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Abstract

In this paper, we give a general method to compute the Brauer group of a finite quantum group, i.e.,
a faithfully projective coquasitriangular Hopf algebra over a commutative ring with unitf.ALeR)
be a finite quantum group with aR-matrix R on H ® H. There exists a braided Hopf algelirig
in the braided monoidal category of right-comodules [S. Majid, J. Pure Appl. Algebra 86 (1993)
187-221]. We construct a group GHlg) consisting of quantum commutati?éy, -bigalois objects
and show that there is an exact sequence of group homomorphisms:

1— Br(k) » BC(k, H, R) — Gal(Hg),
where B(k) is the usual Brauer group @f and BQk, H, R) is the Brauer group ofH, R) with

respect to th&k-matrix R.
0 2004 Elsevier Inc. All rights reserved.

Introduction

Let k be a commutative ring with unityd a Hopf algebra ovek with a bijective
antipode. In [6], we introduced-Azumaya algebras and the Brauer group(BQ)
classifying theH -Azumaya algebras. Whe# is a finite commutative and cocommutative
Hopf algebra, the Brauer group BQ H) turns out to be the Brauer—Long group
introduced by F.W. Long in [15,16] which in turn is the generalization of the Brauer—Wall
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group BWk) (see [38]). In [7], we made further investigation on the basic properties of
H-Azumaya algebras and studied in detail the split part of the Brauer group, BQ in

order to find a non-abelian cohomological interpretation of some subgroups (@t BQ.

This approach turns out to be difficulty as later on we found that the Hopf automorphism
group can be embedded into the Brauer groupgB@&) (see [33]), which showed that
BQ(k, H) is not necessarily a torsion group. In [35] we calculated the Brauer group of
the Sweedler’s 4-dimensional Hopf algebra and found that the Hopf automorphism group
is not the only non-torsion part of B®, H), the group of Galois objects plays the non-
torsion role as well in the Brauer group BQ H). Nevertheless, wheH is commutative

and cocommutative, the group of Galois objects and the group of Hopf automorphisms
generate a subgroup that is isomorphic to a factor group of the group of bigalois objects,
cf. [4,5]. A similar situation occurs for the Brauer group of a triangular Hopf algebra
(see [36]). This fact indicates that the group of bigalois objects plays the vital role in
the computation of the Brauer group of a finite quantum group. The indication was further
strengthened by a beautiful exact sequence of the Brauer—Long group due to K.-H. Ulbrich
in [31] where the group of bigalois objects appears in the picture. However, WgeR)

is no longer commutative and cocommutative, the group of bigalois objedis af H*

does not fit into an exact sequence of the Brauer groufi .of he solution found in this
paper is the deformation (or transmutation in the sense of Majid [B}])of a finite
guantum groug H, R), which is no longer a Hopf algebra, but a left coideal subalgebra
of the quantum doubl®(H). The main idea of this paper is to embed the quotient group
BC(k, H, R)/Br(k) of a finite quantum grougH, R) into a suitable group of ‘bigalois
objects’ of theH g, which is easier to compute (or to estimate). Since the full Brauer group
BQ(k, H) of any finite Hopf algebra& is equal to BCk, D(H)*, R"), where(D(H)*, R")

is the dual of the Drinfel'd quantum double group, it is sufficient to consider the general
case BCk, H, R) for a finite quantum groupH, R).

In Section 1, we recall the definition of the Brauer groups(B@7) and BGk, H, R)
when (H, R) is a coquasitriangular Hopf algebra. In Section 2, we consider the braided
Hopf algebraH r of a finite quantum groupH, R) constructed by S. Majid in [20]. The
algebraHy is a left coideal subalgebra of the quantum doublg?) though it is not a
Hopf subalgebra in the usual sense. It turns out that anyAAmodule can be treated
as anHg-bimodule. In other words, there exists a covariant functor from the category of
Yetter—Drinfel'd H-modules to the category 6{z-bimodules (see Proposition 2.7). This
fact enables us to define a generalized cotensor product in the Yibdule category.

In Section 3, we consider Y[}/ -module algebras that af&}-bigalois objects in the
sense of [26]. These bigalois objects form a monoidal category under the generalized
cotensor product. We construct a group @é¢) consisting ofH%-bigalois objects which
are quantum commutative. The group Gék) plays the main role in the computation of
the Brauer group B&, H, R). When(H, R) is triangular the group Gét ) is an abelian
group.

In Section 4, we establish a group homomorphigmfrom the Brauer group
BC(k, H, R) to the group Gdll{r). In order to define the homomorphisi we have to
show that any element of B&, H, R) is represented by aH-Azumaya algebra which is
an H°P-Galois extension of its coinvariants. SuchiirAzumaya algebrais called a Galois
R-Azumaya algebra. The centralizer of the coinvariants of a Gatefzumaya algebra
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turns out to be art}-bigalois object. The kernel of the homomorphisiis isomorphic
to the usual Brauer group B of k. Thus the quotient group B&, H, R)/Br(k) is
determined by the group G&{z) of bigalois objects.

In Section 5, we calculate the group @Gdlr), where(H, R) is the Sweedler CQT Hopf
algebra. In this case the exact sequence (23) is split and the Brauer grékpFRCR) is
determined.

The main result of this paper has been included in the author’s expository paper [37]
without proof. The readers would get a better overview of the Brauer group theory of Hopf
algebras from [37].

1. Preliminaries

Let k be a fixed commutative ring with unit. Throughout all algebras, unadoghed
Hom are ovek. A module (or an algebra) is said to beite if it is faithfully projective
(i.e., faithful, finitely generated and projective) ag-anodule. Afinite quantum groujs
a finite Hopf algebra ovek with a coquasitriangular (CQT) structure. That is, there is
an invertible elemenR € (H ® H)*, the convolution algebra off ® H, subject to the
following conditions:

(CQT1) R(h®1)=R(LQ®h)==¢e(h),

(CQT2) Rx ®yz) =Y R(x1) ®2)R(x2) @ y),

(CQT3) R(yz®x) =) R(y ® x1)) Rz ® x(2)),

(CQT4) > R(x1) @ ya)x@y@ =2 R(x@2 ® y2)ywXw

forall x, y andz € H. SinceH is faithfully projective, we may identifk with an invertible
elementy” R' ® R? in H* ® H*. In this case(H*, R) is a quasitriangular Hopf algebra,
namely,R as an element in the dual Hopf algelifd*, A, ¢) satisfies the conditions:

(QT1) Y e(RHR? =Y R%e(R?) =1,
(QT2) S ARH @ R°=Y. R'®rl @ R%?,
(QT3) S R'®@ARY) =Y R ®r?® R?,
(QT4) RA(p) = A°P(p)R

forall p € H*, wherer = R. To a CQT structur&®, we associate two Hopf algebra maps:

O HP— H*  @,h)()=RhI),
O, H® > H*, 6,()()=RISh).

Since®; is a Hopf algebra map, we deduce tAtS ® S) = R. Recall the definition of

the Brauer group of a Hopf algebra with a bijective antipode and some related notions.
Let H be a Hopf algebra with a bijective antipode (not necessarily finite). A Yetter—
Drinfel'd H-module (simply, YDH-module)M is a crossedd -bimodule [39]. That is,

M is ak-module which is at once a letf -module and a righff -comodule satisfying the
following equivalent compatibility conditions [14, 5.1.1]:
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() 2k -mo ® hgyma =Y. (he) -m)o) © (he) -m)wha),
(i) Yo(h-m) ® (h-m)wy =Y he)-moy ® h@gmaS ™ (ha),

where the sigma notations for a comodule and for a comultiplication can be found in the
reference books [28]. Denote ! the category of YDH -modules and YDH -module
morphisms. A YDH-module algebrais a YIB/-moduleA such thatd is a left H-module
algebra and a rightZ °P-comodule algebra. For the details Bf(co)module algebras we
referto[1,23,28]. LefA andB be two YD H-module algebras. The braided product algebra
A # B defined below is again a Y -module algebra:

(a#b)(c#d) = ZaC(o) #(c) - byd

for all a,c € A andb, d € B. The H-module andH °P-comodule structures of # B are
the diagonali/ -module and co-diagonaf °P-comodule structures of ® B respectively.
More details on braided product # can be found in [6].

In [6] we defined the Brauer group of a Hopf algel#faby considering isomorphism
classes offf-Azumaya algebras. A YIH-module algebra is said to beH-Azumaya
if it is finite as ak-module and if the following two YDH-module algebra maps are
isomorphisms:

F:A#A—EndA), F(a#b)(x)= Zax(o)(x(l) -b),

G:A#A—EndA)®, G(a#b)(x)= Za(o)(a(l) - x)b,

whereA is the H-opposite YDH -module algebra of, thatis,A = A as a YDH-module,
but with the multiplication given by

a-b= Zb(O)(b(l) -a)

for a,b € A (see [6] for the details). For a finite YIB/-module M, the endomorphism
algebra Eng(M) is a YD H-module algebra wittH -structures given by

(h-f)m)=>"ha- f(S(h)-m),
Z foy(m)® fa)= Z Fm©) o ® S~ m) f(mo)a)

for f € EndM) andm € M. The elementanf -Azumaya algebra Efd/)°P has the
different H-structures from those of Ex#f) (see [6] for the details).

Two H-Azumaya algebragl and B are Brauer equivalent (denoted~ B) if there
exist two finite YD H-modulesM and N such thatA # End M) = B # End N). Note that
A ~ B ifand only if A is H-Morita equivalent taB (see [6, Theorem 2.10]). The relation
~ is an equivalence relation on the d&tk, H) of isomorphism classes df-Azumaya
algebras and the quotient set Bfk, H) modulo~ is a group, called the Brauer group
of the Hopf algebraH, denoted by BQk, H). An element in BQk, H) represented by
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an H-Azumaya algebra is indicated by[A]. The unit in BQk, H) is represented by
End(M) for any finite YD H-moduleM.

Now let H be a CQT Hopf algebra with a CQT structuke If M is a right H-(or
H°P-)comodule, the Hopf algebra mag, induces a leftH-module structure o/ as
follows:

heim=0(h) - m=Y moRh®ma) (1)

for h € H andm € M. The H-action (1) together with the origindf -coaction maked/
into a YD H-module, cf. [7,14]. Denote bMIg the category of YDH -modules with the
left H-module structure (1) coming from the right-comodule structure. It is obvious that
M# is a full braided monoidal subcategory @f’.

When A = M is a right H°P-comodule algebra, (1) makes into a left H-module
algebra and hence a YIH-module algebra. In the sequel, a Y®-module algebrad
is called ankR-module algebraf the H-action onA comes from theH °P-coaction onA
throughR. An R-module algebra is said to le-Azumayadf itis H-Azumaya. The subset
of BQ(k, H) consisting of the elements represented byRhR&zumaya algebras turns out
to be a subgroup of B@, H), denoted by BCk, H, R). It is obvious that BCk, H, R)
contains the Brauer group &).

Dually, if H is a QT Hopf algebra with a QT structure then a leftH -module algebra
A is simultaneously a YOF -module algebra with the righi# °P-comodule structure given

by
A— A® HOP, al—)ZRz«a(X)Rl

for all « € A. The subset of B@, H) consisting of the elements represented by the
H-Azumaya algebras with righf °°~-comodule structures stemming from léftmodule
structures in the above way, turns out to be a subgroup ofkBR), denoted by
BM(k, H, R). Itis obvious that BMk, H, R) contains the Brauer group &.

The Brauer group B@, H) is a special case of the Brauer groug®rof a braided
monoidal category as introduced in [34]. The fact that B H, R) is a subgroup of
BQ(k, H) when(H, R) is a CQT Hopf algebra, can be explained in a categorical way. If
D is afull braided monoidal subcategory of a braided monoidal categyahen the Brauer
group BrD) is a subgroup of BC). This fact allows us to consider various subgroups of
the Brauer group BE) of a braided monoidal catego wheneverC contains certain
closed braided subcategories. For exampléHf R) is a CQT Hopf algebra, then the
categorylvlg of right H-comodules is a full braided monoidal subcategory of the braid-
ed categoryQ” of YD H-modules with the braiding given by:

MRIN—>NRRM, m®n|—>Zn(0)®m(0)R(n(l)®m(1)),

wherem € M andn € N. The Brauer group SMg) of MRIZ’ is indeed BCk, H, R).
When H is a finite Hopf algebra, it is well-known that the category of Y3modules is
equivalent to the category of lefd(H)-modules (see [18]), wher®B(H) is the Drinfel'd
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double of H. So we have that BQ, H) =BM(k, D(H), R) =BC(k, D(H)*, R), where
R is the canonical quasitriangular structureR0H ).
To end this section let us recall the notion of a Hopf Galois extension by a Hopf
algebraH . Aright H-comodule algebrad is said to beH -Galois if the canonical-module
map

B:A®apA—> A®H, a®b Y abo®ba

is an isomorphism, where

AOZ[XGA‘Z)C(O)@X(]_):X@].}

is the coinvariant subalgebra af For a general Hopf Galois theory one may refer to [23,
26,27].

2. Thebraided Hopf algebra H g

Every CQT Hopf algebréH, R) gives rise to a braided Hopf algelsté in the braided
monoidal category £ . This process is called transmutation. In this section, we study the
braided Hopf algebra (or the braided gro@{s of a CQT Hopfalgebr&H, R) constructed
by Majid [20] and establish a relationship between the categffyof YD H-modules
and the category df{ g-bimodules. At the end of the section, we will define a generalized
cotensor product in the catego@'’. We start with Majid’s construction of the braided
groupHp from (H, R).

Lemma2.1[20, Theorem4.1]L.et(H, R) be a CQT Hopf algebra. Then there is a braided
Hopf algebraH in the category\/lg described as follows in terms &f. As ak-module
and coalgebra}{ g coincides withH . The multiplicatiorw and the antipodey are given
by

hxl=Y lohR(S ™ Ue)lo ®hw),

(2)
Sr(h) =Y S(h@)R(S?(h3)S(h) ® ha)).

whereh, [ € H. As an objectilM £ | H has the adjoint right coactian

p) =Y he ® Shayhe forall h e Hg.

For further details on transmutation and braided groups, we refer to [20]. In [12] Doi
and Takeuchi constructed a double Hopf algebra for a CQT Hopf alggbr&) (not
necessarily finite). This double Hopf algebra, denoted}jy/], is equal toH ® H as a
coalgebra with the multiplication given by
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(h@D(h ®1') =" hhip @l R(h(z, ® L)) R(S(h(z) ®1(3)
for h,1,h’ andl’ € H. The antipode oD[H] is given by
Shel)=(1®SDH)(Sh) ®1)
forallh,l e H.

Write h >« [ for an element inD[H] and H < H for D[H]. Since H is finite, the
canonical Hopf algebra ma@,;: H — H*°P given by ©;(h)(I) = R(h ® [) induces an
Hopf algebra map fronD[H] to D(H), the Drinfel'd quantum doublé/*°P < H (see
[13)).

®:DIH]— D(H), ®(he<l)=06;h)l.

When@;, is an isomorphism, we can identify[ H] with D(H). Any YD H-module is

automatically a leftD[ H]-module. Moreover, the following lemma claims tlak can be

embedded intd[H].
Lemma 2.2. The followingk-module map is an injective algebra map
¢:Hr— DIH], ¢(h) =Y S (h@)=hq.
Proof. Givenh,l € Hg, we have
pUhxD) =) dlah@)R(S 13w @ hw)

=Y S @he) =lohR(S U@y ®hw)
= Z S_l(h(4))S_l(l(3)) > 1(2)h(3)R(S_l(l(4)) ® h1)) R ®h2)
= Z S @) S (l(3) h(z)l(l)R(Sfl(lm)) ® hw)RU2 ®h3)

=) (SHh@) eah@)(S @) i)
=¢p()eD).

It is obvious that is injective. O

Proposition 2.3. Hg is a left D[ H]-comodule algebra.

Proof. Define ak-module map front{y to D[H] ® Hg as follows:
x:Hr— DIHI® Hr, x() =Y (S7 (h@)s<ha) @ he.

It is easy to check thay is a left D[ H]-comodule map. We have to show thatis an
algebra map. Indeed, i, [ € Hg, then
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x(hxl)= Z x(hla)R(l2) ® Sha)h3)
=Y S Hhal@) =< holy @ haloR(lw © Stha)hs)
=Y S hwle) =hela @hgleRl@ @ hes)
x R(S7U5) ® hay)
=Y S M ahe) = hole @ helo R @ hw)
x R(S7U5) ® hay)
=Y S whe) =hplay @lahwR(z @ hw)
x R(S715) ® h)
=Y 5 ehe) = holn ®laheR(S™ Ua)le) © ha)
x Rl @ h@)R(S™ @) ® ha)
=D (57 @) »ah@)(STH ) i) ®lehe
x R(S" U@l @ h)
=Y (57 h@) e h@) (STH@) s la) @ b2y * L2
=xh)xd). O

Lemma 2.2 and Proposition 2.3 show ti&; can be embedded intb[H] as a left
coideal subalgebra. In fact{g can be further embedded intb(H) as a left coideal
subalgebra.

Corollary 2.4. The composite algebra map
Hr % DIH1 S D(H)
is injective.

Proof. SinceH is faithfully flat overk, we have that the kernel @ is Ker(®;) > H . If
®¢(h) =0 for someh € Hg, then

$(h) = _ S (h@) < hq) € Ker(@)) = H.
It follows that
Teah=> O =e(S h)ha)

= (en ®0(0(SHh) s h)
=(eg=R@U)PPh) =0
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where: is the identity map. This implies that= 0 and hence& ¢ is injective. Moreover,
since® is a Hopf algebra magh¢ (Hy) is a left coideal subalgebra &f(H). O

Let us now consider Yetter—Drinfel'd-modules andH z-bimodules. LetM be a
Yetter—Drinfel'd module oveH, or a left D(H)-module. The following composite map:

He® M 22 DIH1® M 225 D(H)® M

makesM into a leftH g-module. If we write—> for the above left action, then we have the
explicit formula:

h—em=>"S"Yhg)e1(ha) -m)
= Z(h(z) -m©o)R(S Hhw) @ hgma S tha)) (3
forh e Hg, m € M andr1 as in (1).
Since there is an augmentation mapn Hy, we may define thé{ z-invariant set of a
left Hg-moduleM which is

MHr — {meM|h—l>m=8(h)m, Vh E'HR}.

When a leftHz-module comes from a YOH-module, the invariank-module can be
characterized as follows:

Lemma 2.5. Let M be a YDH-module. Then
M =lme M [ hom=herm=> moRh@may), VheH}.
Proof. By definition of the action of{z on M, we have
h—>m= Z S hy) »1 (hay - m)

foranyh € Hr andm € M. It follows that the latter set is contained "tx.
Conversely, ifn € M7tr then we have

hem=> h@e1 (S )1 (ha) -m))
= Zh(Z) >1 (h@y —>m)

= hye1 (sthay)m)

=h>1m

foranyh e Hg andme M. O
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Following Lemma 2.5, we obtain that the invariant submodltér of a YD H-module
M is the maximal submodaule sitting in the subcategwﬁ, where the leftH -action is the
induced one-1. Thus we get a covariant functer

kO > MH (M) = MR,
It follows that aYD H-module is an objectiM # if and only if H acts trivially onM, i.e.,
M = M™r_ Observe that the functar has a left adjoint functor, the embedding functor
fromM# to 7.
Now we define a right{g-module structure on a YIB{/-moduleM. Observe that the

right H-comodule structure o8/ induces two leftH-module structures. The first one is
(1), and the second one is given by

hl>2m=2m(0)R(S(m(1))®h) 4)

for h € H andm € M. With this second leftH-action onM, M becomes a righD[H |-
module.

Lemma 2.6. Let M be a YDH-module. TherM is a right D[ H]-module defined by
m~ (he<l)=S{) 2 (S(h) m) (5)

for h,1 € H andm € M. Moreover, ifA is a YD H-module algebra, the(b) makesA into
a right D[ H1°°P-module algebra.

Proof. SinceM is aleft H-module under both actiongndr2, it is sufficient to show that
m—[AeaD)(ha )] =[m — Q)] — (hea1) = S(h) - (SU) b2 m)
forh,l € H andm € M. Indeed, we have
m~— [(Leal)(ha1)]
= Zm — (h@y>l2)R(ha) @ L1)R(S(ha) ®13)
= Z SU@) =2 (S(h) -m)R(h@y ® L1)R(S(h@) ®3))

= S(h@)- (SU@)>2m)R(ha @14)R(Sh2) ® 1))
x R(h1) ® 1) R(S(hs) ® (5))
= S(h) - (SU) >2m)

forh,l € H andm € M. The second statement is obviousz
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Unfortunately, the rightD[H]-module structure (5) does not commute with the
canonical leftD[ H]-module structure induced by Hopf algebra mapgo makeM into
a D[ H]-bimodule. However the right{ g-module structure o given by

M Hg 22 Mo DH] > M.

together with the left{ g-module structure (3) maked into anHz-bimodule. Write<—
for the above right action df{ g, then we have the explicit formula:

m<—h=>"S(ha) w2 (ha)-m)
=Y (h@ -mo)R(h@aymw S (he) ® ha)) (6)
form e M andh € Hpg.
Proposition 2.7. Let M be a YDH -module. TherM is an’H g-bimodule via(3) and (6).
Proof. Givenh,l € Hg andm € M, we have to prove

(l—>m)<x—h=I1—>m<—h),

ZS(h(l)) >2 (h - (S7H@) »1 (@) -m)))
= 2571(1(2)) b1 (L) - (S(h) B2 (hz) - m))).

Indeed, we have

Y s M) 1 (L - (Sthay) »2 (B - m)))
=Y 5w e (Sth) p2 Uha -m) R ® h@)R (I3 & Shay))
=Y Sha) 2 (ST ) p1 ke -m) R ® hs)
x R(l3 ® S(ha)R(le @ S(h))R(S (@) @ S(he2))
=Y Shay)>2 (ST @) p1 Uha - m) R @ h@)R(l4) © Sth))
=Y Stha) 2 (S~ @) »1 (hala - m) R @ ha)R(la ® Sh)

= ZS(h(l)) >2 (heay - (S7@) »1 Uy - m))),

where the first, the second and the forth equation follow from the following identities
respectively:
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hep (I-m) = ZZ(Z) ~(h@yp2m)R(1) @ h1)R(SU3) @ h@3)).
> (heom) = Zh(z) b2 (I =1 m)R(S(U(1)) ® h(1)) R(U3) ® h(z)),
hey(l-m) = 21(2) “(hyram)R(h) ® Sfl(l(l)))R(S(h(s) ®1@3))
forh,l € H andm € M. SoM is anHg-bimodule. O

Remark that the right{ z-invariant of a YD H-module is different from the left one
described in Lemma 2.5. One may apply the same argument in Lemma 2.5 to obtain the
right invariant set of a YDH -moduleM:

{meM|h-m=hvym, Vhe H}.
Like the set of left invariants, the set of right invariants is the maximal right-right YD

H-submodule of\f. Combining Lemmas 2.2, 2.6 and Propositions 2.3, 2.7, we obtain the
following:

Corollary 2.8. If A is a YD H-module algebra, ther is anH z-bimodule algebra in the
sense that

h —> (ab) = Z(h(,l) — a)(h) —> b), -
(ab) <— h = Z(a <a—h) (b — h1)

fora,be A andh € Hg, wherey (h) =) h1) ® hy € D[H]® Hgr, — and — stand
for the left and right actions oD[H] on a YDH-module.

Proof. We show the second equation and leave the first one to the readersaGivers
andh € Hg we have

(ab) <— h = Z S(hay) vz (he) - (ab))
= Z(S(h(Z)) b2 (h(3) - @))(S(he)) =2 (hea) - b))
=> (e~ (57 h@) ah@))(b — (S (@) = h))
= Z(a a—h©) (b~ h—y). O
In the sequel, we define a generalized cotensor product in the category of Yetter—

Drinfel'd modules of a CQT Hopf algebr@, R).
Given two YD H-modulesX andY, let X A Y be the cotensor product

[P x@ylY ia-m@y=) x®h->, YheHe].
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Observe thak A Y is still an’H g-bimodule with the left and right{ g-module structures
stemming from the left{z-module structure oX and the rightH z-module structure of

Y respectively. Does thi${g-bimodule structure oK A Y come from a YDH-module
structure onX A Y? To answer this question, we need to characterize the cotensor product
XANY.

Lemma2.9. Let X, Y be two YDH-modules. Then

XAY:{Zx,-@yieX@YI Zh(l)'xi®h(2)'>1yi

= Zh(]_) >2 X ®h(2) -vi, Yh € H}
Proof. Let T be the following set:

{sz' ®yeX®Y| Zh(l) ‘X @ hyr1yi =Zh(1) >2x; @ h(2) 'yi,VhEH}.

In order to simplify the computation, we will write ® y for an elemend_x; ® y; in
X ® Y inthe sequel. Given ® y € X AY andh € H, we have

Zh(l) " XQhpy1y
=Y hayp2 (Sh@) =2 (ha) - x)) @ h@ye1y
=Y hayp2(x<—h@)@hg 1y
=Y hayr2x®@h@ e1(he —>y)
=Y har2x®@hw@e1 (STHAhE) B1 (h) - )
= Zh(l) P2 X ®h) - y.

Sox ® y belongs tol' and we have thaX AY C T'.
Conversely, ift ® y € T, andh € Hg, we have

(xa—h)@y=Y Stha)e2(he-x)Qy
= Z S(hay) b2 (hy - x) ® S~ Hh@ay)h@ >1y
=Y Sh) ez (hap2x) ® S ha) e (he) - y)

= Zx ® S_l(h(z)) >1 (k@) - y)
=xQ® (h—>y).

ltfollowsthatT CTX AY. O
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Lemma 2.9 results in an alternative definitiondofn Y which is more applicable when
we test whether an element is;hA Y. Moreover, it leads to the following lefl -action
on X A 'Y given by

h- Z(xi ®yi) = Zh(l) X @hyr1yi = Zh(l) 2 X ® N2 - i (8)

wheneve) " x; ® y; € X AY andk € H. To show that (8) is a left/-module structure on
X A 'Y, one simply applies Lemma 2.9. Nevertheless, this#eftnodule structure fits in a
YD H-module structure with the rightf -comodule structure inheriting frod ® Y.

Proposition 2.10. X A Y with the H-action(8) and the rightH -coaction inheriting from
X ®Y isaYDH-module.

Proof. We show thaX AY is anH-subcomodule oK ® Y. Again we writex  y € X AY
for an elementinX A Y. Itis sufficient to verify that

ZX(O) ® Yo (p, yOx@) € X AY

forall pe H* andx ® y € X A Y. Indeed, we have forall € H,

Z hay - x©0 @ h(2)>1 y0) (P, Y)X(1))

= Zh(l) (P2 x)®hey=1(pw - y)

= Z p@ - (he) - x) @ pe) - (h@ =1 )Py, ha)p@). S_l(h(l))>

= Z pa) - (hyp2x) @ p2) - (h@) - V)P hw)p@). S_l(h(l))>

=Y hayr2(pe - X) ®hw - (pa)-y)

= Z hy2x0 ®h2) - o) (P, Y1X)),
where we abuse the use of thior both the action off on M and the dual action off *
on M in order to reduce new symbols. It follows th#tA Y is a right H-subcomodule of
XQY.

Next we show that the righ#f -comoduleX A Y with the left H-module structure (8) is
a YD H-module. Foh € H andx ® y e X A Y, we have

p(h-(x@y)) =Y plha)-x@hx>1y)
=Y h@ x0 ®he =150 ®heynmS thahaxwmS  hw)
=Y h - (x0 ®Y0) ®haymxmS Hhw)

foranyhe Handx® ye X AY. O
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In order to show that the canonicAlg-bimodule structure oX A Y stems from the
YD H-module structure defined above, we have to show that

h—> (Zx,- ® )’i) = Z(h —>x;) ® yi,
(in ® yi) <—h= in ® (yi <—h)

whenevern € Hr and)_ x; ® y; € X A Y. We verify the first formula and leave the second
one to the readers. Indeed,

(9)

h—(x®y)=) S ha) et (hay- (x®)))
= 5t @) ey - x @@ p1y)

=Y $Hh@)e1(ha) X) @y
=h-rx)®Yy,

foranyh € Hg andx ® y € X AY. Thus the right (or left}{}-comodule structure of A Y
only comes from the right one & (or the left one ofY). The H z-bimodule structure (9)
of X A 'Y shows that the generalized cotensor produid associative.

Now we consider the cotensor product of two YiD>-module algebras. Letgtbe the
braided product in the categolvyg to differ from the braided product i@ . This makes
sense when a YDB{-module algebrai can be treated as an algebraMrf by forgetting
the H-module structure oft and endowing with the induced-module structure (1). Let
X andY be two YD H-module algebras. If there is no confusion we will wrkex; # y;
(or simplyx #y) for an elementinX A Y as we can multiply them iX #z Y.

Proposition 2.11. If X and Y are two YD H-module algebras, theX A Y is a YD
H-module algebraan& A'Y is a subalgebra ok # Y.

Proof. By Proposition 2.10X A Y is a YD H-module. It remains to be shown th¥tA Y
is a left H-module algebra and a riglf°P-comodule algebra.

First we have to show thaf A Y is a subalgebra ok #z Y. Write x ® y andx’ ® y’
for two arbitrary elements o A Y. We show that

EH#HN (' #Y) =) xx(o ® vy R(x(1) ® ya)
isinX AY.Forh € H, we have
Y hay- (xx() ® h =1 (y0)) ) R(x(1) ® ya)
=Y (hay - xb@) (h2) - x{g) ® (h3) =1 y0) (k@ =1 Y) R(x{1) ® y)

=Y (@ - ) (h@) - xX{g) ® Y0 ¥(0 R0 ® ya) R(ha) ® ¥(3)) R(x(1) ® y2))
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=2 (b -0 (ha  x(o) ® y0 (o R(hex(1)S " (h3) ® ya)
x R(h@ ® y2)R(h® ® ¥(1))

=Y (hay x®@h@ 1) (h@ ¥ @h@e1Y).

Similarly, one may obtain

> haye2 (xx(g) @ h) - (v0)y ) R(x(2) ® ya))
= Z(h(l) p2x @h) - y)(h@=2x' @hw - y').

Thus we obtain that

> ha - (xx(g) ® k21 (y0)Y )R (x(1) @ yw)
= Z(h(l) x®h@y 1Y) (h@) X' @hw@y1y)
= Z(h(l) p2x ®h) - y)(h@p2x ®hay-y)
=Y haye2 (xx{) ® b - (v R(x(1) ® y))-

By Lemma 2.9.X A Y is a subalgebra ok #z Y and hence & °P-comodule subalgebra
of X #r Y. Moreover, the previous computations actually showed tat Y is a left
H-module algebra with thé/-action (8). It follows from Proposition 2.10 that A Y is a
YD H-module algebra. O

To end this section we present the dual comodule version of (7) which is needed in
the next section. Observe that the dual coalgéiftais a left D[ H]*-module quotient
coalgebra of the dual Hopf algebi{ H]* in the sense that the following coalgebra map
is a surjectiveD[ H]*-module map:

¢* :DIHI* > Hjy, poag>qS*H(p),

where D[H]* = H* < H* is equal to H* @ H* as an algebra but has the dual
comultiplication of the multiplication ofD[H]. Thus a left (or right)D[ H]*-comodule

M is a left (or right)H%-comodule in the natural way througti. In order to distinguish
D[H]* or H}-comodule structures from thi¢-comodule structures (e.g., a Yi»-module

has all three comodule structures) we use different uppercase Sweedler sigma notations:

() Y x7U @ x0 3" x[0 & x[1I stand for left and rightD[ H]*-comodule structures,
respectively.

. -1 0 0 1 :

(i) Y x¢ )_® 2@ 3 x0@ g x@D stand for left and rightH-comodule structures,
respectively.
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Now let X be a YD H-module algebra. TheX is both a left and rightD[ H]-module
algebra, and therefore &fiz-bimodule algebrain the sense of (7). Thus the dual comodule
versions of the formulas in (7) read as follows:

Z(ab)(o) ® (ab)® = Za[o]b(o) ®al - pD,

10
Z(ab)(*l) ® (ab)(o) — Zb[*l] — a"™ D g qOpl0 (10)

fora, b € X, where— is the left action ofD[ H]* on 7. We will call X aright (or left)
H%-comodule algebrén the sense of (10).

Finally, for a YD H-moduleM, we will write M., (or M) for the right (or left)H}-
coinvariants. For instance,

M<>= [m eM | Zm(o) ®m(l) =m®£}
It is obvious thatM, = M™r . If we letk be the trivial YD H-module, then
Me=kAM, M=MANEk.

Moreover, ifA is a YD H-module algebra, theaA, and, A are subalgebras of.

3. Thegroup Gal(HR)

In this section, we construct a group @Gdk) of ‘bigalois’ objects forHg. The group
Gal(Hg) plays the vital part in this paper. Ldtbe a rightD[ H]*-comodule algebra. Then
A is arightH;-comodule algebra in the sense of (10).

Definition 3.1. Let A be a rightD[ H]*-comodule algebra. The extensidif A, is said to
be a rightH{;-Galois extension if thé-module map

B iARs, A—> AR Hy, ,Br(a®b)=2a(o)b®a(l)

is an isomorphism. Similarly, i is a left D[ H]*-comodule algebra, thes/, A is said to
be left Galois if thek-module map

BiA®AA>HR®A, Badb)=) b"Peab?

is an isomorphism. If in addition the subalgehlr& (or A,) is trivial and A is faithfully

flat overk, then A is called aleft (or right) 7} -Galois object A right D[ H]*-comodule
algebra is a right{}-Galois object if and only if the functod ® — defines an category
equivalence from category of léftmodules to the category 0A, H})-Hopf modules (see
[26]). For more details on Hopf quotient Galois theory, the readers may refer to [21,26,27].
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The objects we are interested in are thdgg-bigalois objects which are both left and
right H’-Galois such that the left and rigit{},-coactions commute. Denote I8(H r)
the category of YDH-module algebras which ark}-bigalois objects. The morphisms
in £(Hg) are YD H-module algebra isomorphisms. This is because anyAdmodule
algebra map between two Galois objedtandB yields thatB is an(A, H})-Hopf module
and henceB = A ® k = A by the equivalence mentioned in the previous paragraph. We
show that the catego®(H ) is closed under the cotensor product

Proposition 3.2. If X, Y are two objects of (Hg), thenX A Y is an object o (Hg).

Proof. From Proposition 2.11 we know th&tA Y is a YD H-module algebra. It remains
to show thatX A Y is an’}-bigalois object. Note that th&(z-bimodule structure on
X A 'Y induced by its YDH -module structure is given by the I¢ffg-module structure of
X and the rightH x-module structure of (see (9)). Thus the right (or leffy}-comodule
structure ofX A Y comes from the right one of (or the left one oft).

From the remark at the end of Section 2, we have

XAY)e=kANXAY)=G;AX)ANY =kANY =k.

Similarly the left coinvariant subalgebra &f A Y is trivial as well. To show thak A Y

is a right’}-Galois object, we need to consider the YDmodule(X ® X) A Y, where

X ® X is the YD H-module of the YDH-module algebr& # X in the categornyQ” .
Now one may take a while to check that the following diagram is commutative:

r
ﬂXAY

(X/\Y)®(X/\Y)4>(X/\Y)®H}'}
\ /
X®X)AY

wherer is thek-module map given by
T(c#y) @ (x' #Y')) = Z(x @x'O)#(x' Doy y)y
and thek-module mag is defined by
S(x@x)#y)=> xOx#yex®.

However, we have to show thatands are well-defined. We leave the easier verification
of t to the readers, and show thais well-defined.

Observe that the multiplication map &f X ® X — X is an’H g-bimodule map because
X is anHg-bimodule algebra in the sense of Corollary 2.8. The multiplication map then
induces ar¥ g-bimodule map:

LW (XQX)ANY > XAY.
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If we can prove that the map
X®X)AY > (X@X)AY@H;, (x@x)#y— Y (xO@x)#yex®
is well-defined, theid is well-defined becauskis actually the composite map gfwith w:
SXQX)AY B (XQX)AY QHLE D X AY @HE.

To show thatn is well-defined, it is equivalent to show that for afy Hg, and
x®x#yec(X®X)AY,the element

(l—>x®x)#y

is stillin (X ® X) A Y. This is the case since

(1= x®@x) a=h)#y = [(I —=>x) <= h©) ® (x' —hp)]#y
=Y [l —> (x <= h) ® (x' — h_p) ] #y
=) (—>x®x)#((h —>y)

foranyh,lc Hr and(x @ x)#yec (X @ X) A Y.

Since bothr andé are obviously isomorphisms, we obtain tigat,y is anisomorphism.
It follows that X A Y is a right%-Galois extension ok. Similarly, one may show that
X AY is aleftH}-Galois extension of.

Finally we have to show tha A Y is faithfully flat overk. Observe that

XQXAY)EXR®X)AY
= (X@HR)AY
=XQ(HRAY)
=XQY,
whereH};, = H* as an object i€ (Hg) is defined below and the last isomorphism will be

proved in Proposition 3.4. Sincé ® Y and X are faithfully flat, it follows thatX A Y is
faithfully flat. ThusX A Y is an objectinf(Hg). O

Now let H* be the convolution algebra aff. There is a canonical YOH-module
structure onH* such thatH* is a YD H-module algebra. Fok*, p € H* andh € H,
we define

h-p= ZP(l)(P(z), h), H-action

(11)
W*-p=_hippS~(h{y). H-coaction
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where we useS for the antipodes of botl/ and H* in order to simplify the notations
and we will do the same in the sequel. Before we show Hrats an object inf (Hy) we
need to work out the comultiplication @{%. SinceH is finite, we may think of the CQT
structurer of H as an elemenf R ® R? in H* ® H*. Then we have

Ar(p) =) R’r’pay@ripaS(RY)
= Z Rzp(l)rz ® p(z)rlS(fl) (Rl)
wherer =R, pe H*.
Lemma 3.3. H* is an objectinf (Hg).

Proof. It is sufficient to show that the inducédg-bimodule structure (3) and (6) ofi*
is the same as the duBlg-bimodule structure stemming from the comultiplicatidag of
H%. Indeed, giverp € H*, h € Hg, we have
h—>p=>_ S hx)e1(hq) - p)

=Y O1(SHh@))(hay - STV (O1(SHh2)))

= Z O1(S7 @) Py @1(h2) (P2 ha)

=Y R payr¥p@. ha)rt ho)STP (RY), he)

=Y RPpar¥{par's™(RY).h)

=3 p®(p@, n).

Similarly, one havep <— h =" p@ (p™ h) for anyh € Hg andp € H*. SinceH’ is a
quotient coalgebra oD[H]*, we have that{* with the % -bicomodule structurei g is
an’H’%-bigalois object. O

Denote byl the objectd * described in Lemma 3.3. In fadt,is the unit of the category
E(HR). Before we prove this, we need to figure out the relation betwggrcomodule
structure and thé/*-comodule structures of a YH -module. LetM be a YD H-module.
We use the following summation notation for the dé#l-comodule structure of the left
H-module structure oM

M—>MQ®QH* m— Zm[o] ® my
and the usual Sweedler notatidnm gy ® m 1) for the H-comodule structure of/. The

right and leftH;-comodule structure will be indicated by the Sweedler ‘uppercase’ sigma
notations.
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It is not difficult to check that the righD[H]*-comodule structure oM reads as
follows:

M—> M®D[H]*, m— Zm[o](o) ®@r(m[o](1))l><1m[1].
Similarly, one may get the dual lel[ H]*-comodule structure of (5). It follows from (7)

that we obtain the corresponding dual rig#it -comodule structure of (3) and the dual left
H’z-comodule structure of (6) respectively:

M — M ® H, Zm(o) @m® = Zm[O](O) ®@m1 SO, (o)), 12)
12
M—HyeM, Y mPem®=>"6/mpowmum & mpoo.

Proposition 3.4. The category€ (Hg) is a monoidal category with product and the
unit 7.

Proof. Itis sufficientto showthat A X =X = X A I forany X € £(Hg). We show that

I A X = X. The proof ofX A I = X is similar. Letp™ be the composite map of the flip
map with the right-{}-comodule structure ot. We show that

ptiX—>InX, pt)=) xP#x©
is the desired isomorphism §(Hy). By Lemma 3.3, we have
Z(x(l) <— h) #x© = Zx(2)<x(l), h)#x(o)
= Zx(l) # (h —> x(O))
for h e Hg andx € X. Sop™ is a well-defined isomorphism with the inverse given by
IAX > X, Zp,' #x; > Zpi(l)xi.

Secondly, we verify thap™ is an algebra map. For, y € X andh € Hg, we compute
Pt )t ().

pt et () =) (xP#x@)(y P #y©)
0
=2 xDyig #x gy OR(vy) ©x(1))
0 0
= @6, (x ) - y D) #x 5 y©
- Zx[l] O (S(x1013)) €r (x1012) € (S Yro12)))
X O (S(xj011))) #X[0)(0) ¥0}(0)
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= Z Xy ©r (SGorwo1)) # X010 Y010
=> NPean®

=Y pty).

Finally it is not hard to check that™ is a YD H-module morphism, hence a morphism in
EHg). O

Note that the proof of Proposition 3.4 deduced that the coalgébjawith the
convolution algebra structure istaaided Hopf algebran Mf{ (see the definition from
[19,29]). A more categorical study of the braided Hopf algetfifawill be included in the
forthcoming paper [40].

Denote byE (Hpg) the set of the isomorphism classes of objectg {fi(z). Proposi-
tions 3.2, 3.4 say that (Hg) is a semigroup. The rest of this section is devoted to show
that E(H ) contains a group.

Let X be an objectir€(Hg). Let X be the opposite algebraM# . Thatis,X = X as
a right H°P-comodule, but with the multiplication given by

Foy=) YorxoR(yw ®xw)

whenx,y € X. Since theH -action onX does not give arf{-module algebra structure
on X, we have to define a new-action onX such thatX together with the inherited
H°P-comodule structure frorX is a YD H-module algebra. Lel act onX as follows

h==) S(ha) 2o R(e ©x2)R(x0 @ )
X R(h(s) & S(h(Z)))M_l(h(l))

=Y hly - (h@ »2 (hs) 10)R(S(ha) ® ha) (13)

whereh € Hg, X € X, h* =" S(h(2)u"t(h)) andu =Y S(R?)R* € H* is the Casimir
element ofH*. Since the square of the antipodef is an inner automorphism induced
by the Casimir element, we have the formulae (see [17]):

Z u(h@)he = Z S2(hayu(ho),

(14)
> uHh@)S M) =) Sthapu T (he)

for anyh € H. We will use the formulas (14) quite often in the sequel. For instance, one
may change the order of the actiong > and- in the formula (13) in order to have an
alternative formula:
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h—=%=Y haye2 (haye1 (S~Hha) - x))R(S?(hs) @ h2) (15)
for h e Hg andx € X.

Lemma 3.5. Let X be an object ir€ (Hz). Then the rightd °P-comodule algebr& with
the H-action(13)is a YD H-module algebra.

Proof. We show thafX together with (13) is a YDH -module, and leave to the readers the
tedious check thaX is left H-module algebra.

First we show that (13) is a lef/-module structure oX. Givenh, ! € H andx € X,
we have

= (h—X)

=Y 1= S(h@) xoR(e ®x2)R(x@) ® S(h3))R(hs ® Shz))u " (hay)

= SU@) - (Sha) -x) R(le ® S(ha)xh@)R(She)xwhm ® SU))
x R(l) ® SU2))u " Uw) R0 ® x@)R(x@3 ® S(h3))
x R(h9) ® S(h(2))u*(h()
=) Sthele) X0 Re @ he)R (9 ® S(h@3)) R0 ® x@3)
x R(h(s) ® 1) R(xw) ® S(ha))R(ha ® SU3))R(Im) ® SU2))
x R(h1o ® x4) R(x2) ® Sha)) R (h©) ® S(h2))u (ha)u ()
=Y SUah@)  xoR(he @1s)Re ®he)R(lohe ® S(hw))
x R(hnla) ® SU2)) R(xw) ® SUha))
x Rlaohao ® x@)u "t (hayuq)
=Y S Uehe) xo((u  @u ) RaR) (e ® he)
x R(S™Uaha) ® lphw)RUehe ® x2)R(x@ ® ST @he))
=Y 5 U@he) - xou Uehe)R(S Uwha) @lmha)
x RUghe ®x2)R(x@ ® S~ U2hw))
=Y SUah@) xoR(lehs ® Slha))Rlehe @ x2)
x R(xw ® SU@h@))u lwha)

=lh—Xx,

where we used the identityy 1 ® u"1)Ro1R = Au™1) (see [17] for the proof), and
R21=> R?>® R



344 Y. Zhang / Journal of Algebra 272 (2004) 321-378

Next we show thatX is a YD H-module. Givenk € H and X € X, we compute
p(h — x).
p(h—X)= Z m ® (S(ha) - x©) 1) R(he) @ x(2)
x R(x@) ® S(h@))R(hs) @ S(h))u™ (hew)
= Shs) - %0 ® Stha)xhe R(x2) @ S(h)
x R(h@ ® x@)R(h) ® S(h))u *(h))
=) S(he) xo ®x2She)heu (hw)
x R(h@) ® x3) R(x1) ® S(ha)R(he) ® S(h()))
=Y S(e) - xo ®x@h@ S ha)u " (he)
x R(h@) ® x@3)R(x1) ® S(ha))R(ha ® S(he2))
=Y 5(e) xo ®hexe S ha)u (he)
x R(hery ® x@)R(x1) ® S(h(a)) R(h@) ® S(h))

=Y he = X0 ®haxnS Hha).
SoX is a YD H-module algebra. O

Now let us Iook_at thet z-bimodule structure oX stemming from the new YIH-
module structure oX.

Lemma 3.6. TheH z-bimodule structure o is given by

h—>%= Z S~L(h@) - (hqys2x)=h — x,

(16)
X¥a—h=>) Sha) (hge1x)=x«h.

Proof. We verify the rightH g-action, and leave the let{ g-action to be checked by the
readers. Indeed, fdre Hz andx € X, we have

X<—h= ZS(h(l)) >2 (h(Z) - f)

= Zh(4) 1 (S7L(h(g) - x)ulh@) R(S(hs) © S~ (ha))  (using (15))

= Z S7L(hay) - (hry>1 X)Rfl(h(e) ® Sﬁl(h(s)))
x R(h@ ® S_l(h(3)))R(S(h(9)) ® S_l(h(Z)))”(h(l))

=Y 57 h) - (h@y p10)u" h@)ulha)
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=Y Sh@) - (haye10)u (h)ulha)

ZZS(h(l))'(h(Z) >1X). O

From (16), one obtains that tHz-bimodule structure o is given by a newH -
bimodule structure ok defined by« and—. We will use a different Sweedler uppercase
sigma notation to denote the dubfy-bicomodule structure of the net z-bimodule
structure ofX:

S e, T x0g®,

Thus theH z-bimodule structure (16) oiX can be translated into thE % -bicomodule
structure onX in the following way:

Zi(o) P = Zm ®xl = ZX(O)[O] ® O (S(x)) S (xap-

Zi(’l) ®x? = Zx(’” ®x0 = ZS(X(O)[l])@r(x(l)) ® X(0)[0]-

Now let us recall that a YOH -module algebra is said to begquantum commutativié

(17)

ab= Z by(bq) - a) (18)
foranya, b € A. Thatis,A is a commutative algebra i@” .

Lemma 3.7. Let A be a quantum commutative YB-module algebra. LetA be the
opposite algebra ing. Then the multiplication ofi reads as follows

aob=Y ao(Saw) »b)=Y (@« ba)bo (19)
fora, b € A, where the actions- and — are defined ir(16).
Proof. Leta andb be two elements im. By definition, we have
dob=Y hotaria.

SinceA is also quantum commutative @, we have

dob= Z by(byrira)= Z S(bwy) - (by>1a)b) = Z (a « b1))b()-

Similarly, we have

aob=Y (Slaw)e2b)ag =Y _ao(aq - (Saw)>2b)) =) _ao/(Saa) —b)

foranya,be A. O
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Proposition 3.8. Let X be an objectir€ (H ) such thatX is quantum commutative .
Then the opposite algebré in MRI? is an object i€ (HRg).

Proof. We have to show thak is an H%-bigalois objects. Note that the sets of left
and right’Hg-invariants are equal to the sets of the right and ¥ft-invariants of X
respectively by Lemmas 3.6 and 2.5 and the remark preceding to Corollary 2.8. Thus
X has trivial left and right%-coinvariants. Letf: X ® X — X ® X be thek-module

map defined byf (x ® y) =) x@) ® S(x(1)) = y. It is easy to see thaf is ak-module
isomorphism. Let us compute the canonical Galeimodule mapﬂﬁ_( from X ® X to

Hyr ® X. By applying the formulae (17) and (19), we obtain

,31 y®x Zx( l)®yox
=Zx7 ®§W

=Y xRy (Sha) - x©)

=Y (s6a) = x) " @0 (Sta) »x)°
for x,y € X. SinceX is right 7 -Galois, we have the canonical isomorphigin
Brx @y =Y xPyex® =3 "xo0y@xuS O, (o))
foranyx, y € X. The mapg} induces an isomorphism
Y iX®X—> XQHy

given byy’" (y ® x_) => yx©o)0] ® Sx))Or(x@) = > yx<0> ® xt1, Identifying the
k-moduleX with X the mapﬁﬁ_( is the following composité-module isomorphism:

XOXLxoxl xoH, S HE9 X

wherert is the flip map.
Similarly, one may verify thaﬁ;{ is the composite isomorphism:

1
X@XS5XeXxLHiX > XQHE,
whereg andy! are given by
gxr®y)=) x < ya @Yo, ey =) sMex

forx,y € X. SoX is indeed art{}-bigalois object, and hence an objecti(z). O
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Now we are able to prove our main theorem in this section. Denote bgHgalthe
subset of E(Hpy) consisting of the isomorphism classes of object€ () that are
quantum commutative i@ .

Theorem 3.9. The seGal(H) is a group.

Proof. First of all we show that G&Hy) is a sub-semigroup of (Hg). It is obvious
that 7 is a quantum commutative algebra did € Gal(H). Suppose thatX] and[Y]
are two elements of G@l{ z). We have to verify thak A Y is quantum commutative. For
simplicity, we will write x #y for an elemend_x; #y; of X AY. Givenx#y,a#tb e X NY,
we computed _ (xo) # y0)) (Y1) — (a #b)).
Y o #y0) (vx@ — (@#b))

= Z(X(O) #y0)Vx@ =2a#yex@e - b)

=Y x0(SOGw)y@xa r2a) #y0/(y@X@ - b)

= ZX(O) (x >2a) #y0) (@ - (x@ - b))

= ZX(O) (x@ - a) #yo (v - (x@>1b)

= Zax(o) #(x@>1b)y

=(a#b)(x#Yy).

This means thak A Y is quantum commutative as well.
Secondly, we show thaX is quantum commutative iX is quantum commutative.
Indeed, giverx, y € X, we have

Y oo (v =)= 50 ° S0 - *0R(® ©x2)R(x@) ® SO@))
x R(ys) ® S(y(2)))u71(y(1))
=Y (5G3:©) - x0) Y0 R(SGE)x1mym ® ya)
x R(y9) ® x3)R(x2 ® S(y@4))R(y©® @ S(y(3)))u_1(y(2))
=Y (S06) - x@)yoR(SG@xwym ® ya)R(e ® x3)
x R(x@ym ® S()’(s)))u_l(y(Z))
=Y (S06) - x0)y0R(SG@)xwym ® ) ROE ® X3)
x R(S(x@ym) ® v )u *(ya)
= Z (SO@) - x0) Y0 R(SG@) ® ya)) ROE @ x)u *(ye)

= Z (S 'X(O))y(O)”_l(y(3))R(S_l(}’(Z)) ® y1) Ry ® x(1)
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= Z (SO@) - x0) Y0 R(@ ® x1)

= JorORO® ®xa)

=Xo}y.

Thus we hfve proved th@k] is an element of Gély) if [X] € Gal(Hg). Finally we
show that X] is the inverse o_[X] in Gal(HRg).

In order to show thak A X = [ in_é‘(HR), it is sufficient to construct a non-zero YD
H-module algebra map frothto X A X. SinceX is a rightH%-Galois object we have the
isomorphism:

B X®X—> XQHy.
Write 3" U;(p) ® Vi (p) for the inverse imagés”)~1(1® p) of an elemenp e Hy. We

claim that}_ U; (p) ® V;(p) isin X A X forany p € H’. To show this we need to verify
that

> (Ui(p) <= h) #V;(p) =Y _ Ui(p) # (h — Vi (p)),
or
Y (Ui(p) <= h) #Vi(p) =Y _Ui(p) #(h — Vi(p)),

foranyh € Hp.
Indeed, ifp € H?%, we have the formulae

F (X Uimevim) =Y UV @ Ui(n® =10 p,

Y (XU e Vi) =X UupVip® e vip' ™ =18p.

Similarly, writing }" X ;(p) ® Y;(p) for the elemen(8))~1(p ® 1) if p € H3%, then we
have

D XimPex;(pOYi(p=pa1
and
2 XM ey ) =201 (20)

for anyx € X. Applying formula (20), we obtain
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D ey)(1eUi(p @ Vi(p)=1811 p
=Y Ui(pVi(p? ®1e Vi(p)Y
=Y Ui(p)X;j@) @ Y(@)Vi(p)? @ Vi(p)!~H
=) ((®y)Ui(p)Xj(@) ®Y;(q) ® Vi(p),
whereg = V;(p)™. Since: ® y" is an isomorphism, we obtain
D 1QUip) @ Vilp) =) Ui(p)Xj(@) ® Yi(g) & Vi(p)?, (21)
where agaiy = V; (p)). Now let 8/ ® ¢ act on both sides of (21), we get
YU TP U@ eVip) =) Vip)P @Ui(p) ® Vi(p)?.
It follows that

Y (Uip) <—h) #Vi(p) =Y _ Ui(p) #(h — Vi(p)),

for anyh € Hg, and henc®_ U;(p) # V;(p) isin X A X.
Next we show that the well-defined map

wl—>XANX, olp= (,Br)_l(1® p)

is an algebra map. In order to simplify the notations, we write» andc #d for w(p) and
w(q) respectively, wherg, g € 1. Since

Z“(O)b ®a = Za[o](o)b ® ay S H(Or (ao1)) =1® p
is equivalent to
> abo ® @ (b)) =18 p,
It is sufficient to show that
Z x[01y0) ® X116 (y) =1® pq,
where
x#y= (a #1_7) (c #c_l) = Z(ac(o) #M)R(d(l)c(l) ® b).

Indeed, we have
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Z x[01¥(0) ® X[11Or (¥(1))
= acoodobo ® acom®: dw)O, (bw) R(d@cq ® bw).-

Applying the equations:

> co0do ® com®rd) ® STHO1d@)cw))
=Y coodo ® R (cOr(dz) ® SO (cojmd)) R)
=101®S)(RHg®DR)
=Y 1® S(RY)qr' ® S(R?r?)

whereR = r, we obtain

ZX[OJY(O) ® x(110r (y(1))
= aobo ® ayS(RY)gr'e, bw)(S(R?r?),be)
=Y abo ®a(S(RY) -4) 0, (ba)(S(R* b2))
= Z afo1b(0) ® arnq(0)Or (b)) R(S(q1) ® S(be2)))
=Y ajobo ® amao (g - O (b))

= Za[o]b(o) ® a©:(by)g

Sow is indeed an algebra map.
Finally, we show that is a YD H-module map so that it is &H g-bimodule map (or a
H»-bicomodule map) as well. Giveme I andh € Hy, we have

Z Ui (P)ioVi(p) o) ® Ui (P ©r (Vi(p) 1)) =1® p.

It implies that

h-o(p)=)_ha - Ui(p) #h@ =1 Vi(p)
= Z Ui(P)[o] # Vi(P)(o)(}h Ui (P)[l](")r(Vi(P)(l)»

=Y Ui(pa) #Vi(pa)(h. p2)
=w(h-p).

To show thatw is H°P-colinear, we verify that is left H*-linear. Indeed, ifp € H* and
q € 1, we have
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w(p-q)= Zw(P(Z)qsfl(P(l)))
= Zw(P(Z))w(Q)w(S_l(P(l)))
= Zw(CI)(O) (0@ @(p@))o(S Hpw))
= Zw(61)(O)w(P(2>)w(S_1(P(1>))(w(q)(l), P3)

=Y 0@ole@w. p)

where we used the facts th¥tA X is quantum commutative, thatis an algebra map and
thatw is H-linear. Saw is indeed a YDH -module algebra map, ano= X A X in E(Hg).
This proved thafX] is a right inverse of X in Gal(*). Since any element of G@i(z)
has a right inverse element in GAlr), Gal(Hy) is a group. O

When (H, R) is a cotriangular Hopf algebra, the braided monoidal categbﬁ/is a
symmetric monoidal category. Since the multiplication of a generalized cotensor product
A A B is defined inM 1,{, we expect GdlHg) to be an abelian group, and this is the case.

Proposition 3.10. If (H, R) is a cotriangular Hopf algebra, the@al(H) is an abelian
group.

Proof. Let [A] and[B] be two elements of GéH ). We prove thatA A B= B A A in
E(Hpg). Let ¥ be the braiding fromA #z B to B #z A. We show thatV restricts to an
isomorphism fromA A B to B A A:

Y.:AANB— BAA, Zai #b; — Zbi(O)#ai(O)R(bi(l) ®ai1))-

First we show thatV (A A B) € B A A. For simplicity, we writea # b for an element in
A A B.Givenh € H, we have

h-(a#b)=Y hay-athgrib=Y hays2a#hg - b.

Applying ¥ on both sides of the two equations, we obtain

W(h-(a#b))=> Whay a#hee1b)
=Y b #h -aoR(ba ®hgam S (ha))R(ha @ ba)
=) bo#he -aoR(ba) @hgawS  (hw)R(be ® S~ (h))
=Y bo#he -aoR(ba) ® STHhah@aw S~ (haw))
=Y bo#he-aoR(be ®awS(ha))

=Y haye2bo #h) - a0 R(ba) ®aq),
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where the third equation holds becauses cotriangular. On the other hand,

W(h-(a#b))=> Whayraa#hy - b)
=Y h@ -bo #aR(haba S (be) ®aw)R(Saw) ® hw)
=Y h@ -bo #aoR(hwbaS T (b) ® aw)R(ha) ® aw)
= Zh@) by #ao R(habw S (ba)ha) ® aw)
=Y hay-bo #aoR(he ©aw)Rba) ®ae)
=Y hq -bo#her1a0 R0 @ aw).

It follows from Lemma 2.9 that the eleme#it(a #b) is in B A A. Moreover, we have
provedthat (h - (a#b)) =h-W¥ (a#b). Thatis,¥ is anH-module map and hence a YD
H-module map fromA A B to B A A. SinceV is the restriction of the braiding oA A B,
we have thatlpgrg o Wasp = ldgAp. SOW is an isomorphism.

Now it remains to show thak is an algebra map. To simplify the notations wedétb
andc #d be two elements i A B. Then

¥ ((a#b)(c#d)) = _ b #aocoR(dba) ® cyam) R ® b)
=Y b #aocoRda) ® caaw)R(ba) ® cam)R(ca @ bw)
=Y b #aocoRda) ® caaw)R(ba) ® c@)aw)
X R(b(z) ® S_l(c‘(g)))
=Y b #aocoRda) ® caan)Rba) @ aw)
=Y b #aocoRd ®aw)Rda @ ca) R(ba) ® a)
=Y (b0 #a) () Rd) ® cy) R(bay ® ag))
=W (a#b)W(c#d).

Thus we have proved that is an algebra isomorphism and thah B = B A A in E(HR).
So GalHg) is an abelian group. O

4. The exact sequence
In this section, we investigate thR-Azumaya algebras which are Galois extensions

of its coinvariants, and establish a group homomorphism fronkBE&, R) to the group
Gal(Hr) constructed in the previous section. The main result will be the exact sequence
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(23). In the sequel, for simplifying notations we will wrildg for the coinvariant sets
of a right H-comodule:

[m eM | Zm(o) ®may=m® 1}.
We start with a special elementaRtAzumaya algebra.

Lemma 4.1. Let M = H°P be the right regularH °P-comodule, and leA be the induced
R-Azumaya algebr&nd M). ThenA = H*°P# HOP, where the leftd °P-action onH*°P is
givenbyir - p=3" pay(p@), S~1(h)) = S~1(h) — p, wheneveh € H°P and p € H*°P.
Proof. Let 7 : H°P — EndM) be the representation of the regular I18ffP-module. We

claim thatz is a right HP-colinear algebra map. Indeed, by definition, the rigHtP-
comodule structure of (), for h € H°P, is given by

p(rM)(x @1 =) (T (x©)) g ® S xa) (T (x©)) g
=Y Gwha ® STHxe)xahe)
= qu)h(l) ® S x@)x2he)
=Y 7h@)x)®he)
for anyx € M. It follows thatp (7 (h)) =) 7w (h(1)) ® h(2). Sox is a right H°P-colinear
algebra map. This fact implies that the rigtifP-comodule algebrat is a smash product
Ap# HOP[10, 1.4], whereAg is the coinvariant subalgebra af

Now we show thatdg is isomorphic toH*°P. It is obvious thatdg = End (M), the
subalgebra of alH °P-colinear endomorphisms @f. We know that thé-module map

AtH*P - End? (HP), A(p)(x) = Z pxa)xe)

for p e H*°P andx € H®P, is an algebra isomorphism.
Finally, for p € H*°P, h ¢ H°P andx € M, we have

T (AMP)(X)) =D x2h(p, x2)
=Y (5H @) = p) (T (h2) ().
It follows that the action o#7°P on H*°P is
h-p=S"h) = p=) pwlr@. S~ M)

forh e H®andp e H*°P. O



354 Y. Zhang / Journal of Algebra 272 (2004) 321-378

Corollary 4.2. Any element dBC(k, H, R) can be represented by atrAzumaya algebra
that is a smash product.

Proof. Let [A] be an element of B&, H, R). Since EndH°P) represents the unit of
BC(k, H, R), we have[A # End H°P)] = [A]. Now the composite algebra map

H 5 End(HP) < A #End HP)

is still H°P-colinear. It follows thatA # End H®P) is a smash product algebma# HOP
whereB = (A#End HP))g. O

Since any smash product algebra is a Galois extension of its coinvariants, we have that
any element oBC(k, H, R) can be represented by aR-Azumaya algebra which is an
H°P-Galois extension of its coinvariants.

Lemma4.3. Let A be anR-Azumaya algebra. IA is an H°P-Galois extension o, then
A is a HP-Galois extension ofi".

Proof. SinceA/Ap is H°P-Galois, we have the canonical isomorphism:
,BAZA ®agA— A ®H® a®br> Za(o)b@)b(l).

Since the flip map is ak-module isomorphism from ®4, A to A ®A3p A, B, gives an
isomorphism

n:z@Ang% A® HOP, n(5®5)=2a(0)b®a(1).
Define ak-module map:
g:Z® H® > AQ H®, aQhr Z% ®h(3)R(h(2) ®a(1)S(h(1))).

We show that is ak-module isomorphism. As remarked in the previous section, we may
view R as an element_ R' ® R? in H* ® H* which is a QT structure off*. Then the
elementt = 3" R25~1(RY) is the Casimir element off * that is invertible. Thus we may
rewrite thek-module mag: as the following composite map:

AQH® %L A9 H® % A g HOP
wherei is defined byli(h) =h <~ u =) hyu(h), ando is defined by

oc(@®h)=> haqyr1a®he =Y ao @heRhq @a)
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for all a € A andh € HOP. Sincen ando arek-module isomorphisms, we have thats
an isomorphism. It is easy to check thfgt = &g/, 7. So B is an isomorphism, ame!/Agp
is an H°P-Galois extension. O

In the sequel, alR-Azumaya algebra is said to beGaloisif it is a right H°P-Galois
extension of its coinvariant subalgel4a. Let A be a GaloisR-Azumaya algebra. Denote
by 7w (A) the centralizer subalgebra, (Ag) of Ag in A. It is clear thatr (A) is an H°P-
comodule subalgebra of. The Miyashita—Ulbrich—Van Oystaeyen (MUVO) action [22,
30,32] of H onw(A) is given by

h—=a=3 Xi(haYi(h). (22)
where)” X;(h) ® Y;(h) = B~ LA ® h), for h € H. It is well-known (e.g., see [6,30]) that
m(A) together with the action (22) is a new YB-module algebra. Moreover,(A) is
guantum commutative in the sense of (18). By Corollary 2.84) is anH g-bimodule
algebra, orA is an’H%-bicomodule algebra.

Lemma4.4. Let A be a GaloisR-Azumaya algebra. Then(A)/ k is an’H % -biextension.

Proof. Givena € n(A)., then by Lemma 2.5, we have— a =h>1a foranyh € H.
Then for any elemerit € A, we have

ab= Z boy(b —a)= Zb(o) (bayr1a).

This means thait is an element in the left/ -center ofA that is trivial [7]. Sor (A), = k.
Similarly, fora € ,m(A), we have

ab= Zb(O) (b —~a)= Z boy(byr2a) = Zb(O)a(O)R_l(a(l) ® b)),

foranyb e A. This implies thad _ a)b0)R(a(1) ® b1)) = ba foranyb € A. Soa isin the
right H-center ofA that is trivial as well. It follows thatr (A)/ k is anH},-biextension. O

Next we show thatr (A) is faithfully flat overk. To this end we consider the algebra
A#R Hy. Thereis a leftA # A = A° module structure or # H}, as follows:

(a#b)-(c®p)= Z a(S(b2) p2¢)boy @ (S(b1y) —> p)

fora#b e A° andc ® p € A#g Hj. Itis not hard to verify that #g H’% is an object in
the category,e Q¥ which is equivalent t@” through the pair of functord —)4, A ® —)
(see [7, Proposition 2.6] for further details).

Let I be theH °P-comodule subalgebra of #z H}:

(A#tr Hp)" =[x € At My | (b# Dx = (L#b)x, Vb e A}
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ThenA#r Hy = A® I" by [7, Proposition 2.6]. Thug’ is a faithfully flat algebra ovet
sinceA and}, are faithfully flat.

Lemma 4.5. Let A be a GaloisR-Azumaya algebra. Then(A) = I and hencer(A) is
faithfully flat overk.

Proof. It is sufficient to prove thal” = w(A) A H}. Let x =a ® p be an element in
m(A) AH. We verify that(b # Dx = (1 #b)x for anyb € A. Indeed, we have

(1#b)(a® p) = Z(S(b(Z)) >2a)by ® (S(b) —> p)
= Z S(b@) 2 (a <— S(b1)bo) ® p
= (Sba) 2 (b)) w2 (Sb) - a)))bo) ® p

=Z(S(b(1)) -a)bo) ® p
=ba@p=0#D(@® p),

whenevew, b € A andp € H}. Thus we have proved that(A) A H}, is contained inl".

Conversely, letio# 1 be the subalgebra df#; H,. Itis easy to see that(A) #z H}, is
the centralizer oo # 1 in A#g H}. Thusl” C (A)#g H}. Letx =a ® p be an element
in I". For any element € HP, there exists a unique elementX; (h) @ Yi(h) € A®a, A
such thad_ X; ()Y;(h) ) ® Yi(h)1) = 1® h, or equivalently

Y Xi(h))Yi(h) ® Xi(h)q)=1& S~ (h).

Thus we have

(@aa—h)®@p=>_ Sha) ez (e a)®p
=Y Shay) =2 (Xi(h@)aY;(h)) ® p
=Y Stha)»2 (S(Xi(h@) o)) 2a) Xi(h2) o) i (h(2)
® (S(Xi(h@) 1)) —> P)
=D Sha)>2(S(S7 h@)) p2a) ® (S(S~H(hea)) —> p)
=a® (h—v p),

which proves thaf” is contained int (A) A'Hy. O

Recall from [30, Lemma 1.3] that when a Galaig®P-comodule algebrat is an
Azumaya algebra, the centralizefA) is a right H*-Galois extension ok with respect
to the MUVO action (22). This is no longer the case wheis an R-Azumaya algebra.
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However, we will see that (A) would be ar/{}-Galois object, instead of aH*-Galois
object.

Proposition 4.6. Let A be a GaloiskR-Azumaya algebra, and let(A) be as above. Then
m(A) is an object inGal(H ).

Proof. Let F: A#A — End(A) be the canonicall -linear algebra isomorphism. It is easy
to see thatF' induces an algebra isomorphisniA) # 7 (A) — Ends,—4,(A), where the

latter is the subalgebra of allg-biendomorphisms ofi. SinceA/Ag is H°P-Galois, we
have the Doi—Takeuclii-rmodule isomorphism:

8 :Hom(H, (A)) — Endyg—ae(A), 8(f)(a) = Zaw)f(a(l))
[11, 3.2]. Define &-module mapx as follows:
a:m(A)@m(A)—> w(A)Q H*, a®br> Y ajobo) ® ajn O (b))

One may take a while to check thatands fit in the following commutative diagram:

7(A) @ T(A) ——= ENndiy—aq(A)

~

7(A) ® H* ——= Hom(H, (A)).

Note that here we view as ak-module isomorphism from (A) ® 7 (A) to Endy,—4,(A).
It follows from the above commutative diagram thats a k-module isomorphism. It is
evident that the canonical Galdismodule mags” is now the composite isomorphism:

TA)R@T(A) S 7(A) @ H* 5 m(A) @ H*

wheren is given byn(a ® p) =" a(o) QpS~Lo, (a1))) whenever € w(A) andp € H*.
So we obtain that (A) is a right?}-Galois object.

Similarly, let G: A # A — End(A)°P be the canonicaH -linear algebra isomorphism.
Then one has the commutative diagram

7(A) @ 7(A) —> Endyy_ao(A)°P

7(A) ® H* ——> Hom(H, 71 (A))
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wherea’ is given by’ (a ® b) = Y a0 ® a)11©:(acry) fora, b € m(A). Let¢ andn’
be thek-linear automorphisms of (A) ® H* given by

{a®p) = ZG[O] ® S(ap)p, n'(a®p)= Za(O) ® pS(©;(aq)))

foranya € A andp € H*. We have
/ /
nia'(a®b)= Zab[O](O) ® S(O;(bjoy)bry)
for any a,b € w(A). It follows that the Galoisk-module mappg! is the composite
isomorphism St ®)tn'ca’, wherer is the flip map. Sar(A) is a left?-Galois object.

This completes the proof.O0

Now we are ready to show that induces a group homomorphism from the Brauer
group BQk, H, R) to the group GalHg).

Proposition 4.7. Let A and B be two GaloisR-Azumaya algebras. Then we have
7(A#B) =n(A) An(B).

Proof. Itis obviousthatr (A#B) C w(A)#7(B) becauselo® Bg = Ag# Bo C (A#B)o.
For an element € HP, we let

BitA@h) =) Xi(h)®Y;(h) € A4, A,
Bzr®h) = Ui(h) ® Vi(h) € B ®p, B.
Then we have
DX #) @ (Yi() #1) = Bripl@h) =Y (L#Ui(h) @ (1#Vi(h).
This implies that the MUVO action off on (A # B) can be written in two ways:
h— (a#b)="y (X;(h)#1)(a#b)(Y;(h)#1)
=) (L#Ui(h))(a#b)(1#Vi(h))

wherea # b should be read as a sum of elementsAi# B. Precisely, we have for
a#tben(A#B),

h— (a#b) = Z(xj(h)#l)(a#b)(xj(h)#l)
=Y " Xj(haY;(h) o #Y;(h) 4 e1b

= Zh(l) —~a#hpr1b.
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On the other hand, we have

h— (a#b)="Y (L#Ui(h))(a#b)(1#Vi(h))
=Y aw #(aq) =1 Ui(h))bVi(h)
=Y ao#Ui()obVit)R(aw ® Ui(h) )
=Y aoR(aw ® S~ hay)) #he) —~ b
=Y hay2a#hg —b.
This means that: # b is in 7(A) A 7(B) by Lemma 3.3. It follows thatr (A # B) C
7(A) A7 (B).

Conversely, ifa #b is an element ofr (A) A 7w (B), we show thatu #b € 7 (A # B).
Indeed, giverx #y € (A # B)o, we have

ZX(O) #yo®@ynpxa)=xQy®1L,

or

ZX(O) #y®uxa = Zx #y0) @ SO)-

These two formulae lead to the equations:

(a#b)(u#v) = Zau(o) #(x)>1b)v
=Y x (@ — a) #(x@ =1 b
=Y xoxar2a)#(x@ —b)y
= ZX(O) (x@ >2a) #yo)(yx@ — b)
= Zx(o) (xqy>2a)#yb
= ZX(S(y(l)) b2 a) #yob

= Zxa(o) #(ayr1y)b
= (x#y)(a#b),

where we used the quantum commutativity (18). This implies éav¥ab € 7 (A # B). So
7 (A) At(B) C w(A# B), and hence they are equalo

Lemma 4.8. Let M be a finite rightH°P-comodule, andd = End(M) be the elementary
R-Azumaya algebra. 1A is a GaloisR-Azumaya algebra, them(A) = 1.
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Proof. Since M is a right H°P-comodule, we may views as a left H*-module. The
representation map

MH > A Mp)m)=p-m=>_ mo/p.ma)

sendsH* into the subalgebra(A) becausedo = Endy+(A). Thusa is an algebra map
from I to 7 (A). If we can prove that is a YD H-module map, then becomes art{z-
bimodule map, and hence an isomorphism between the two Galois objectg1i;3aBy
definition (11),x is right H°P-colinear. We show that is left H-linear as well.

To show that.(h - p) =h — A(p) for h € H andp € I, it is sufficient (or equivalent)
to show that

AP f =) forfw - p)

forany f € A. Givenm € M and f € A, we have

> forfay p)m) =" fomo){p.ma) fa).

Since

Y fom e fo=) fmo)o ®Stmw) fmo)w,

we have

> forfay p)m) =} foyme){p. ma fa)
= Z fm)o)p, f(m))
=p- f(m)
=A(p) f(m).

This proves thak is a YD H-module algebra map, and hence an isomorphism bedause
andm (A) are’H’-bigalois objects. O

Lemma 4.9. 7 induces a group homomorphisinfrom BC(k, H, R) to Gal(Hg), where
7([A]) = [7(A)] and A is a Galois R-Azumaya algebra representing the cldgg in
BC(k, H, R).

Proof. First we show thatt is well-defined. Suppose that and B are two Galois
R-Azumaya algebras representing the same class i BZ, R). Then there are two finite
right H°P-modulesM, N such that

A#EndM) = B#EndN).
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Let HOP be the regular rightd°P-comodule. By Lemma 4.1, EX&°P) is a Galois
R-Azumaya algebra. Since Ead) # End H°P) = EndM ® H°P) is still a Galois
R-Azumaya algebra, by Lemma 4.8 we have

7 (End M) #End HP)) =7 (End M ® HP)) = 1.
This implies that
T(A)ZEr(A) AT

= (A#EndM)#End H))
=n(B#EndN)#End HP))

So we obtain tha& ([A]) = 7 ([B]), and7 is well-defined. O

In order to figure out the kernel &f, we need two more preparations. Recall from [3]
that an action of a Hopf algebid on an algebra is called annner actionif there is an
invertible element: in the convolution algebra Hof#/, A) such that

h-a= Z u(hyaut(h)

foranya € A andh € H. If in addition,« is an algebra map, then the actionfis called
astrongly inner action

Lemma 4.10. Let A be a GaloisR-Azumaya algebra such thaiA) = I. Then the action
of H*°P (or the coaction of7°P) on A is strongly inner.

Proof. By assumption, there is a YB-module algebra isomorphisin: I — 7 (A). Thus
the action and the coaction &f on(A) are determined by the corresponding action and
the coaction off on I throughy,. Namely, we have:

h=y(p)=Y_ ¥(pa){p@-h),
W y(p) = Y (hiy) ¥ (0¥ (S (hfy))

wherep e I, h* € H*°P andh € H. In particular, theH °P-coaction onr (A) is strongly
inner. We show that this inner action extends to the inner actiaf.dndeed, giver € A
andh* e H*°P, we have
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W a=>"aolh*, aw)
=2 _v(hiySTH(h))ao iy, aw)
=DV (hig)ao(aw = v (57 () hy- a2)
=D v(hia)ao v (S hig)S T (hEy). aw)infy. ac)
=D U(hiy)av (s~ (hy)).

This means that the algebra mép H*°P — 7 (A) < A induces a strongly inner action
of H*PonA. O

Lemma 4.11. Let A be a GaloisR-Azumaya algebra such that(A) = I, and B any
R-Azumaya algebra. Then as algebras

(Q) AQ BZ A#B,
(b) A= A°P,
(c) Aisan Azumaya algebra.

Proof. (a) Letyr: I — m(A) be an isomorphism of the two Galois object<i(H z). We
define ak-module mag as follows:

EAQB— A#B, £a®b)=Y_ ay(6,(Sbw)))#bo.

It is easy to see that is an isomorphism. We verify thdt is an algebra map as well.
Indeed, fota, c € A andb, d € B, then

£(@®b)(c®d) =Y acy(6,(Sdwbw))) #bodo)

=Y _ay(0,(S(b3))) ¥ (0r (b)) ey (0 (Sdy)))
x ¥ (0 (b)) #boydo
=Y a¥ (0, (S0@)))[Or(bw) - (c¥(0rday))] #bod o)
= @y (0, (Say) #bo)(c¥ (0, d)) #do)
=@ ®b)E(C®d).

For (b) and (c), the proof of part (a) shows that there ksraodule mapv: A — A°P
given by

Z ¥ (0,(Saw)))aq)-

We show thav is the desired algebra isomorphism.
Firstv is an algebra map. Givan b € A, we have
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v(ab) =) v(boao)R(bw ® aw)
=2 v(6:(Sba)))boaoRbe ®az)
=Y ¥ (0:(Sb@a@)))boaoR(bw ® aw)
=D v (0 (Sbwaw)))(Oraw) - b)ac
=Y v(0:(SCwaw)))¥ (O (@@))by (0, (Saw)))ao)
=2 v(6:(SCa))bo ¥ (6 (Saw)))ao)
=v(a@)ov(b).

Now one may easily check that the following diagram commutes:

(
(
(
(@

_ & _ F
AR A A#A End(A)

A® AP

SinceF o £ is an isomorphism, we obtain tha v is injective andcanis surjective. Since
all the algebras involved are finite, and can are isomorphisms. Sd is an Azumaya
algebra andi = A°P as algebras. O

Theorem 4.12. We have an exact sequence of group homomorphisms
1 - Br(k) -> BC(k. H, R) -> Gal(H). (23)

Proof. Suppose thatd, B are two GaloisR-Azumaya algebras such thét], [B] €
Ker(7). By Lemma 4.11,A and B are Azumaya algebras, and# B = A ® B. This
implies that there is a group homomorphism

¢ :Ker(@) — Br(k), ¢([A])=[A]

by forgetting the H-structures onA, where[A] € Ker(7) is represented by a Galois
R-Azumaya algebral. It is evident that o = id, the identity map on Bk). If we can
show that¢ is also injective, then Ké&ff) = Br(k). Indeed, if¢([A]) = 1 € Br(k), then
there is a finitek-module M such thatA = End M) as an algebra. By Lemma 4.10, the
coaction ofH*°P on A is strongly inner. So there is a*°P-coaction onM such that\/

is a right H*°P-comodule andd = End(M) as H*°P-comodule algebra. This implies that
[A]=[EndM)]=1in BC(k, H, R). It follows that the sequence (23) is exacta

Note that the exact sequence (23) indicates that the factor grotp BCR)/Br(k) is
completely determined by th&%-bigalois objects. In particular, whenis an algebraic
closed field, BCk, H, R) is a subgroup of G&Hg).
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Now let us look at some special cases. FirsHebe a commutative Hopf algebra. Then
H has a trivial coquasitriangular structuRe= ¢ ® ¢. In this caseHy is equal toH as
an algebra and[H] = H ® H is the tensor product algebra. AttAzumaya algebra is
an Azumaya algebra which is a right-comodule algebra with the trivial left/ -action.
On the other hand, thKE g-bimodule structures (3) and (6) of a YB®-moduleM coincide
and are exactly the lefi-module structure oM. So in this case an object in the category
E(Hp) is nothing but anH *-Galois object which is automatically at*-bigalois object
since H* is cocommutative. So the group GHlg) is the groupE (H*) of H*-Galois
objects with the cotensor product ovéi*. So we obtain the following exact sequence due
to Beattie.

Corollary 4.13[2]. Let H be a finite commutative Hopf algebra. Then the following group
sequence is exact and split

1— Br(k) - BC(k. H) 2> E(H*) — 1

where the group maf is surjective and split because af#*-Galois objectB is equal to
(B # H) and the smash produ@& # H is a right H-comodule Azumaya algebra which
represents an elementBC(k, H).

Secondly we letR be a non-trivial coquasitriangular structure Bf but let H be a
commutative and cocommutative finite Hopf algebra @veén this caseHy is isomorphic
to H as an algebra and becomes a Hopf algebra. An object iHzalis an H*-bigalois
object. It is not difficult to check that Y} -module(or H-bimodule structures commute
with both H*-Galois structures.

Let 6 be the Hopf algebra map corresponding to the coquasitriangular strutitthat
is,

0:H— H*, 60(){1)=R(ISh)

for h,l € H. Let— be the induced{ -action on a right? -comoduleM:

h—=m=Y mofh)mw)=Y moRma &h)

for h e H andm € M. In [31], Ulbrich constructed a group (6, H*) consisting of
isomorphism classes dff *-bigalois objects which are alsH-bimodule algebras such
that all H and H* structures commute, and satisfy the following additional conditions
interpreted by means &, cf. [31, (14), (16)]:

h—>a=)ao<—haR(aw ®She))R(S(ha) ®aw),
Y x@@a—xwm) =) (@ = A)x©)-

Let us check that any objedtin the categor¥ (H ) satisfies the conditions (24) so that
A represents an elementbi6, H*). Indeed, sincé/ is commutative and cocommutative,
we have

(24)
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h—>a=) (he-a)R(S ™ (ha) @ hgawS  (hw))
=Y (h - a©)R(S(h2) ®aqw)
= (h - a)Ram ® hay)R(az ® Sh))R(S(ha) ® ae)

= (a© <—ha)R(am ® Sh2))R(S(h3) @ a@),

and

Y xola<—xwm) =) x0 (@ - ao)R@w ® X))
= aoxoR@w ®xa) (byq.c)

=) (@ = a)xo

foranya, x € A andh € H. It follows that the group G&H ) is contained inD(0, H*).
As a consequence, we obtain Ulbrich’s exact sequence [31, 1.10]:

1 Br(k) — BD®, H*) X D0, H*)

for a commutative and cocommutative finite Hopf algebra with a Hopf algebrarfram
H to H*. In particular, wherH = kG, a group Hopf algebra of an abelian group, we get
the exact sequence [9, 1.2]:

1— Br(k) — By(k, G) = Galzk, G),

whereg : G x G — U (k) is a bicharacter map.

5. An example

In this section, we let be a field with clk) # 2. Let H4 be the Sweedler 4-dimensional
Hopf algebra ovek. That is,H4 is generated by two elemergsandh satisfying

g2=1,  h*=0, gh+hg=0.
The comultiplication, the counit and the antipode are given as follows:
Al =g®g, A =10h+hQ®yg,

e(g) =1, e(hy =0,
S(g) =g, S(h) =gh.
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There is a family of CQT structure® on H4 parameterized by < k as follows:

R; | 1 ¢ h  gh
1 1 1 0 O
g 1 -1 0 O
h 0 O r -t
gh |0 O t ot

Itis not hard to check that the Hopf algebra mapsand®, induced byR; are as follows:

cop

O H ' —H}, ©(g)=1-
1

=x, Oyh)y=t(h—gh)=txy,
O, Hy' — Hf,  0,(9) = x

. Or(h)y=t(h+gh)=ty
where {1, g, h, gh} is the dual basis off;. When is non-zero,®; and ©, are
isomorphisms, so thdt, is a self-dual Hopf algebra.

The deformation algebr& g, is a four-dimensional commutative algebra generated by
two elements: andy satisfying the relations:

x?=1, xy —yx =0, y2=t(1—x).

The double algebr®[ H4] with respect tak; is generated by four elements,, g2, h1 and
h2 subject to the following relations:

gl-2=1, /’li2=0, g,~h,~+h.,'g,'=0,
8182 = 8281, hiho 4+ hohy =t(1— g182).

The comultiplication ofD[ Hy4] is easy because the Hopf subalgebras generatgd by,
i =1, 2, are isomorphic td4. Thus the algebra embeddipgeads as follows:

@ :Hg, — D[H4l, ¢(x)=g182, ¢(y)=gu1lh2—h).

Let us consider the triangular case whe&e= Rg and write g for Hg,. The dual
coalgebraC = H} has a linear basig, a, b, c} with comultiplication and counit given by

Ale)=e®e, Ala)=a®a, Ab)=bQe+e®b, Alc)=cR®a—+a®c,
egle) =1, gla) =1, e(b) =0, g(c) =0.

Itis easy to see th& = C, & C,, whereC, = ke + kb andC, = ka + kc.

Lemma5.1. If A is an objectin€(Hg), then there is a linear basid, u, v, w} of A such
that

p(H=1®e, pu)=u®a,

(25)
p(V)=vRe+1QDb, p(w)=w®a+uc.
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Proof. Since A is a C-Galois object, it is a four-dimensional algebra. The right
C-comodule ofA decomposes into

A=AQc(C. ® Ca) = (ADCCe) ® (ADCCa) =A@ Aq.

The spacesi, and A, are two-dimensional spaces aAd contains the unit. Led, =
k+kv and A, = ku' + kw’. Thenp(v') =v ® e + u ® b for someu € k because
t®e)p@)=vand(t® A)p (V') = (p®1)p (). SinceA is C-Galois,u is non-zero. Set
v=p"1v.We havep(v) =v Qe+ 1Qb.

Similarly, one may find an elemente A, such thafj (1) = u ® a becausa is a group-
like element, and an elemente A, such thato(w) =w ® a+u Qc. The sefl, v, u, w}
formsabasisofA. O

Corollary 5.2. Let A be a Galois object irf (Hy). Then there exist a bas{§, u, v, w} of
A such that the action df{z on the basis is as follows

(26)

Let A be an object ir€ (Hg). We choose a basid, v, u, w} satisfying the properties
of Lemma 5.1 and Corollary 5.2. We consider the possible Afomodule structures on
A such that the induce®#(},-comodule structure an#{z-module structure on the basis
{1, u,v, w} are (25) and (26) respectively.

Let X andY be the matrix representationsiifiay4 of x, y € Hg. ThenX andY have
the forms with respect to the bagik u, v, w}:

1

where the blank entries are zeros. SimR§g#h,l) = Ro(l,h) = 0 for any element e
Hy, we haveh o m = 0 for m € M, where M is a right H4-comodule. Thus the
matrix representation of1 € D[Hs] in Max4 is the zero matrix. LeiG; and H; be
the representation matrices @f and h; in Myyx4, i = 1,2. Sincex = g1g2 andy =
g1(h2 — h1), we haveX = G1G2 andY = G1 H> becaused; = 0.

SinceG1 anti-commutes witly andG% = I4, we obtain thatG; (and consequentig2)
are of the forms:

1 c 1
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wherea? =1 andb, ¢ € k. Itis easy to see thak; andG» have two different eigenvalues
1 and—1. If we choose a different basis @f, say,{1, u, v, w}, thenG1 andG2 can be of
the following forms:

However, the matrixt, depends on the choice af= +1. So it has the following two
types of forms:

1 ‘ 1

(i) Ho= . (i) Ho=

Thus we obtain the following:

Proposition 5.3. Let A be an object ir€ (Hg). There is a basi$l, u, v, w} of A such that
the Hs-module structure and thE g-module structure are either

Typel ¢g-1=1  g-u=-u, g-v=—-v, g-wWw=w,
h-1=0, h-u=0, h-v=1, h-w=u,
(27)
x-1=1 x-u=-u, x-v=v, X-w=—w,
y-1=0, y-u=0, y-v=1, y-w=u
or
Typell: g-1=1, g-u=-u, g-v=—v, g-wWw=w,
h-1=0, h-u=-w, h-v=1, h-w=0
(28)
x-1=1 x-u=-—u, X-v , X —w,
y-1=0, y-u=w, y-v=1, y-w=0.

An objectA in £(Hpg) is said to be ofypel if A has the structures (27), and it is said
to of typell if it satisfies (28). Since théis-comodule structure ad is partially killed by
the coquasitriangular structui®y, we can not obtain the comodule structuredoin the
same way as we obtained the module structurg .aflowever, we have not analyzed the
multiplication of A and the quantum commutativity df.

Let {1, u, v, w} be the basis we chose in Proposition 5.3 so thatHhection onA
are of the forms (27) or (28). Ldf, V and W be the matrix representation of the regular
multiplication ofu, v andw in A.

Proposition 5.4. Let A be an object in€(Hg) with the H4-module structurg27) on a
basis{1, u, v, w}. ThenA is a generalized quaternion algeb(ﬁ;{—ﬁ) with o #£ 0.
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Proof. SinceA is an Hs-module algebra, the matricés V, W andG», H> must satisfy
the commutation rules stemming from the smash produét H4. Thus we have the
following relations:

GoU =-UG>, G2V =—-VGoy, GoW =WGo,
HoU = U Hoy, HyV =V Hy+ Go, HoW =WH>+ UG»>.

A further computation shows that, V andW are of the forms:

andW = UV, for somex, 8 € k. This implies thatA is a generalized quaternion algebra
with generators andv satisfying the relationsi? = «, v2 = 8 anduv + vu = 0.

Next we show thatr # 0. SinceA is anH,-Galois object with the right{}-coaction
given by (25), we havg, (u ® u) = u? ® a = « ® a. The bijectivity of 8, implies thaix is
non-zero. O

If an objectA in E(Hpg) is of type |, thenA is necessary a generalized quaternion
algebra and is a righti;-Galois object. Using a similar argument to the one made above,
we obtain the following:

Proposition 5.5. Let A be an object ir€ (H ) with the H4-module structure given H28).
ThenA is a commutative algebria({/a ) ® k{,/B) for somea #£ 0, B € k, where the two
generators are andw andu = —vw.

Note that if an object in€(Hy) is of type Il, then theHs;-module algebra is not
an Hj-Galois object. Once we know thHs-module algebra structure of an object in
E(HR), we are able to work out thHs-comodule structure o by utilizing the quantum
commutativity. Let us first translate the g.c. formula into its dual version. Supposd that
is a gq.c. YD H-module algebra. Denote by aj0) ® aj1; € A ® H* the dual coaction of
H* on element:. Then the quantum commutativity df can be stated in terms of the dual
action and dual coaction df *:

ab = Z(a[l] — b)ajo (29)
for any elements, b € A, whereh* — a =) a)(h*, a)) for h* € H* anda € A.

Proposition 5.6. Let A be an object inE(Hg) with a basis{1,u, v, w} satisfying
Proposition5.3.

(i) If Ais of typel, then theHs-comodule structure is given by
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pw)=u®1l-2wQ gh, p(v)=v®g+28Qh,

(30)
pw)=we®g.
(i) If Ais of typell, then theHs-comodule structure of is given by
pu)=u®l, p(V)=vQRg+2BQh,
(31)

p(w)=w®g—2uh.

Proof. IncaseA is of type | the formulae given in (30) are uniquely determined byHie
module structure oft and are given by the MUVO action @1, sinceA is an H;-Galois
object (see [6,30]). Suppose thats of type Il. In this caset is not anH ,-Galois object.
So theH4-comodule structure ofl is not from a MUVO action omA. However, we may
still recover theHs-comodule structure from the quantum commutativity and de
module structure ofi. It is sufficient (and necessary) to obtain the dual actiof/pfof
the coaction ofH4. SinceH, is isomorphic toH, we simply need to work out the action
of g andh on the generators, w of A =k(/a) ® k(-/B ). Recall that the Hopf algebra
map® : D[ H4] — D(Hy) induced byRg restricts to an isomorphism on sub-Hopf algebra
generated by group-like elements g2. Thus the dual action gf is the same as the action
of g1 given by matrix representatio@i;. It remains now to recover the dual action/of
By assumption we have? = 8, w? = « andu = —vw = —wv. The dual coaction of the
Hy-action is as follows:

Zu[01®u[1]=u®g+w®h, ZU[O]®U[1]=v®g+w®h,

Z wWeuwl=wel
Now the quantum commutativity of implies that
uv = Z(u[l] —vup=@g—=vu+"h—=v)w=—-vu+h—vw,
vu:Z(v[l]Au)v[o] =g@—-wv+h—-u=uv+h—u,
vw:Z(v[l] —wg=E@—-wv+h—=w=—-wv+h—w.

It follows thath — v = 2uvw ™1 =2v2 =28, h = u =0 andh — w = —2u. Thus the
corresponding?s-comodule structure o is then given by

p()=u®1l, p(V)=vR®g+28Qh, pw)=w®g—2uQh. O
Now we are able to classify the YHs-module structures of all the objectsdiHg).

Theorem 5.7. Let A be an object ir€ (Hg). ThenA is either of typd or is of typell.
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(i) If Ais of typel, thenA = (%) is a generalized quaternion algebra for somez 0,
B € k with generators:, v satisfyingu® = «, v2 = B. The YDH4-module structures
of A are given by

g u=—u, g v=—v, h-u=0h-v=1,

pw)=u®l—2uvQ gh, pP(V)=vR®g+26Qh. (32)
In this case, the inducel }-bicomodule structures are as follows
piD=ex®1l pD=1Qe,
piw)=a®u, pw)=u®a, (33)

prv)=e®@v+b®L, p(V)=vQe+1®Db,
pruv)=a@uuv+cQu, pruv)=uv®@a-+uQc.

(i) If Ais of typell, thenA = k(\/o) ® k(,/B) for somex # 0, B € k with generators:,
v satisfyingu? = o, v2 = 8 anduv = vu. The YDHz-module structures are given by

g-u=u, g-v=—v, h-u=0, h-v=1, (34)
pu)=u®g+2uv®h, pPW)=vRg+28Qh.
In this case, the inducel 3 -bicomodule structures are as follows
pH=e®1l p1)=1Qe,
piw)=a®u, pW)=ua, (35)

p(v)=e®RV+bR1L pW)=vRe+1RDb,
pruv) =a@Quv+cQQu, pruv)=uva—uc.

Proof. The only ones left to be shown are ti&,-bicomodule structures o in each
case. Since we know the YHs-module structures ofl in each case, the actions Bz
on A follow from the definitions (3) and (6). O

Let A be an objectirf (Hg). We denoted by (%) if Aisoftypel, and by ({/a,/B)
if Ais oftypell. Let

/7 /7
A=<a”3> and B=<a X >
k k

be two objects irf (H ) of type I. We compute the produdtA B. Observing the standard
Hx-bicomodule structures qf"—;f) from Theorem 5.7, we may easily find thatA B is
generated by two elemenis= u #u’ andv = v# 1+ 1 #v. A routine computation shows
thatu andv generate a generalized quaternion alge{ﬁﬁéfi). This fact suggests that
the subset™ of isomorphism classes represented by objects of typefl(tiz) form a
subgroup of GdlHR).
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Proposition 5.8. I" is a subgroup o6al(Hz) and is isomorphic ta™ x k®/k*2.

Proof. Suppose tha((%)] and [(%)] are two elements of”. In the preceding
argument we showed tha&:?) A (“5£) as an algebra is isomorphic t§<-£+£)  |f
(‘“‘3) ( )has the YDH -module structure of type |, i.e.,

o, p o o, B\  [ad',B+p
k ko[ k ’
then I' is a group. Since: = u #u’ andv = v # 1+ 1 #v are the two generators of

(%) A (“/;f/ ), it is enough to check that the action and coactioiigfon ¢ andv satisfy
(32). Indeed, we have

pw)=w#1®1-2w#1®gh)(1#u' @ 1—1#2w' @ gh)
=u#u' @1—2(w#Hu +u#w')®gh
=u®l—2uv®gh
=u®l-2w®gh, and

P =v#1RQg+28#1@h+1#V @g+1#28'®h
=(w#1+1#)@g+2(8+8)(1#1)@h
=v®g+2(B+B)Qh

wherew = uv andw = uv. Similarly one may check that

g-u=—u, g-v=-v, h-u=0, h-

|
Il
=

So we have proved that2) A (4£) = (W}
Next we show that the subgroup fits in the following split and exact sequence of
group homomorphisms:
1>kt > T — k'/k'2—> 1,

wherek™ is the additive group ot andk® is the multiplicative group of. Let

A=<°"k’3>.

Assign to(%) the quadratic extensiot(,/a ). Then we get a group homomorphism

Al = Ok)



Y. Zhang / Journal of Algebra 272 (2004) 321-378 373

from I" into the groupQ (k) of quadratic extensions. It is obvious thais surjective. We
show that the kernel of is isomorphic tok™. Recall that the grou@ (k) is isomorphic to
the groupk® /k*? (see [38]). Moreover,

AR“%W}:l if and only if o e k*2.

=[5 [«<e)

which is easily seen to be isomorphic to the additive grotipFinally the exact sequence
is split because the mapQ(k) — I" given by

=)

is a well-defined group homomorphism and. = ldgg). O

It follows that

Theorem 5.9. The groupGal(H ) is isomorphic tal” >« Z, where the multiplication rule
is given by

(e, B) ><i)((¢/, B') > j) = (=D e, B+ B) ><t (i + j).

Proof. Let D be the objeck(+/1, v/0) of type Il in £(Hg). Consider the objecb? =
D A D. ltis easy to see from (35) that the two elements u #u andv=1#v+v#1
generate the algebia? and satisfy the relations:

w?=-1, 1*=0, uv+vu=0.

Thus D? is the generalized quaternion algebré*—o). Now it is straightforward to check
thatu andv satisfy (32), and it follows that

2|10
=(==)

By Proposition 5.8, the obje@ is of order 2 if—1 € k*2, and is of order 4 if-1 ¢ k*2.
Next we show that any objeet of type Il in £(Hp) is a product ofD with an object of
type I. Suppose that = k{,/«, /B is an object of type Il for some € k* andp € k. We
show that the produat:?) A D is equal tok (@, v/B). It is easy to see thats2) A D
is generated by two elemenis=u #u’ andv = v # 1+ 1 #v', whereu, v andu’, v’ are
generators of%2) and D respectively. We have? = o, v? = § andu v = vu. Thus

<“’]f>w=k(\/a>®k<¢z)
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as algebras. Now we check thatindv satisfy (34). Indeed, we have

gru=g-u#(g-u)=—u#(-uv)=u,

gruv=g v#l+1#(g-v)=—v#l-1#=—,
hou=u#(h-u)+h-uttg u =0,
hov=h-v#1+1#(hv)=1#1+0=1

and

pw)=u#1®1—2uv#1Q@ gh)(1#u' @ g+ 1#2'v' @ h)
=u#tu' @g+2uv#u +u#u'v')Qgh
=u®l+2uv®gh, and

P =v#1Qg+28#1@h+1#V ®g+1#28' Qh
=(w#1+1#)@g+2(8+8)(1#1)h
=v®g+2(8+B)Qh.

Similarly, one can show that

DA<a}('B>=k<ﬁ,\/E)

for any o € k* and 8 € k. Thus we have proved that any object§iiHy) is either a
generalized quaternion algeb(r%;(ﬁ) or a product(%) A D, wherea € k°®, B € k and

D = k(~/1, 4/0). This fact implies that the group G&z) is an abelian group generated
by the subgroug™ and the elemeritD].
Define a map? from Gal’Hy) into I >« Z; as follows:

(D[]0 v o))

Itis clear from the definition that (D) = (1, 0) >< 1. Since

k(\/g’\/g>:<“}(ﬂ>/\0, <a}('8>/\D=D/\<a}('B> and DAD=<_1’O>,

¥ is an isomorphism. O

Theorem 5.10. The homomorphisi is surjective and we have an exact sequence

1 Br(k) — BC(k, Ha, R) > Gal(Hg) — 1. (36)
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Proof. If A is an object of type | in G&lg), then A is some generalized quaternion
algebra(%2), o # 0 andg € k. Wheng # 0, (%2) is an R-Azumaya algebra if we forget

the left H4-module structure. Since the coinvariant subalgebr(é‘jéf) is trivial, we have

a,p a, By .
= f 0.
()= (%) o
To get the preimage af%?) for o € k*, we choose th&-Azumaya algebra%?!) # (2-1).
Sincer is monoidal we have that

() ) = () ) ={5)

For an objeck (,/a, /B ) of type Il in GakHg), we choose a GaloiR-Azumaya algebra

A such that
o, B
=)

(assured by the foregoing arguments). Then it is easy to check that

7 (4 #K(VI)) = V2. VF)

for a € k®* andpB € k. Thus by Theorem 5.7 is an epimorphism, and hence the sequence
(36) is exact. O

Recall that the Brauer—Wall group BW) is BC(k, kZ2, R’), wherekZ; is the sub-Hopf
algebra ofH, generated by the group-like element Hs, andR’ is the restriction ofR to
kZjy. The following well-known exact sequence is a special case of (23):

1 Br(k) — BW(k) = 02(k) — 1, 37)

whereQ2(k) = Q(k) >« Z3 is nothing but GalH /) andH g = kZo, hereH = kZy.

The sequence (37) can be also obtained if we restrict the homomorghisr(86) to
the subgroup BWk) of BC(k, Ha, R). The groupt (BW (k)) consist of all objects of form:
(“TO) of type | andk (/) ® k(+/0) of type II, which is isomorphic ta2 (k).

Recall from [35] that the CQT Hopf algebra méh — Z, sendingg to g andh to zero
induces a group homomorphismnfrom BC(Hy, R) onto BW(k), wherey ([A]) = [A],
and the latefA] has only grading.

In order to distinguish the group homomaorphigmwe user, and w4 (consequently
72, 4) to denote the canonical monoidal functors for CQT Hopf algelbtds, R’) and
(Hg, R) respectively. Letd be(%), a, B € k® with Hz-coaction given by (32). Then

=((%F) =(57)
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If we forget the coaction of, then(%) represents an element in BY . Letu, v be the
canonical generators (()%‘9). ThenAg =k + ku. It is easy to see that

72 << “}(/3 >> = Cag(A) = Ao = k{va).

Now let A = End(HP) #k(+/1). Thenma(A) = D and
m2(A) = 7 (End(HP)) A n(k(«/i)) = k(«/i)

sincek(+/1) is now a Galois graded Azumaya algebra. Thus we have proveg tiitatin
the following commutative diagram:

1——Brk)NK K kTt 1
1 Br(k) BC(k, Ha, R) L GalHgr) ——= 1
| /| /|
1 Br(k) BW(k) — > Qa(k) — 1,

whereKk is the kernel of/, « is the inclusion map ang is the projection front™ x Q» (k)
onto Qx(k). Here m4(K) = kT becauset, o y = p o 74. By definition of y we have
Br(k) N K = 1. It follows thatK = k™. Sincey is split, we obtain that the Brauer group
BC(k, Hs, R) is isomorphic to the direct product grolip x BW(k), which coincides with
Theorem 8 in [35].

In this case, we have an exact and split sequence, cf. [35]:

1— kt — BC(k, H4, R) - BW(k) — 1 (38)

wherek™ is the additive group that is isomorphic to the grougdatbigalois objects [25].

Recently, G. Carnovale proved in [8] that the Brauer grouglB&j, R;) is isomorphic
to BC(k, Ha, Ro) for anyr # 0 although(Hj, R;) is not coquasitriangularly isomorphic to
(Hs, Ro) whent #£ 0 (see [24]).
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