + α3,α3 + α1}. The Cartan ma-
trix B of the subalgebra of Q ±(m,n, t) generated by Π0 is

B =
(2 m m

n 2 n
t t 2

)
.

All off diagonal entries of B are negative integers. Since they are not all equal to −1, this is not a
Cartan matrix of a finite-growth Kac–Moody algebra. By Lemma 1.10, Q ±(m,n, t) does not have finite
growth. �

A Kac–Moody superalgebra is called hyperbolic if after the removal of any simple root the superal-
gebra is either of finite or affine type.

Lemma 3.6. The regular Kac–Moody superalgebra Q ±(m,n, t) is hyperbolic for the following m � n � t.

m n t

−1 −1 −2
−1 −1 −3
−1 −1 −4
−1 −2 −2
−2 −2 −2

4. Integrable modules

Let g(A) be a regular Kac–Moody superalgebra, and let g(A) = h⊕ (
⊕

α∈� g(A)α) be the root space
decomposition. Recall that we may assume that aii ∈ {0,2} without loss of generality. An element
ρ ∈ h∗ such that ρ(hi) = αi(hi) = 1

2 aii for all i ∈ I is called a Weyl vector.
A root α is called real if α or 1

2 α is simple in some base obtained by a sequence of even and
odd reflections, and it is called imaginary otherwise. For each real root α, the vector space [gα,g−α]
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is a one-dimensional subspace of the Cartan subalgebra h. Moreover, if α is non-isotropic, then for
each non-zero h ∈ [gα,g−α] we have that α(h) 	= 0. In this case, we may choose hα to be the unique
vector in [gα,g−α] which satisfies α(hα) = 2 (see Remark 1.7). Then take xα ∈ gα , yα ∈ g−α such
that [xα, yα] = hα . If α is even, then {xα, yα,hα} forms an sl2-triple. If α is odd non-isotropic,
then {xα, yα,hα, [xα, xα], [yα, yα]} is a basis for a subalgebra which is isomorphic to osp(1,2), and
{− 1

4 [xα, xα], 1
4 [yα, yα], 1

2 hα} forms an sl2-triple.
Let U (g) denote the universal enveloping algebra of a Lie superalgebra g. Let n+ (resp. n−) denote

the subalgebra of g(A) generated by the elements Xi (resp. Yi ), i ∈ I . Then one has the triangular
decomposition g(A) = n− + h + n+ .

A g(A)-module V is called a weight module if V = ⊕
μ∈h∗ Vμ , where Vμ = {v ∈ V | hv = μ(h)v,

for all h ∈ h}. If Vμ is non-zero, then μ is called a weight. A g(A)-module V is called a highest weight
module with highest weight λ ∈ h∗ if there exists a vector vλ ∈ V such that

n+vλ = 0, hv = λ(h)vλ for h ∈ h, U
(
g(A)

)
vλ = V .

A highest weight module is a weight module. We let L(λ) denote the irreducible highest weight
module with highest weight λ. To simplify notation we define λi := λ(hi), for i ∈ I .

A subalgebra s of g(A) is locally finite on a module V if dim U (s)v < ∞ for any v ∈ V . An element
x ∈ g is locally nilpotent on V if for any v ∈ V there exists a positive integer N such that xN v = 0.

4.1. Integrable modules over affine Lie superalgebras

Let g be a basic Lie superalgebra, that is, a finite-dimensional simple Lie superalgebra over C

with a nondegenerate even symmetric invariant bilinear form (·,·), such that g0̄ is reductive [4]. The
associated (non-twisted) affine Lie superalgebra is

ĝ = (
C

[
t, t−1] ⊗C g

) ⊕ CK ⊕ Cd

with commutation relations[
a(n),b(l)

] = [a,b](n + l) + nδn,−l(a|b)K ,
[
d,a(n)

] = −na(n), [K , ĝ ] = 0

where a,b ∈ g; n, l ∈ Z and a(n) = tn ⊗ a. By identifying g with 1 ⊗ g, we have that the Cartan
subalgebra of ĝ is

h = ◦
h ⊕ CK ⊕ Cd

where
◦
h is the Cartan subalgebra of g. Let δ be the linear function defined on h by δ| ◦

h⊕CK
= 0 and

δ(d) = 1. Let θ be the unique highest weight of the g. Then α0 = δ − θ is the additional simple root
which extends g to ĝ.

Now suppose σ is an automorphism of g with order m 	= 1. Then g decomposes into eigenspaces:

g =
⊕

j∈Z/mZ

g(σ ) j, g(σ ) j = {
x ∈ g

∣∣ σ(x) = e
j2Π i

m x
}
.

The associated twisted affine Lie superalgebra is

g(m) =
(⊕

j∈Z

t j ⊗ g(σ ) j mod m

)
⊕ CK ⊕ Cd
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with the same commutation relations as given above. By identifying g(σ )0 with 1 ⊗ g(σ )0, we have
that the Cartan subalgebra of g(m) is h = ◦

h ⊕ CK ⊕ Cd where
◦
h is the Cartan subalgebra of g(σ )0.

Let δ be the linear function defined on h by δ|h0⊕CK = 0 and δ(d) = 1. Let θ be the unique highest
weight of the g(σ )0-module g(σ )1. Then α0 = δ−θ is the additional simple root which extends g(σ )0
to g(m) .

The bilinear form (·,·) on g gives rise to a nondegenerate symmetric invariant bilinear form on ĝ

and on g(m) by

(
a(n),b(l)

) = δn,−l(a,b),
(
C

[
t, t−1] ⊗ g,CK ⊕ Cd

) = 0,

(K , K ) = (d,d) = 0, (K ,d) = 1,

(⊕
j∈Z

t j ⊗ g(σ ) j mod m,CK ⊕ Cd

)
= 0.

The restriction of this form to h is nondegenerate and is also denoted by (·,·). We use this form to
identify h with h∗ , which induces a nondegenerate bilinear form on h∗ . Let V (λ) be a highest module
over ĝ. Then k = λ(K ) is the level of L(λ).

A highest weight module V over an affine Lie superalgebra ĝ (resp. g(m)) is called integrable if it
is integrable over the affine Lie algebra ĝ0̄ (resp. g

(m)

0̄
), that is, if gα(n) is locally finite on V for every

root α of g0̄ and n ∈ Z.
Since g0̄ = ⊕

j∈Z/mZ(g(σ ) j)0̄ is a graded reductive Lie algebra, it follows that (g(σ )0)0̄ is reductive.

Hence we may write g0̄ (resp. (g(σ )0)0̄) as a sum
⊕N

i=0 g0̄i , where g0̄0 is abelian and g0̄i for i =
1, . . . , N are simple Lie algebras. Then for each i, the superalgebra ĝ (resp. g(m)) contains an affine Lie
algebra ĝ0̄i associated to g0̄i . Explicitly, we have

ĝ0̄i = (
C

[
s, s−1] ⊗C g0̄i

) ⊕ CK ′ ⊕ Cd,

where s = t , K ′ = K (resp. s = tm , K ′ = mK ). The Cartan subalgebra of ĝ0̄i is hi = ◦
hi ⊕ CK ⊕ Cd,

where
◦
hi = ◦

h ∩ g0̄i . If V is integrable over ĝ (resp. g(m)), then it follows from the definition that V is
integrable over ĝ0̄i , i = 1, . . . , N .

It was shown in [8], that most non-twisted affine Lie superalgebras have only trivial irreducible
integrable highest weight modules, which led to the consideration of weaker notions of integrability.

Proposition 4.1 (Kac, Wakimoto). The only non-twisted affine Lie superalgebras with non-trivial irreducible
integrable highest weight modules are B(0,n)(1) , C(n)(1) and A(0,m)(1) .

In [1], S. Eswara Rao and V. Futorny show that over non-twisted affine Lie superalgebras all irre-
ducible integrable highest weight modules with non-zero level are highest weight modules. The proof
of the following statement is similar to the non-twisted case.

Proposition 4.2. Let g(m) be a twisted affine Lie superalgebra which is not one of the algebras: A(0,2n −1)(2) ,
A(0,2n)(4) and C(n)(2) . Then an irreducible integrable highest weight module over g(m) is trivial.

Proof. First we consider the non-symmetrizable twisted affine Lie superalgebra, q(n)(2) . The Lie super-
algebra q(n)(2) is not covered by the construction given above, so we must handle this case separately.
If n is odd, then we have a Cartan matrix defined by ai,i+1 = −1, ai+1,i = 1 for i = 1, . . . ,n (mod n),
and all other entries zero. All simple roots in this case are odd isotropic. By an odd reflection at αi , we
obtain an even root αi +αi+1 with hαi+αi+1 = hi+1 −hi . By Lemma 4.6, the conditions for integrability
are λi+1 − λi ∈ Z�0 (mod n). This implies λi = 0 for all i = 1, . . . ,n.

If n is even, the we have a Cartan matrix defined by ai,i+1 = −1, ai+1,i = 1 for i = 1, . . . ,n − 1,
a1,1 = 2, a1,n = an,1 = −1, and all other entries zero. In this case, the simple root α1 is even, and
all other simple roots are odd isotropic. Using odd reflections, we obtain the set of principal roots
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{α1,α2 + α3,α3 + α4, . . . ,αn−1 + αn,αn + α1 + α2}. For i = 2, . . . ,n − 1 we have hαi+αi+1 = hi+1 − hi ,
and hαn+α1+α2 = h2 − hn − h1. This yields integrability conditions λ1 ∈ Z�0, λi+1 − λi ∈ Z�0 for i =
2, . . . ,n − 1, and λ2 − λn − λ1 ∈ Z�0. Together these imply λi = 0 for i = 1, . . . ,n.

For a symmetrizable twisted affine Lie superalgebra g(m) , we have the standard nondegenerate
symmetric invariant bilinear form. The structure of g

(m)

0
, the even part of g(m) , is given by van de Leur

in [11]. Let g(m) be a symmetrizable twisted affine Lie superalgebra, which is not one of the algebras:
A(0,2n − 1)(2) , A(0,2n)(4) and C(n)(2) , and choose a base Π = {α0, . . . ,αl} with a unique simple
isotropic root, αd . Using the bilinear form to identify h with h∗ , we have αi = αi

∨ for i � d and
αi = −αi

∨ for i > d. Note that d 	= 0 and d 	= l by choice of g(m) .
Then g

(m)

0
has as subalgebras, both an affine subalgebra g′ on which this form is positive definite,

and an affine subalgebra g′′ on which this form is negative definite. Denote by ◦
g′ (resp. ◦

g′′) the finite
part of g′ (resp. g′′). Let θ ′ (resp. θ ′′) denote the highest weight of the module ◦

g′
1 (resp. ◦

g′′
1) over ◦

g′
0

(resp. ◦
g′′

0). Then the simple root α′
0 = δ − θ ′ (resp. α′′

0 = δ − θ ′′) extends ◦
g′ (resp. ◦

g′′) to g′ (resp. g′′).
Also, θ ′ = ∑d−1

i=0 ciαi and θ ′′ = ∑l
i=d+1 ciαi with ci ∈ Z>0.

Let L(λ) be an irreducible integrable highest weight module over g(m) . Let k = λ(K ), ki = λ(αi
∨),

k′ = λ(α0
′∨) and k′′ = λ(α′′∨

0 ). Then by Lemma 4.6, ki ∈ Z�0 for i ∈ I \ {d} and k′,k′′ ∈ Z�0. Now using
the bilinear form to identify h with h∗ , we have

α′∨
0 = α′

0 = δ − θ ′ = K − θ ′∨,

α′′∨
0 = −α′′

0 = −(
δ − θ ′′) = −(

K − θ ′′∨)
.

Hence,

k = λ(K ) = λ
(
α′∨

0

) + λ
(
θ ′∨) = k′ + λ

(
θ ′∨)

,

−k = −λ(K ) = λ
(
α′′∨

0

) − λ
(
θ ′′∨) = k′′ − λ

(
θ ′′∨)

.

Since θ ′∨ (resp. θ ′′∨) is a positive (resp. negative) combination of α∨
i with i ∈ I \ {d} and λ(α∨

i ) � 0
for i ∈ I \ {d}, we have that λ(θ ′∨) � 0 and λ(θ ′′∨) � 0. Hence, k = 0 and the level of L(λ) is zero. The
above equations then imply that k′,k′′, λ(θ ′∨), λ(θ ′′∨) = 0. Since λ(θ ′∨) = ∑d−1

i=0 ciki and λ(θ ′′∨) =
−∑l

i=d+1 ciki with ci ∈ Z>0, we have that ki = 0 for i ∈ I \ {d}. Finally, k′ = 0 then implies kd = 0.
Hence, the weight λ is zero, and so the module L(λ) is trivial. �
Remark 4.3. We can summarize this as follows. If

◦
g0̄ is a direct sum of two or more simple Lie

algebras, then the corresponding affine (or twisted affine) Lie superalgebra does not have any non-
trivial irreducible integrable highest weight modules.

4.2. Integrable modules over regular Kac–Moody superalgebras

Let g(A) be a regular Kac–Moody superalgebra, and let V be a weight module over g(A). We
call V integrable if for every real root α the element Xα ∈ g(A)α is locally nilpotent on V . If g(A) is
an affine Lie superalgebra then this definition coincides with the definition given in Section 4.1. This
follows from the fact that every even root of an affine Lie superalgebra with non-zero length is real,
as was shown in the dissertation of V. Serganova.

The following lemma follows from Lemma 1.3.

Lemma 4.4. The adjoint module of a regular Kac–Moody superalgebra is an integrable module. In particular,
adXα is locally nilpotent for every real root α, where Xα ∈ g(A)α .
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The following lemma follows from Propositions 4.1 and 4.2.

Lemma 4.5. Suppose g(A) is a regular Kac–Moody superalgebra with a subfinite regular Kac–Moody diagram
which is not of finite type and it is not one of the algebras: A(0,m)(1) , C(n)(1) , S(1,2,α), and Q ±(m,n, t).
Then all irreducible integrable highest weight modules are trivial.

The conditions for an irreducible highest weight module over A(0,m)(1) or C(n)(1) to be integrable
were given in [8]. We are interested in the irreducible integrable highest weight modules for the
regular Kac–Moody superalgebras: S(1,2,α) and Q ±(m,n, t). We will see that they have non-trivial
irreducible integrable highest weight modules, and we will describe the weights. First we need the
following lemma.

Lemma 4.6. Let g(A) be a Kac–Moody superalgebra, and let L(λ) be an irreducible highest weight mod-
ule. If αi is a simple non-isotropic root of g(A), then Yi ∈ g(A)−αi is locally nilpotent on L(λ) if and only
if λi ∈ 2p(i)Z�0 . If αi is a simple isotropic root, then Yi ∈ g(A)−αi is locally nilpotent on L(λ).

Proof. If αi is a simple even root, let e = Xi , f = Yi and h = hi . Then {e, f ,h} is an sl2-triple. If αi

is a simple odd non-isotropic root, let e = − 1
4 [Xi, Xi], f = 1

4 [Yi, Yi], and h = 1
2 hi . Then {e, f ,h} is

an sl2-triple. Since g(A) is a Kac–Moody superalgebra, it follows that f is locally nilpotent on V if
and only if f is nilpotent on the highest weight vector vλ . Now f is nilpotent on vλ if and only if
λ(h) ∈ Z�0. If αi is odd, then [Yi, Yi]v = 2(Yi)

2 v for v ∈ V . Thus, f is nilpotent on vλ if and only if
Yi is nilpotent on vλ . Hence, Yi ∈ g(A)−αi is locally nilpotent on L(λ) if and only if λi ∈ 2p(i)Z�0. If
αi is a simple isotropic root, then (Yi)

2 v = 0 for all v ∈ L(λ). �
Lemma 4.7. Let L(λ) be an irreducible integrable highest weight module of a regular Kac–Moody superal-
gebra g(A), and let αs be a simple root. Let n′+ = rs(n+) and A′ = rs(A). Then after a simple even or odd
reflection rs the module L(λ) is an irreducible integrable highest weight module of g(A′) with highest weight
given below.

1. If λ(hs) = 0, then v ′
λ = vλ is a highest weight vector with respect to n′+ and the highest weight is λ′ = λ.

2. If λ(hs) 	= 0 and αs is isotropic, then v ′
λ = Ys vλ is a highest weight vector with respect to n′+ and the

highest weight is λ′ = λ − αs .
3. If λ(hs) = k 	= 0 and αs is even, then v ′

λ = (Ys)
k vλ is a highest weight vector with respect to n′+ and the

highest weight is λ′ = λ − kαs .
4. If λ(hs) = 2n 	= 0 and αs is odd non-isotropic, then v ′

λ = (Ys)
2n vλ is a highest weight vector with respect

to n′+ and the highest weight is λ′ = λ − 2nαs .

Proof. (1) and (2) follow immediately from the facts that [Ys, Ys]vλ = 2(Ys)
2 vλ , and that Ys vλ = 0 if

and only if λ(hs) = 0. For (3) and (4) suppose now that αs is a non-isotropic root. Then by Lemma 4.6,
we have k = λ(hs) ∈ 2p(s)Z�0 since the module L(λ) is assumed to be integrable. If αs is a simple
even root, then {Xs, Ys,hs} is an sl2-triple. Set v j = 1

j! (Ys)
( j)vλ . Then hs v j = (k − 2 j)v j and Xs v j =

(k+1− j)v j−1. Thus Xs vk+1 = 0, and Xi vk+1 = 0 for all i ∈ I \{s}. Since the module L(λ) is irreducible
this implies that vk+1 = 0. Thus Ys vk = 0 with vk 	= 0. Hence, L(λ) is a highest weight module with
respect to n′+ , with highest weight vector vk = 1

k! (Ys)
k vλ and the highest weight is λ − kαs .

Finally, suppose that αs is an odd non-isotropic root. Set v j = (Ys)
( j)vλ . Then hs v j = (2n − 2 j)v j ,

Xs v2i = (2i)v2i−1 and Xs v2i−1 = (2n + 2 − 2i)v2i−2. Thus, Xs(Ys)
2n+1 vλ = 0, and Xi(Ys)

2n+1 vλ = 0 for
i ∈ I \ {s}. Since the module L(λ) is irreducible, we conclude that (Ys)

2n+1 vλ = 0. Hence, Ys v2n = 0
with v2n 	= 0. Therefore, L(λ) is a highest weight module with respect to n′+ , with highest weight
vector (Ys)

2n vλ and highest weight λ− (2n)αs . The fact that the module L(λ) is integrable as a g(A′)-
module follows from the fact that the real roots of g(A) and g(A′) coincide. �
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Lemma 4.8. Let g(A) be a Kac–Moody superalgebra, and let L(λ) be a highest weight module. Let αs and αi
be simple non-isotropic roots. Let rs be the even reflection with respect to αs (or 2αs if αs is odd). Suppose
Yi ∈ g(A)−αi is locally nilpotent on L(λ), then Y ′

i ∈ g(A)−rs(αi) is locally nilpotent on L(λ).

Proof. The reflection rs does not change the Cartan matrix, so g(A′) is again a Kac–Moody superal-
gebra. Thus, it suffices to show that Y ′

i is nilpotent on the highest weight vector vλ′ of L(λ′). It is
sufficient to consider the case when both αs and αi are even roots. Then this is equivalent to the
condition λ′(h′

i) ∈ Z�0. Now λ′ = λ − λ(hs)αs . We have α′
s = −αs and α′

i = αi − asiαs . Also, h′
s = −hs

and h′
i = hi − aishs . Then

λ′(h′
i

) = (
λ − λ(hs)αs

)
(hi − aishs) = λ(hi).

Since Yi is locally nilpotent on L(λ) we have λ(hi) ∈ Z�0. Hence Y ′
i is locally nilpotent. �

Corollary 4.9. Let g(A) be a regular Kac–Moody superalgebra. The irreducible highest weight module L(λ) is
an integrable module if and only if the element Yα ∈ g(A)−α is locally nilpotent on L(λ) for each principal
root α.

We call a weight λ typical if for any real isotropic root α we have (λ + ρ)(hα) 	= 0.

4.3. Integrable modules of the Lie superalgebra S(1,2,α)

Now we describe the weights for integrable highest weight modules of the Lie superalgebra
S(1,2,α). The Cartan matrix for the superalgebra S(1,2,α) is

B =
( 2 −1 −1

−1 + α 0 1
−1 − α 1 0

)

with α 	= 0 and 1
α /∈ Z.

Lemma 4.10. Let L(λ) be an irreducible highest weight module for S(1,2,α). If λ2 	= 0 or λ3 	= 0, then L(λ)

is integrable if and only if

λ1 ∈ Z�0,

λ2 + λ3 − 1 ∈ Z�0.

If λ2 = λ3 = 0, then L(λ) is integrable if and only if λ1 ∈ Z�0 .

Proof. By Corollary 4.9, it suffices to find the conditions for the principal roots to be locally nilpo-
tent on L(λ). The principal roots of S(1,2,α) are α1 and α2 + α3. We have that hα2+α3 = h2 + h3
by Lemma 1.6 and the formula above it (after rescaling hα2+α3 so that αα2+α3 (hα2+α3 ) = 2; see Re-
mark 1.7). By Lemma 4.6, Y1 ∈ g(A)−α1 is locally nilpotent on L(λ) if and only if λ1 ∈ Z�0. First
suppose λ2 	= 0 and consider the odd reflection r2. We have that r2(α3) = α2 + α3 and by Lemma 4.7
we have that λ′ = λ − α2. Then by Lemma 4.6, Y ′

3 ∈ g(A)−(α2+α3) is locally nilpotent on L(λ) if and
only if λ′(h′

3) ∈ Z�0 where

λ′(h′
3

) = (λ − α2)(h2 + h3) = λ2 + λ3 − 1.

The argument for λ3 	= 0 is similar and yields the same condition. Finally, if λ2 = λ3 = 0 then the
additional integrability condition is λ(h2 + h3) ∈ Z�0, which is vacuously satisfied. �
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4.4. Integrable modules of the Lie superalgebra Q ±(m,n, t)

Now we describe the weights for integrable highest weight modules of the Lie superalgebra
Q ±(m,n, t). The Cartan matrix for Q ±(m,n, t) is

( 0 1 a
b 0 1
1 c 0

) 1 + a + 1

b
= m

1 + b + 1

c
= n

1 + c + 1

a
= t

with m,n, t ∈ Z�−1, not all equal to −1, and the simple roots are odd isotropic. The principal even
roots are {α1 + α2,α2 + α3,α1 + α3}. One can check that for i 	= j,

hαi+α j = h j

a ji
+ hi

ai j

using the formula appearing before Lemma 1.6 and rescaling hαi+α j so that (αi + α j)(hαi+α j ) = 2.

Lemma 4.11. A highest weight module V (λ) for the algebra Q ±(m,n, t) is typical if and only if λ1, λ2, λ3 	= 0.

Proof. Since odd reflections of the diagram Γ do not yield new simple odd roots, the only conditions
for the module to be typical are λ(h1), λ(h2), λ(h3) 	= 0. �
Lemma 4.12. An irreducible highest weight module for Q ±(m,n, t), with typical weight, is integrable if and
only if

λ1 + 1

b
λ2 − 1

λ2 + 1

c
λ3 − 1

λ3 + 1

a
λ1 − 1

∈ Z�0.

Proof. By Corollary 4.9, it suffices to find the conditions for Yα ∈ g(A)−α to be locally nilpotent
on L(λ) when α is a principal root. Let αi be a simple isotropic root and let ri be the odd reflection
with respect to αi . Since the weight λ is typical, λi 	= 0. Then by Lemma 4.7, λ′ = λ − αi . Since
the simple even roots of g(A′) are αi + α j for i 	= j, we have by Lemma 4.6 that the conditions of
integrability are λ′(h′

j) ∈ Z�0, where

λ′(h′
j

) = λ′(hαi+α j ) = (λ − αi)

(
h j

a ji
+ hi

ai j

)
= λ j

a ji
+ λi

ai j
− 1. �

Proposition 4.13. The non-trivial irreducible integrable highest weight modules of Q ±(m,n, t) are L(λ) such
that (

λ1
λ2
λ3

)
=

(
1

1 + abc

)⎛⎜⎝ 1 −1
b

1
bc

1
ac 1 −1

c
−1
a

1
ba 1

⎞⎟⎠( x
y
z

)
,

with x, y, z ∈ Z>0 . These weights are typical.
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Proof. The dimension of the Cartan subalgebra is 3 by Corollary 3.2, and hence λ is determined by its
values on h1, h2 and h3. First we consider the case when λ is typical. We can rewrite the conditions
of Lemma 4.12 using matrices: ⎛⎝ 1 1

b 0
0 1 1

c
1
a 0 1

⎞⎠(
λ1
λ2
λ3

)
=

( x
y
z

)

with x, y, z ∈ Z>0. The determinant of the left most matrix is 1+abc
abc , which is non-zero by Corol-

lary 3.2. Hence, the matrix is invertible, and is calculated above. Finally, suppose that λ is not typical.
Then without loss of generality suppose λ1 = 0. Consider the odd reflection r1 with respect to α1. By
Lemma 4.7, λ′ = λ. Then by Lemma 4.6, we have the integrability conditions x, z ∈ Z�0 with

x = λ′(hα1+α2) = λ1 + 1

b
λ2 = 1

b
λ2,

z = λ′(hα1+α3) = λ3 + 1

a
λ1 = λ3.

If λ2 or λ3 is non-zero, then by a reflection at the corresponding simple root we obtain the integra-
bility condition y ∈ Z�0 with

y = λ2 + 1

c
λ3 − 1.

By Lemma 3.1, b, c < 0. But this together with 1
b λ2, λ3 � 0 implies λ2 + 1

c λ3 − 1 < 0, which is a
contradiction. Hence, if λ is not typical then λ = 0. �
5. Extending regular Kac–Moody diagrams that are not of finite type

In this section, we prove that a subfinite regular Kac–Moody diagram with an isotropic vertex,
which is not of finite type, is not extendable. Hence, a regular Kac–Moody diagram with an isotropic
vertex is subfinite.

Lemma 5.1. Suppose Γ and Γ ′ = Γ ∪ {vn+1} are connected regular Kac–Moody diagrams. Let g(A)

(resp. g(A′)) be the Kac–Moody superalgebra with diagram Γ (resp. Γ ′), and let Yn+1 ∈ g(A′)−αn+1 be the
generator corresponding to the vertex vn+1 . Then the submodule M of g(A′) generated by g(A) acting on Yn+1
is an integrable highest weight module over the subalgebra g(A).

Proof. The fact that M is a highest weight module follows immediately from [Xi, Yn+1] = 0 for all
i = 1, . . . ,n. The module M has highest weight −αn+1. A real root α of the subalgebra g(A) is also a
real root of g(A′). By Lemma 4.4, the adjoint module of g(A′) is integrable. Thus for each real root α
of g(A) we have that Yα ∈ g(A)−α acts locally nilpotently on the submodule M of g(A′). Hence the
submodule M is an integrable highest weight module over the subalgebra g(A). �
Corollary 5.2. If Γ is a diagram for a regular Kac–Moody superalgebra g(A) that does not have non-trivial
irreducible integrable highest weight modules, then Γ is not extendable.

Proof. If g(A) has only trivial irreducible integrable highest weight modules, then the highest weight
of the module M is 0. Hence −αn+1 = 0, which implies ai,n+1 = 0 for i = 1, . . . ,n. Since we assumed
that the matrix A is a generalized Cartan matrix, this implies an+1, j = 0 for j = 1, . . . ,n. This is not
possible with Γ ′ being a connected diagram. �
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Corollary 5.3. Suppose that Γ is a subfinite regular Kac–Moody diagram for g(A) which is not of finite type
and not one of the algebras: A(0,m)(1) , C(n)(1) , S(1,2,α), and Q ±(m,n, t). Then the diagram Γ is not
extendable.

Proof. This follows immediately from Lemma 4.5. �
From the classification of 3-vertex regular Kac–Moody diagrams we obtain:

Lemma 5.4. If Γ is a 3-vertex regular Kac–Moody diagram which is not a diagram for Q ±(m,n, t), S(1,2,α)

or D(2,1,α), then the ratio of an isotropic vertex in Γ is rational and negative. The ratio of an isotropic vertex
for Q ±(m,n, t) is real, irrational and negative. For S(1,2,α) and D(2,1,α), if the ratios are rational then at
most one of them is positive.

Theorem 5.5. A connected regular Kac–Moody diagram containing an isotropic vertex is subfinite. In partic-
ular, if Γ is a subfinite regular Kac–Moody diagram which is not of finite type, then Γ is not extendable.

Proof. We prove this by induction on the number of vertices. Suppose that the claim is true for all
diagrams with less than n vertices, and let Γ be a connected n-vertex diagram which is regular Kac–
Moody and contains an isotropic vertex. If Γ ′ is a connected proper subdiagram of Γ containing an
isotropic vertex, then Γ ′ is regular Kac–Moody and so by the induction hypothesis Γ ′ is subfinite.

Let S denote the set of connected subfinite regular Kac–Moody which are extendable. By Corol-
lary 5.3, Γ ′ ∈ S is either of finite type or can be a diagram for A(0,m)(1) , C(n)(1) , S(1,2,α),
Q ±(m,n, t). In the following lemmas, we prove that if Γ ′ is a diagram for: A(0,m)(1) , C(n)(1) ,
S(1,2,α), or Q ±(m,n, t), then Γ ′ is not a proper subdiagram of a connected regular Kac–Moody
diagram Γ which satisfies the condition for all reflected diagrams: all proper connected regular Kac–
Moody diagrams containing an isotropic vertex are in S .

Lemma 5.6. Q ±(m,n, t) is not extendable and hence Q ±(m,n, t) /∈ S .

Proof. We consider each case for attaching a vertex to a Q ±(m,n, t) diagram. Let Γ denote the
extended diagram. Recall that a,b, c ∈ (R \ Q)<0 satisfy:

1 + a + 1

b
= m

1 + b + 1

c
= n

1 + c + 1

a
= t

∈ Z<0, or all equal to zero.

(11)

Case 1:

©v 4

e

d

⊗
2

1

c b

1

⊗
1

1

a

⊗
3

d, e 	= 0

Now Γ1,Γ3 ∈ S implies d, b
d ∈ Q. But then b ∈ Q, which is a contradiction.
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Case 2:

⊗
2

1

c b

1

©v 4

e

d f

g⊗
1

1

a

⊗
3

d, e, f , g 	= 0

Now Γ1 ∈ S implies g < 0, and Γ3 ∈ S implies c
d < 0. Since a,b, c < 0, this implies d,

g
a > 0. By

Lemma 5.4, this implies Γ2 /∈ S , which is a contradiction.

Case 3:

⊗
2

1

c b

1

©v 4

d e

k

h f

g⊗
1

1

a

⊗
3

d, e, f , g,h,k 	= 0

The ratios of v1, v2, v3 in Γ4 are a,b, c ∈ (R \ Q)<0. If Γ1 is a subdiagram such that the ratios
of v2 and v3 in Γ1 are real negative numbers, then the ratios of v2 in Γ3 and of v3 in Γ2 are real
positive numbers. But then by Lemma 5.4 all of the ratios of v1 are real negative numbers, which is
a contradiction. Hence, Γ1, Γ2, Γ3 are diagrams for D(2,1,α) or S(1,2,α).

� If v4 is
⊗

and Γ1, Γ2, Γ3 are diagrams for D(2,1,α), then by (2) the we have

h + g

a
= −1, e + h

c
= −1, g + e

b
= −1, (12)

a

g
+ k

f
= −1,

k

d
+ 1

e
= −1,

b

e
+ f

d
= −1, (13)

f

k
+ 1

h
= −1,

c

h
+ d

k
= −1,

d

f
+ 1

g
= −1. (14)

By solving (12) for h we find that h = bc−c−abc
1+abc ∈ R, since abc 	= −1 by Lemma 3.1. Similarly,

d, e, f , g,k ∈ R and all vertex ratios are real. Now at least one ratio at each vertex v1, v2, v3 must
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be positive, and the diagrams Γ1, Γ2, Γ3 are D(2,1,α) diagrams and so they have at most one
positive vertex ratio. This implies that all of the ratios at v4 are negative, which is a contradic-
tion.

� If v4 is © and Γ1, Γ2, Γ3 are diagrams for S(1,2,α), then d, f ,k = −1, h + g
a = −2, e + h

c = −2

and g + e
b = −2. Solving for e we find that e = 2(ab−b−abc)

1+abc ∈ R since abc 	= −1 by Lemma 3.1. Similarly,
h, g ∈ R. Now by reflecting at v2 we have that Γ ′ is

⊗
2

1

−1 b

−1⊗
4

e e

S

−1 R

−1

©1

P

Q
©3

P = b + 1

c
+ 1

Q = a + 1

b
+ 1

R = −b − 2e

S = −1 − 2e

which implies that Γ ′
2 is a diagram Q ±(m,n, t), and the ratio of v4 in Γ ′

2 is −b−2e
−1−2e ∈ (R \ Q)<0. But

by substituting e = 2(ab−b−abc)
1+abc we have

−b − 2e

−1 − 2e
= 4abc + 3b − 4ab − ab2c

3abc + 4b − 4ab − 1
> 0,

which is a contradiction.
We conclude that Q ±(m,n, t) is not extendable. �

Lemma 5.7. S(1,2,α) is not extendable and hence S(1,2,α) /∈ S .

Proof. Note that an odd reflection of an S(1,2,α) diagram is again an S(1,2,α) diagram, but with a
different α. Let a = 1

α . Then a /∈ Z.

Case 1:

©2

−1

a−1 −1

a+1

©v 4

c

b

⊗
1

−a

−a

⊗
3

b, c 	= 0
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� If v4 is
⊗

, then Γ2 ∈ S implies c = 1 and b = a. By reflecting at v4 we have

©2

−1

1− 1
a −1

a+1

⊗
4

1

−1
©1

−1

−a

⊗
3

But Γ ′
4 /∈ S .

� If v4 is
⊙

and c = −2, then Γ2 ∈ S implies b = a. Then Γ3 ∈ S implies a−1
a ∈ {−1, −3

2 }, and so
a ∈ { 1

2 , 2
5 }. By reflecting at v3 and then at v2, we obtain Γ ′′ := r2(r3(Γ ))

−→r3
⊗

2

−a−2

−1 a+1

a+1

⊙
4

−2

−1
©1

−1

−a

⊗
3

−→r2
⊗

2

−a−2

−a−2 a+1

−1

⊙
4

−2

a+2

⊗
1

a+3

−1
©3

Then Γ ′′
2 ∈ S implies a+3

a+2 ∈ {−1, −3
2 }, which is a contradiction.

� If v4 is © and c = −1, then Γ2 ∈ S implies b = ka with k ∈ {1,2,3}. Substituting b = ka and
reflecting at v1 yields Γ ′

⊗
2

a−1

a−1 −a+2

−1⊗
4

P P

ka

ka
R

Q⊗
1

−a

−1
©3

P = 1 − (k + 1)a

Q = 1 − k

R = (1 − k)a

First suppose that P = 1 − (k + 1)a = 0. Then Γ ′
1 ∈ S implies Q ∈ {0,−1} and so k ∈ {1,2}. If k = 1,

then we are reduced to a previous case. If k = 2, then P = 0 implies that a = 1
3 . Reflecting at v4 of Γ ′

then yields Γ ′′
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⊗
2

−2

−1 5

1

©1
⊗

3

⊗
4

2

−1 −1

−1

But, Γ ′′
4 /∈ S .

Now we assume that P 	= 0. Then reflecting at v2 of Γ ′ yields Γ ′′

⊗
2

a−1

−1 T

T

©4

−1 P

V

U

©1

−1

a−3

⊗
3

P = 1 − (k + 1)a

T = 2 − a

U = (2k + 1)(a − 1)

V = 3 − (2k + 1)a

1 − (k + 1)a

Now Γ ′′
2 ∈ S implies V ∈ {0,−1,−2}. If V = 0, then U = (2k + 1)(a − 1) = 0 and so a = 1, which

contradicts a /∈ Z. If V = −2, then Γ ′′
1 ∈ S implies P/T = −1/3, and so k = 1, a = 5

7 . But then Γ ′′
2 /∈ S .

If V = −1, then a = 4
3k+2 . Now Γ ′′

1 ∈ S implies that either Γ ′′ is S(1,2, β) and P + U = −2T , or Γ ′′
is C(3) and P/T = −1/2. If P + U = −2T , then a = 2 which contradicts a /∈ Z. If P/T = −1/2, then
k = 1, a = 4

5 . Reflecting at v3 of Γ ′′ yields Γ ′′′

©2

−1

16
5 −1

6
5⊗

4

14
5

14
5 − 3

5

− 3
5⊗

1

− 11
5

− 11
5

⊗
3

But then Γ ′′′
3 /∈ S .
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Case 2:

©v c

b
©2

−1

a−1 −1

a+1

⊗
1

−a

−a

⊗
3

b, c 	= 0

By reflecting at v1, we are reduced to Case 1.

Case 3:

©2

−1

a−1 −1

a+1
©v 4

b

c d

e⊗
1

−a

−a

⊗
3

b, c,d, e 	= 0

Now Γ2 ∈ S implies v4 is either
⊗

or ©.
� If v4 is

⊗
, then Γ2 ∈ S implies b = c, d = e, and e = a − c. Also, Γ1,Γ3 ∈ S implies a−1

c , a+1
a−c ∈

{−1,−2,−3}. If a−1
c = a+1

a−c , then c = a−1
2 or a−1

c = 2, which is a contradiction. If either fraction
equals −1, then a reflection at the corresponding vertex returns us to Case 1. So without loss of gen-
erality by symmetry we have that a−1

c = −2 and a+1
a−c = −3. Then a = 1

11 and c = 5
11 . By substituting

and then reflecting at v3, we obtain Γ ′

⊗
2

− 23
11

−1
12
11

12
11©4

−2 − 8
11

−1

− 4
11©1

−1

− 1
11

⊗
3

But, Γ ′
3 /∈ S .

� If v4 is ©, then Γ2 ∈ S implies that either b,d = −1 or b = −1, d = −2, without loss of gener-
ality by symmetry.
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If b = −1, d = −2, then Γ2 is a G(3) diagram and c = a
3 , e = 2a

3 . Then Γ1 ∈ S implies e = −a − 1.

Thus a = − 3
5 . By substituting and then reflecting at v1, we obtain Γ ′

⊗
2

− 8
5

− 8
5

13
5

−1⊗
4

9
5

9
5

− 1
5

− 1
5

⊗
1

3
5

−1
©3

But then Γ ′
1 /∈ S .

If b,d = −1, then Γ2 ∈ S implies that either Γ2 is a C(3) diagram and − c
a = − e

a = − 1
2 , or Γ2 is an

S(1,2, β) diagram and c + e = 2a. Now by reflecting Γ at v1 we obtain Γ ′

⊗
2

a−1

a−1 N

−1⊗
4

P P

c

c R

Q⊗
1

−a

−1
©3

N = 2 − a

P = 1 − a − c

Q = a − e − c

a
R = a − 2c

If Γ2 is a C(3) diagram with − c
a = − e

a = − 1
2 , then R, Q = 0 and Γ ′ reduces to the previous sub-

case. Thus Γ2 is an S(1,2, β) diagram with e = 2a − c and Q = −1. Then by reflecting Γ at v3 we
obtain Γ ′′

⊗
2

U

−1 a+1

a+1⊗
4

T T

W

−1 V

V

©1

−1

−a

⊗
3

T = c − 1 − 3a

U = −a − 2

V = 2a − c

W = 2c − 3a
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If P 	= 0, then Γ ′
1 ∈ S implies that either N = R = −P/2 or N + R = −2P . But if N = R = −P/2,

then by reflecting Γ ′ at v4 we reduce to Case 1. Similarly, if T 	= 0, then Γ ′′
3 ∈ S implies that either

U = W = −T /2 or U + W = −2T . But if U = W = −T /2, then by reflecting Γ ′′ at v4 we reduce to
Case 1.

• If P , T = 0, then 1 − a = c = 1 + 3a implies a = 0, contradicting a /∈ Z.
• If P = 0, T 	= 0, then c = 1 − a. Then by substitution Γ ′′

3 ∈ S implies that −6a = 8a, which con-
tradicts a /∈ Z.

• If P 	= 0, T = 0, then c = 1 + 3a. Then by substitution Γ ′
1 ∈ S implies that −6a = 8, which contra-

dicts a /∈ Z.
• If P , T 	= 0, then a = 2 + 2c and 5a = 2 + 2c, contradicting a /∈ Z.

Case 4:

©2

−1

a−1 −1

a+1
©v 4

b c

d

e⊗
1

−a

−a

⊗
3

b, c,d, e 	= 0

Now Γ1 ∈ S implies v4 is
⊗

and Γ2 ∈ S implies e = a. By reflecting at v3, we are reduced to
Case 3.

Case 5:

©2

−1

a−1 −1

a+1
©v 4

b c

d

e f

g⊗
1

−a

−a

⊗
3

b, c,d, e, f , g 	= 0

If v4 is ©, then Γ1 /∈ S . If v4 is
⊗

then Γ2 is D(2,1,α). But then a reflection at v1 reduces to a
previous case.

We conclude that S(1,2,α) is not extendable. �
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Lemma 5.8. C(n)(1) is not extendable and hence C(n)(1) /∈ S . ⊗
n+1

1

−1 −2

−2

©1

−1

−2
©2 ©n−1

−1

1

⊗
n

Proof. Let vn+2 denote the additional vertex. Now Γ1 ∈ S implies an+2,n+1,an+2,n = 0, and Γn+1 ∈ S
implies an+2, j = 0 for j = 1, . . . ,n − 1. Hence, C(n)(1) is not extendable. �
Lemma 5.9. A(0,m)(1) is not extendable and hence A(0,m)(1) /∈ S .

Proof. First we show that A(0,1)(1) is not extendable.

Case 1:

©2

−1

−1 −1

−1©v 4

b

c d

e⊗
1

1

1

⊗
3

b, c 	= 0

� If v4 is
⊗

, then Γ3 ∈ S implies c > 0. But then the ratio of v1 in Γ2 is positive, so Γ2 is a
D(2,1,α) diagram and d, e 	= 0. Then Γ1 ∈ S implies e > 0. But then the ratio of v3 in Γ2 is also
positive, so Γ2 /∈ S by Lemma 5.4.

� If v4 is ©, then Γ2 ∈ S implies c < 0. Then Γ3 ∈ S implies b = −1, since the ratio at v1 is
positive. By reflecting at v1 we obtain Γ ′

⊗
2

−1

−1 1

−1⊗
4

P P

c

c
Q

R⊗
1

1

−1
©3

P = 1 − c

Q = cd − c − 1

R = c + e + 1

But Γ ′
1 /∈ S since the ratio at v2 is positive, namely P = 1 − c > 0.
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Case 2:

©2

−1

−1 −1

−1
©v 4

b c

⊗
1

1

1

⊗
3

b, c 	= 0

By reflecting at v1 we return to Case 1.

Case 3:

©2

−1

−1 −1

−1
©v 4

b c

d

e

⊗
1

1

1

⊗
3

b, c,d, e 	= 0

Now Γ2 ∈ S implies e < 0. Then Γ3 /∈ S since the ratio at v1 is positive.

Case 4:

©2

−1

−1 −1

−1
©v 4

f g

b

c d

e⊗
1

1

1

⊗
3

b, c,d, e, f , g 	= 0

Now Γ1,Γ3 ∈ S implies v4 is
⊗

and c, e > 0. But then the vertex ratios of v1 and v3 in Γ2 are
positive. Hence Γ2 /∈ S by Lemma 5.4. Therefore, A(0,1)(1) is not extendable.
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Now we show that A(0,2)(1) is not extendable.

⊗
2

11

−1

−1
©3

−1−1©v 5

⊗
1

−1

−1
©4

First suppose that a15 	= 0.
� If v5 is

⊗
then Γ2,3 ∈ S implies a15 > 0. Then Γ3,4 is D(2,1,α), and so a2,5 	= 0. Then Γ1,4 ∈ S

implies a25 > 0. So Γ3,4 has two isotropic vertices with a positive ratio, which contradicts Lemma 5.4.
� If v5 is © then Γ3,4 ∈ S implies a15 < 0. Then Γ2,3 is D(2,1,α), and so a51 = −1. Then by

reflecting at v1 we return a previous case.
Therefore, a15 = 0 and by symmetry a25 = 0. Now without loss of generality suppose that a45 	= 0.

Then by reflecting at v1 we have v ′
4 is

⊗
and a′

45 	= 0, but this is the previous case. Hence, A(0,2)(1)

is not extendable.
Finally we show that A(0,m)(1) is not extendable, for m � 3. Let Γ be a diagram for A(0,m)(1) .

Then Γ has m + 2 � 5 vertices. Let v1 denote the vertex being added to the diagram. First suppose v1
is connected to an isotropic vertex, which we denote v2. Let v3 and v4 denote the vertices adjacent
to v2 in Γ ′ . Since v2 is isotropic with degree 3, it must be contained in a D(2,1,α) subdiagram.
Since the subdiagram {v3, v2, v4} is not D(2,1,α), we have without loss of generality that the sub-
diagram {v1, v2, v3} is D(2,1,α). Then v1 is either

⊗
or ©. If v1 is

⊗
then we have the following

subdiagram:

©v ⊗
2

⊗
3 ©v

⊗
1

where the double lines are necessarily connected, and the dotted lines are possibly connected. By the
5-vertex classification, this diagram is not subfinite regular Kac–Moody. If v1 is ©, then by reflecting
at v2 we return to the this case.

Next suppose v1 is not connected to an isotropic vertex. Then let Γ ′′ be a minimal subdiagram
containing v1 and an isotropic vertex, which we denote vn . By minimality of Γ ′′ it is a chain such
that vi is not isotropic for 1 < i < n. Thus by Lemma 2.5, there is a sequence of odd reflections R
such that R(v2) is isotropic and connected to v1. This reduces us to the previous case. �

This concludes the proof of Theorem 5.5. �
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